
Int. J. Open Problems Compt. Math., Vol. 2, No. 2, June 2009

Robust Estimation Approach for Nonlocal-means

Denoising Based On Structurally

Similar Patches

Dinesh peter. J, Govindan. V. K, Abraham T. Mathew

Department of Computer Science and Engineering,
National Institute of Technology Calicut, Calicut - 673601,

India. email: dineshpeterson@gmail.com
Department of Computer Science and Engineering,

National Institute of Technology Calicut, Calicut - 673601,
India. email: vkg@nitc.ac.in

Department of Electrical Engineering,
National Institute of Technology Calicut, Calicut - 673601,

India. email: atm@nitc.ac.in

Abstract

Edge preserved smoothing techniques has gained importance
for the purpose of image denoising. A good edge preserved fil-
tering is given by nonlocal-means filter than any linear model
based approaches.The contributions are in two fold. First,
this paper explores a refined approach of nonlocal-means fil-
ter by using robust estimation function rather than the usual
exponential function for its weight calculation. Here the fil-
ter output at each pixel is the weighted average of pixels with
the surrounding neighborhoods using the chosen robust esti-
mation function. Second, in order to speed up the computa-
tion, a new patch classification method is followed to eliminate
the uncorrelated patches from the weighted averaging process.
This patch classification approach compares favorably to exist-
ing techniques in respect of quality versus computational time.
Validations using various test images have been analyzed and
the results were compared with other known recent methods.
There is reason to believe that this refined algorithm has some
interesting and notable points.

Keywords: Image processing, Image Denoising, Nonlocal-means filter,
Robust Statistics, Robust M-estimators
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1 Introduction

Denoising is the technique of removing noise from an image. Most of the
denoising techniques seem to be very similar regardless of the image being
processed. All denoising algorithms are based on the noise framework and
the relative smoothing framework. Due to the fixed estimations of smoothing
methods on the original image, fine structures are smoothed out since they act
like noise. So the effectuation of these techniques must be greatly contingent
on the type of images and the analytic knowledge of the characteristics of an
output image.
A linear Gaussian smoothing function[1] reduces noise in piecewise constant
area but blurs edges. Nonlinear models handle edges much better than any
other linear models. Total variation filter [2], among many nonlinear models
gives good edge preserving smoothing scheme but tends to generate mask effect
in flat regions on the output image. Variational methods have shown impres-
sive results to tackle the problem of edge preserved smoothing by involving
automatic adjustment of global weights. Bilateral filter is another nonlinear
filter proposed by many researchers [3-6]to smooth images while preserving
edges. The k-svd (k-singular value decomposition) method is used for denois-
ing by means of a sparsity prior on all fixed-sized overlapped patches in an
image [36]. This work has been extended to color images, with state-of-the-
art results in denoising [42], video denoising [43] and providing a framework
for learning multiscale and sparse image representation in [38]. The extended
work of BM3D filter, sparse 3D transform domain proposed by Dabov et al
[37], gives state-of-the-art denoising results that outperform all other existing
recent denoising results. Takeda et al [44] proposed a novel data adaptive
generalized kernel regression technique for image denoising.
Buades et al [8] pointed out that nonlocal-means filter is a special case of bi-
lateral filter which gives better edge preserved denoising results. The output
of the filter at each pixel is replaced by the weighted average of pixels with
surrounding neighborhoods. This method gives good results but it is too slow
to be manageable. Various fast approaches of nonlocal-means algorithm was
already proposed in [9-11]. In [9], the selection of relevant patches is based on
the similarity of the mean intensities, and on the average gradient orientation
over the patches. Moreover gradient orientation is sensitive to noise and thus
it requires robust estimation technique [9]. In [10], the patches are classified
using mean and variance. An efficient patch classification can be made by ap-
plying svd to eliminate pixel pairs that are dissimilar [11]. A block matching
approach is used for finding similar patches in nonlocal-means filter is found in
[7]. In [28,39-41], the weights are not based on the similarities between patches
but similarities between the point-wise estimate in a local neighborhood. In
[30], the library of natural image patches have been worked out for denoising
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application. This paper extended the work in [10] for the better classification
of patches thereby reducing the effect of uncorrelated patches for the weight
calculation. The details are given in section 2.3.1.
A more realistic image model assumes that images are made of smooth regions,
separated by sharp edges and contains more number of duplicated structures.
On averaging the duplicated structures, noise is impressively reduced when
compared with the averaging of pixels in the same structure, so the computa-
tion of nonlocal neighborhoods gives better results than the local neighborhood
computation. The proposed paper gives a refined approach in which it says
that the reconstructed pixel value is obtained by the weighted average of all
pixel values in an image using robust estimation function from robust statis-
tics.
The rest of this paper deals about the following. In section 2, the methodol-
ogy followed to refine the classical nonlocal-means algorithm is introduced. In
this, the inside information of various robust functions are examined and the
selection of best robust function for the weight calculation in nonlocal-means
algorithm has been exercised. In order to automate and speedup the weight
calculation process, various improvements have also been proposed. In section
3, the results are compared with other latest restoration techniques and its
details are discussed briefly. We have compared our results with the recent
wavelet based methods [27,29] also. Section 4 concludes the paper.

2 Methodology

2.1 A Statistical perspective

Our aim is to develop a statistical interpretation of the nonlocal-means al-
gorithm. In particular, we assume that a given input image is a piecewise
constant function that has been corrupted by white gaussian noise. Consider
the patch intensity difference |s(x)−s(y)|, within the piecewise constant search
region N (x), this difference is small, zero-mean, and normally distributed. For
the search region that includes intensity discontinuity, the difference of pixel
values between two patches are drawn from two different population. So the
square of the pixel difference is increased. This will skew the original estimate.
Thus within a search region, the pixel difference can be viewed as an outlier.
The dealing of outliers can be handled by robust functions from the area of
robust statistics.

2.2 Robust estimation and Nonlocal-means filter

Estimation function is the function of intensities of an image. The properties
that will satisfy the estimation function for edge preservation have been de-
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fined from various papers. Geman et al. [12] recommends functions having a
finite asymptotic behavior for the edge preserving regularization. In [13-16],
authors prefer using convex potentials in order to ensure the uniqueness of
the solution. The problem of estimating a smooth image from a noisy im-
age can be explained from the area of robust statistics [17] and the review of
applications of robust statistics in computer vision can be seen in [18]. Ro-
bust approaches for local image smoothing can be seen in [19]. A suitable
robust function permits us to minimize the consequence of the outliers, and
the derivative of the robust function examines its behavior. Black et al. [21]
has compared some robust functions for the purpose of robust anisotropic dif-
fusion and he suggested Tukey’s biweight function since it contributes larger
potential to outliers. But here, one needs to determine a best robust function
which will be suited for nonlocal-means filter. The classical nonlocal-means
filter uses the exponential function as a weight function for its weight calcu-

lation i.e., w(x, y) = e−
||s(x)−s(y)||22,σ

h2 . Since this function has a wide symmetric
bell-shaped probability density function, the influence function of this (see
in Fig.4) symbolizes that this is rather robust to outliers. Leclerc et al [20]
pointed out that the exponential function can be viewed in the robust statis-
tical framework by converting this into related robust object function. In [22],
the authors have adopted the weight function ϑh = 1

1+ x2

h2

instead of the usual

exponential function for nonlocal-means filter which leads to a more efficient
implementation. This function is actually a robust weight function that have
been already used by [23],[24]. Consider this robust error norm plotted in Fig.1.

ρhl(x, σ) =
{

log[1 + x2

σ2 ] |x| ≤ σ,
0, otherwise

ψhl(x, σ) =
{ x

1+ x2

σ2

|x| ≤ σ,

0, otherwise

ghl(x, σ) =
{ 1

1+ x2

σ2

|x| ≤ σ,

0, otherwise

ρhl(x, σ) ghl(x, σ) ψhl(x, σ)

Figure 1: Hebert-Leahy error norm

Examination of its ψhl-function reveals that, for the nonlocal-means filter,
when the distance ‖s(x)− s(y)‖2

2,σ increases beyond a fixed point determined
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ρt(x, σ) gt(x, σ) ψt(x, σ)

Figure 2: Tukey’s biweight error norm

ρgm(x, σ) ggm(x, σ) ψgm(x, σ)

Figure 3: Geman-McClure error norm

by the decay parameter h, its influence is reduced. So this can be generally
referred as a redescending influence function. If a particular local difference
has a large magnitude then the value of w(x, y) will be small and therefore that
measurement will have little effect on the output image. Though this function
is robust, its influence function does not descend to all the way to zero. Thus
it is called as Soft redescending norm. We can choose a more robust norm
from the robust statistics which does descend to zero e.g. Hard redescending
norm. Tukey’s biweight norm, is plotted along with its influence function in
Fig.2.

ρt(x, σ) =
{ x2

σ2 − x4

σ4 + x6

3σ6 |x| ≤ σ,
1
3

otherwise

ψt(x, σ) =
{ x[1− (x

σ
)2]2 |x| ≤ σ,

0 otherwise

gt(x, σ) =
{ 1

2
[1− (x

σ
)2]2 |x| ≤ σ,

0 otherwise

Another error norm from the robust statistics literature, Geman-McClure
norm is plotted along with its influence function in Fig.3.

ρgm(x, σ) =
{ x2

σ+x2 |x| ≤ σ,

0 otherwise

ψgm(x, σ) =
{ 2xσ

(σ+x2)2
|x| ≤ σ,

0 otherwise

ggm(x, σ) =
{ 2σ

(σ+x2)2
|x| ≤ σ,

0 otherwise

This function is also a hard redescending norm. It gives a optimized redescend-
ing behavior than the function used in [22] i.e., Hebert-Leahy norm and Tukey’s
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Figure 4: Robust influence functions aligned and scaled

biweight norm. Due to the fast decay of the exponential and Tukey’s biweight
influence function, euclidean distances outside the fixed point lead to zero
weights immediately, so smoothing may not behave properly but the edges
are preserved. Hence, we need a function that compromises the effect of
smoothness as well as edge preservation. For the weight calculation w(x, y) in
nonlocal-means filter, weight function ϑh is strictly relying on the similarity of
the patches i.e., similar patches give larger weights and dissimilar patches give
smaller weights. Our method uses Geman-McClure function for the weight cal-
culation in nonlocal-means filter and the results show that it has more stable
characters for calculating the weights.

2.2.1 Robust Nonlocal-means filter

Let s be the noisy image s = {s(x)|x ∈ Ω} defined over a discrete domain
Ω ⊂ R2 and s(x) ∈ R+ is the intensity of noisy observed pixel x ∈ Ω. The
estimated value of NL{s(x)} is computed as the weighted average of all pixels
in an image s,

NL{s(x)} =

∑
y∈N (x) w(x, y)s(y)∑

y∈N (x) w(x, y)
(1)

where w(·, ·) are positive weights and N (x) corresponds to a set of neighbor-
ing pixels of x which is otherwise called as searching window [8]. The weight
w(x, y) measures the similarity between two square patches of the pixels cen-
tered on x and y and it is defined as

w(x, y) = ϑh

( ∑
t∈Ξ

Gσ(t)(s(x + t)− s(y + t))2
)

:= ϑh

(
‖s(x)− s(y)‖2

2,σ

)
(2)

where Gσ is gaussian kernel of variance σ2 is used to take into account
the distance between the center pixel and other pixels in the patch, ϑh is
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a continuous decreasing function with ϑh(0) = 1 and ϑh(+∞) = 0, and Ξ
represents the discrete patch region containing the neighboring pixels t. The
parameter h is used to control the amount of filtering. Typical examples of ϑh

are already discussed. Here Geman-McClure function is used as ϑh-function
where the exponential function is used in [8]. The robust nonlocal-means filter
NLr, we will then consider, is defined as

NLr{s(x)} =
1

C(x)

∑

y∈N (x)

s(y)(
1 +

‖s(x)−s(y)‖22,σ

h2

)2 (3)

where ‖ · ‖ is the usual l2-norm. C(x) is normalizing constant such that for
any pixel x we have C(x) =

∑
y∈N (x)

1

(1+
‖s(x)−s(y)‖22,σ

h2 )
2
. The usage of Geman-

McClure function for the weight calculation of nonlocal-means filter enhances
the image much better than the usual exponential function. Because whenever
the algorithm faces dissimilar patches, this will not leave the weight to zero
value instantly. This is the major reward of using Geman-McClure function
and the experimental results depicted this distinctly.
In this algorithm, assume the search windowsN (·) and patches Ξ have uniform
cardinalities of, respectively, (2P + 1)n and (2Q + 1)n with N = [−P, P ]n and
Ξ = [−Q,Q]n. Then the time complexity is O(|Ω|P nQn). This is exponential
with respect to dimension n but it is polynomial with respect to |Ω|. When
the dimensions are fixed and low, the algorithm remains polynomial. However,
this paper proposes a new acceleration technique in the next section to speed
up the weight computation process.

2.3 Other meliorations in Nonlocal-means filter

2.3.1 Patch classification in the search space

Many recently proposed methods from [9-11,25,35,40,31], deals with the com-
putational burden of nonlocal-means filter. In [9-10], the methods used low-
order statistics called ”mean” for preselecting the patches. But it is easy
to show that this simplistic pre-filtering method can lead to sub-optimal re-
sults[31]. Fig.5 shows the example involving three 7 × 7 binary patches. The
mean intensity of the patch centered on x is 0.4286. The two other patches
centered on y and z have mean intensities 0.4286 and 0.5714 respectively,
therefore favoring the weight computation process for the patches centered
on y over z. However, the sample correlation coefficients Corr(x, y) = −0.75
while Corr(x, z) = 0.75, suggesting that z matches x much better than y does.
Among those, we select a method to preselect a subset of the most relevant
patches in a search space to avoid unnecessary weight computations. We sug-
gest a single measure that is more enough to classify the patches in a search
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space. It is called as structural information that can be calculated from the
mean and standard deviation. The structural information of each patch cen-
tered on x in a search space is calculated as xi−µx

σx
|xi ∈ X where µx is the

mean and σx is the the standard deviation of a patch X. The patch is normal-
ized by its own standard deviation so that the two patches being compared
have unit standard deviation. A circular-symmetric gaussian weighting func-
tion W = {wi|i = 1, 2, · · · , |Ξ|} with unit sum (

∑|Ξ|
i=1 wi = 1) is adopted in

order to reduce the effect of noise. The estimates of the low-order statistics
for the patch X, µx,σx are then modified according as µx =

∑X
i=1 wixi and

σx = (
∑X

i=1 wi(xi − µx)
2)

1
2 as described in [45]. The correlation (inner prod-

uct) between any two patches, say X,Y , is a simple and effective measure to
quantify the structural similarity. The correlation between xi−µx

σx
and yi−µy

σy

is equivalent to the correlation coefficient between the patches centered on x
and y respectively. The structural comparison ζ(X, Y ) is conducted on these
normalized patches as ζ(X,Y ) = ζ(xi−µx

σx
, yi−µy

σy
)|xi ∈ X, yi ∈ Y . Indeed, the

mean structural map ζ between the patches in a search space are pre-computed
in order to avoid unnecessary weight calculations. And the classification can
be carried out well for necessary weight calculation by putting the condition

w(x, y) =

{ 1
C(x)

∑
y∈N (x)

1

(1+(
‖s(x)−s(y)‖

h
)2)2

ζ ≥ η

0 otherwise.
(4)

where η is a predefined value. But this kind of patch classification leads to the
nonlocal-means filter rather reducing the effect of denoising in the flat regions
while preserving the detailed regions as well.

2.3.2 Automatic adjustment of the decay parameter h

The decay parameter h quantifies how fast the weights decay with increas-
ing dissimilarity of respective patches that depends on σ of the noise and
also |Ξ|, where Ξ is the discrete patch region containing the neighboring
pixels. The statistical reasoning in [32], allows us to determine h automat-
ically. A functional relationship for automatically finding h is defined as
h2 = f(σ̂2, |Ξ|, κ), where κ is a constant. For low levels of noise, κ is set
to 0.5 and for higher levels of noise, it is 1 [25]. Here, κ allows to adjust
the automatic estimation of h. The optimal smoothing parameter h can be
estimated by calculating the pseudo-residuals εi as described in [25,40]. If we
choose P is six-neighborhood system, pseudo-residuals are compactly repre-

sented by εi =
√

6
7
(s(x)− 1

6

∑
y∈P s(y)), where the constant

√
6
7

is introduced

to insure that E[ε2
i ] = σ̂2. Given the residuals εi, we can then robustly estimate

the noise variance σ̂2 by σ̂ = 1.4826 medi(|εi − medj|εj||). Finally, h can be
automatically calculated as h = 2κσ̂2|Ξ|. Therefore the weight is calculated
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Figure 5: A case where the similarity between patches using mean is sub-
optimal

automatically as w(x, y) = 1

(1+
‖s(x)−s(y)‖22,σ

2κ
c
σ2|Ξ|

)
2
. The estimation of the standard

deviation of the noise is correctly performed by pseudo-residuals.

2.4 Implementation details

In practice, for a classical nonlocal-means filter, it is required to set the patch
size Ξ, search space (or search window) N (x) and the decay parameter h. In
section 2.3.2, automatic adjustment of h has been studied. The pixel intensities
of a square patch Ξ are taken and reordered lexicographically to form a n-
dimensional vector s(x) = (s(xk), xk ∈ Ξ) ∈ Rn. Here we use 7 × 7 patches
that are able to take care of the local structures (geometry and texture) around
the pixels in consideration [8]. Note that pixels outside N (x) do not contribute
to the value of NLr{s(x)}. To make averaging more robust, the search window
N (·) in the nonlocal-means algorithm can be as large as possible and in the
limit extend it to the entire image. And it is necessary to reduce the total
number of weights for each pixel. This can be achieved by selecting the patches
Ξ corresponding to a search window N (x) of 21 × 21 pixels. We follow the
patch classification approach as explained in section 2.3.1. The parameter
η = 0.7 here. For the mean structural map ζ less than η, the weight is set to
0. Otherwise, the weight will be calculated using equation (4).
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3 Experimental results and discussion

In this section, the proposed refined approach of nonlocal-means filter is ap-
plied on various test images to demonstrate its superior performance in noise
reduction without noticeable loss of overall structures. Performances are also
compared with several other recent denoising techniques in the literature. Our
results were measured by the peak signal-to-noise ratio (PSNR) in decibels
(dB) as PSNR = 10log10

2552

MSE
where MSE is Mean Square Error. The po-

tential of the estimation method is mainly illustrated with the 512× 512 bar-
bara image [Fig.6(a)] corrupted by an additive white gaussian noise (WGN)
[Fig.6(b)], PSNR=22.18dB, σ = 20. In Fig.6(c), our approach is applied with
21 × 21 search window. The noise is well reduced and the structures are re-
covered (PSNR=30.61dB).

(a) (b) (c)

Figure 6: (a) 512x512 Barbara test image (b) Added with WGN of σ = 20 (c)
Denoised image using our approach

We have compared the performance of our method to several recent com-
petitive methods. Table.1 lists the PSNR values of various recent denoising
algorithms applied to various test images. Our results compare favorably with
previous approaches. For the noise variance σ = 20, our approach produces
good PSNR values when compared to the first set of denoising algorithms.
And the recent denoising algorithms in the second set, outperform our ap-
proach. The other denoising results were adopted from [39] and also from the
respective publications.

In order to identify the performance of our denoising results for various
levels of noise, we compare our result with the recent state-of-the-art denois-
ing algorithms in Table 2. Even though the very sophisticated state-of-the-art
filtering methods can achieve higher PSNR values, there is a reason to believe
that our approach can also compete with them. Table 3 shows that the pro-
posed robust nonolocal-means filter without patch classification gives better



Robust Estimation Approach for Nonlocal-means 303

(a) (b)

Figure 7: (a) Noisy input image (400×400 hamiltonfaceimage)(b) restored
image (estimated σ̂ = 8.91)

PSNR values than the same with the proposed patch classification technique.
In general, the patch classification approach to speedup the nonlocal-means
algorithm works poor in detailed regions of an image, e.g., the 512× 512 bar-
bara test image contains several fine textural details. Less number of similar
pixels in the detailed region are used for weight computation process when
compared to flat region. Our result outperforms the classical nonlocal-means
filter and the recent cluster tree based patch classification approach. The re-
sults of the recent fast bayesian nonlocal-means approach [40] outperform our
result. Table 4 shows the computation times of several fast nonlocal means
implementations depending on the search window size. The methods were run
with the 512× 512 barbara test image. For growing window sizes, the cluster
tree based approach outperforms our faster approach. In [40], for 15×15 search
window and 7 × 7 patches, the algorithm works in 21.2 seconds. intuitively,
it is seen from the Table.4 that our patch classification method is faster than
the new statistical distance measure based patch classification in [40]. Several
iterative versions of nonlocal-means algorithm are also presented in Table.1
[32-35]. Since we are interested only on pre-selection based patch classification
technique to speed up the weight computation process in nonlocal-means filter,
the computational times for the iterated versions of nonlocal means filters are
not given in Table.4. Finally, the proposed robust nonlocal means algorithm
has been used to restore hamilton’s face image which has more textural pat-
terns as shown in Fig.7(a). In that case, the noise variance σ̂2 is automatically
estimated from image data using the approach explored in section 2.3.2. In
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Table 1: Performances of Denoising algorithms when applied to various test
noisy(WGN) images at σ = 20

Image Lena Barbara Boats House
σ/PSNR 20/22.13 20/22.18 20/22.17 20/22.11

Our approach 32.36 30.61 30.07 33.14
Kervrann et al.[41] 30.54 26.50 28.01 30.70
Buades et al. [8] 31.78 30.31 29.34 32.49
Ghazel et al. [26] 28.50 25.64 26.34 -
Pizurica et al. [27] 32.20 29.53 29.93 -
Polzehl et al. [28] 29.74 26.05 27.74 30.31
Portilla et al. [29] 32.66 30.32 30.38 32.39
Roth et al. [30] 31.92 28.32 29.85 32.17
Rudin et al. [2] 31.40 27.05 29.40 31.47
Tomasi et al. [5] 30.26 27.02 28.41 30.01
Awate et al. [32] 31.79 30.14 29.54 32.59
Gilboa et al. [33] 31.95 30.20 29.89 32.55
Gilboa et al. [34] 31.39 29.43 29.53 32.17
Brox et al. [35] 32.08 30.33 29.69 32.74
Elad et al. [36] 32.38 30.83 30.36 33.20
Dabov et al. [37] 33.05 31.78 30.88 33.79
Mairal et al. [38] 32.88 31.53 30.82 33.75
Kervrann et al. [39] 32.64 30.37 30.12 32.90
Kervrann et al. [40] 32.63 30.88 30.16 33.24

Table 2: Quantitative comparison of state-of-the-art denoising algorithms
when applied to 512×512 Lena image with various levels of noise σ = 15, 25, 50

σ/PSNR 15/24.61 25/20.17 50/14.15

Our approach 33.36 31.12 27.13
Buades et al. [8] 32.40 29.59 25.55
Elad et al. [36] 33.70 31.32 27.79
Dabov et al. [37] 34.27 32.06 28.86
Mairal et al. [38] 34.14 31.92 28.80
Kervrann et al. [39] 33.71 31.73 28.46
Takeda et al. [44] 33.69 31.70 28.28

Fig.7(b), the coherence of lines in the image is enhanced well and the blurring
effect is optimal.
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Table 3: Performances of some faster implementation of NL-means when ap-
plied to 512× 512 barbara test noisy(WGN) image

σ/PSNR 20/22.18

Classical NL-means 30.31
Robust NL-means (Without Patch classification) 30.64
Robust NL-means (With Patch classification) 30.61
Patch classification by mean and variance 29.80
Cluster trees (ω = 10) 30.26
Fast Bayesian NL-means 30.71

Table 4: Computation time of various fast implementation of NL-means filters
depending on the size of the search window

Search Window 17× 17 21× 21 33× 33 65× 65 129× 129 no
window

Classical NL-means 27s 42s 106s 410s 1539s 16107s
Patch classification-
by mean and variance 13s 17s 34s 88s 221s 1529s
Robust NL-means
(With proposed-
Patch classification) 12s 15s 29s 59s 135s 798s
Cluster tree (ω = 0) 12s 14s 14s 14s 14s 14s

4 Conclusion and Open Problem

We have described a refined approach of nonlocal-means filter. This proposed
method suggests the use of Geman-McClure robust estimation function as ϑh.
And to speed up this algorithm, the classification of patches using structural
map ζ is presented. This method allows for the efficient pre-selection of similar
patches. By doing this so, some features of an image are well preserved even
better than the classical nonlocal-means filter. The two contributions of this
paper can be combined well to produce good results. The comparisons made
for the denoised images from various recent denoising techniques are presented.
As shown by the experimental evaluation, the proposed one preserves the con-
trast of textural structures much better. The performance of our algorithm is
very close, and in some cases even outperforms, to that of existing state-of-
the-art denoising results. This new proposal considerably increases the power
of denoising and one can say that the proposed approach achieved the worthy
level of pertinency.
There is a scope to tune this proposed method in order to outperform all the
state-of-the-art denoising techniques by considering the issue like patch classi-
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fication. Many research works are going on for the patch classification method
to speedup the weight calculation process in nonlocal-means filter. Since the
sample correlation coefficient is not robust to the outliers, the classification
using this may not work properly for the images contain outliers.
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