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Abstract

In this paper, under some conditions, we show that the so-
lution of a semidiscrete form of a nonlocal parabolic problem
quenches in a finite time and estimate its semidiscrete quench-
ing time. We also prove that the semidiscrete quenching time
converges to the real one when the mesh size goes to zero. Fi-
nally, we give some numerical results to illustrate our analysis.
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1 Introduction
Let Ω be a bounded domain in RN with smooth boundary ∂Ω. Consider the
following initial value problem

ut(x, t) =

∫

Ω

J(x− y)(u(y, t)− u(x, t))dy + (1− u)−p in Ω× (0, T ), (1)

u(x, 0) = u0(x) ≥ 0 in Ω, (2)

where p = const > 0, J : RN → R is a kernel which is nonnegative and bounded
in RN . In addition, J is symmetric (J(z) = J(−z)) and

∫
RN J(z)dz = 1. The
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initial datum u0 ∈ C0(Ω), 0 ≤ u0(x) < 1, x ∈ Ω.
Here, (0, T ) is the maximal time interval on which the solution u exists. The
time T may be finite or infinite. When T is infinite, then we say that the
solution u exists globally. When T is finite, then the solution u develops a
singularity in a finite time, namely,

lim
t→T

‖u(·, t)‖∞ = 1,

where ‖u(·, t)‖∞ = supx∈Ω |u(x, t)|. In this last case, we say that the solution
u quenches in a finite time, and the time T is called the quenching time of the
solution u. Recently, nonlocal diffusion has been the subject of investigation
of many authors (see, [1]-[7], [10]-[12], [14]-[18], [20], and the references cited
therein). Nonlocal evolution equations of the form

ut =

∫

RN

J(x− y)(u(y, t)− u(x, t))dy,

and variations of it, have been used by several authors to model diffusion
processes (see, [3], [4], [17]). The solution u(x, t) can be interpreted as the
density of a single population at the point x, at the time t, and J(x−y) as the
probability distribution of jumping from location y to location x. Then, the
convolution (J ∗u)(x, t) =

∫
RN J(x−y)u(y, t)dy is the rate at which individuals

are arriving to position x from all other places, and −u(x, t) = − ∫
RN J(x −

y)u(y, t)dy is the rate at which they are leaving location x to travel to any
other site (see, [17]). Let us notice that the reaction term (1 − u)−p in the
equation (1) can be rewritten as follows

(1− u(x, t))−p =

∫

RN

J(x− y)(1− u(x, t))−pdy.

Therefore, in view of the above equality, the reaction term (1 − u)−p can be
interpreted as a force that increases the rate at which individuals are arriving
to location x from all other places. Due to the presence of the term (1− u)−p,
we shall see later the quenching of the density u(x, t). On the other hand, the
integral in (1) is taken over Ω. Thus, there is no individuals that enter or leave
the domain Ω. It is the reason why in the title of the paper, we have added
Neumann boundary condition. In the current paper, we are interested in the
numerical study of the phenomenon of quenching using a semidiscrete form of
(1)-(2). Let us notice that, setting v = 1−u, the problem (1)-(2) is equivalent
to

vt(x, t) =

∫

Ω

J(x− y)(v(y, t)− v(x, t))dy − v−p in Ω× (0, T ), (3)

v(x, 0) = ϕ(x) ≥ 0 in Ω, (4)
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where ϕ(x) = 1 − u0(x). Consequently, the solution u of (1)-(2) quenches at
the time T if and only if the solution v of (3)-(4) quenches at the time T , that
is,

lim
t→T

vmin(t) = 0,

where vmin(t) = minΩ v(x, t). We start by the construction of an explicit
adaptive scheme as follows. Approximate the solution v of (3)-(4) by the
solution Un of the following semidiscrete equations

δtUn(x) =

∫

Ω

J(x− y)(Un(y)− Un(x))dy − (Un(x))−p in Ω, (5)

Un(0) = ϕ(x) in Ω, (6)

where n ≥ 0, and

δtUn(x) =
Un+1(x)− Un(x)

∆tn
.

In order to permit the semidiscrete solution to reproduce the properties of the
continuous one when the time t approaches the quenching time T , we need to
adapt the size of the step so that we take

∆tn = min{∆t, τUp+1
nmin},

where Unmin = minx∈Ω Un(x), τ ∈ (0, 1/2) and ∆t ∈ (0, 1/2) is a parameter.
Let us notice that the restriction on the time step ensures the positivity of the
semidiscrete solution.
To facilitate our discussion, let us define the notion of semidiscrete quenching
time.

Definition 1.1 We say that the semidiscrete solution Un of (5)-(6) quenches
in a finite time if limn→∞ Unmin = 0, and the series

∑∞
n=0 ∆tn converges. The

quantity
∑∞

n=0 ∆tn is called the semidiscrete quenching time of the semidiscrete
solution Un.

In the present paper, under some conditions, we show that the semidiscrete
solution quenches in a finite time and estimate its semidiscrete quenching time.
We also show that the semidiscrete quenching time converges to the real one
when the mesh size goes to zero. A similar result has been obtained by Le Roux
in [21]-[22], and the same author and Mainge in [23] within the framework of
the phenomenon of blow-up for local parabolic problems (we say that a solution
blows up in a finite if it reaches infinity in a finite time). One may also consult
the papers [25] and [26] for numerical studies of the phenomenon of quenching
where semidiscretizations in space have been utilized. The remainder of the
paper is organized as follows. In the next section, we reveal certain properties
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of the continuous problem. In the third section, we exhibit some features
of the semidiscrete scheme. In the fourth section, under some assumptions,
we demonstrate that the semidiscrete solution quenches in a finite time, and
estimate its semidiscrete quenching time. In the fifth section, the convergence
of the semidiscrete quenching time is analyzed, and finally, in the last section,
we show some numerical experiments to illustrate our analysis.

2 Local existence
In this section, we shall establish the existence and uniqueness of solutions of
(1)-(2) in Ω × (0, T ) for all small T . Some results about quenching are also
given.
Let t0 be fixed, and define the function space Yt0 = {u; u ∈ C([0, t0], C(Ω))}
equipped with the norm defined by ‖u‖Yt0

= max0≤t≤t0 ‖u‖∞ for u ∈ Yt0 . It is
easy to see that Yt0 is a Banach space. Introduce the set

Xt0 = {u; u ∈ Yt0 , ‖u‖Yt0
≤ b0},

where b0 = ‖u0‖∞+1
2

. We observe that Xt0 is a nonempty bounded closed convex
subset of Yt0 . Define the map R as follows

R : Xt0 → Xt0 ,

R(v)(x, t) = u0(x)+

∫ t

0

∫

Ω

J(x−y)(v(y, s)−v(x, s))dyds+

∫ t

0

(1−v(x, s))−pds.

Theorem 2.1 Assume that u0 ∈ Yt0. Then R maps Xt0 into Xt0, and R is
strictly contractive if t0 is approximately small relative to ‖u0‖∞.

Proof. Due to the fact that
∫

Ω
J(x− y)dy ≤ ∫

RN J(x− y)dy = 1, a straight-
forward computation reveals that

|R(v)(x, t)− u0(x)| ≤ 2‖v‖Yt0
t + (1− ‖v‖Yt0

)−pt,

which implies that

‖R(v)‖Yt0
≤ ‖u0‖∞ + 2b0t0 + (1− b0)

−pt0.

If

t0 ≤ b0 − ‖u0‖∞
2b0 + (1− b0)−p

, (7)

then
‖R(v)‖Yt0

≤ b0.
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Therefore, if (7) holds, then R maps Xt0 into Xt0 . Now, we are going to prove
that the map R is strictly contractive. Let t0 > 0 and let v, z ∈ Xt0 . Setting
α = v − z, we discover that

|(R(v)−R(z))(x, t)| ≤ |
∫ t

0

∫

Ω

J(x− y)(α(y, s)− α(x, s))dyds|

+|
∫ t

0

((1− v(x, s))−p − (1− z(x, s))−p)ds|.

Use Taylor’s expansion to obtain

|(R(v)−R(z))(x, t)| ≤ 2‖α‖Yt0
t + t‖v − z‖Yt0

p(1− ‖β‖Yt0
)−p−1,

where β is an intermediate value between v and z. We deduce that

‖R(v)−R(z)‖Yt0
≤ 2‖α‖Yt0

t0 + t0‖v − z‖Yt0
p(1− ‖β‖Yt0

)−p−1,

which implies that

‖R(v)−R(z)‖Yt0
≤ (2t0 + t0p(1− b0)

−p−1)‖v − z‖Yt0
.

If

t0 ≤ 1

4 + 2p(1− b0)−p−1
, (8)

then ‖R(v) − R(z)‖Yt0
≤ 1

2
‖v − z‖Yt0

. Hence, we see that R(v) is a strict
contraction in Yt0 and the proof is complete. ¤
It follows from the contraction mapping principle that for appropriately chosen
t0, R has a unique fixed point u(x, t) ∈ Yt0 which is a solution of (1)-(2). If
‖u‖Yt0

< 1, then taking as initial data u(x, t) ∈ C(Ω) and arguing as before, it
is possible to extend the solution up to some interval [0, t1) for certain t1 > t0.
The following lemma is a version of the maximum principle for nonlocal prob-
lems.

Lemma 2.2 Let a ∈ C0(Ω× [0, T )), and let u ∈ C0,1(Ω× [0, T )) satisfying
the following inequalities

ut −
∫

Ω

J(x− y)(u(y, t)− u(x, t))dy + a(x, t)u(x, t) ≥ 0 in Ω× (0, T ), (9)

u(x, 0) ≥ 0 in Ω. (10)

Then, we have u(x, t) ≥ 0 in Ω× (0, T ).
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Proof. Let T0 be any positive quantity satisfying T0 < T . Since a(x, t) is
bounded in Ω×[0, T0], then there exists λ such that a(x, t)−λ > 0 in Ω×[0, T ].
Define z(x, t) = eλtu(x, t) and let m = minx∈Ω,t∈[0,T0] z(x, t). Due to the fact
that z is continuous in Ω× [0, T0], then it achieves its minimum in Ω× [0, T0].
Consequently, there exists (x0, t0) ∈ Ω× [0, T0] such that m = z(x0, t0). We get
z(x0, t0) ≤ z(x0, t) for t ≤ t0 and z(x0, t0) ≤ z(y, t0) for y ∈ Ω. This implies
that

zt(x0, t0) ≤ 0,

∫

Ω

J(x0 − y)(z(y, t0)− z(x0, t0))dy ≥ 0. (11)

With the aid of the first inequality of the lemma, it is not hard to see that

zt(x0, t0)−
∫

Ω

J(x0 − y)(z(y, t0)− z(x0, t0))dy + (a(x0, t0)− λ)z(x0, t0) ≥ 0.

We deduce from (9) that (a(x0, t0) − λ)z(x0, t0 ≥ 0. Since a(x0, t0) − λ > 0,
we get z(x0, t0) ≥ 0. This implies that u(x, t) ≥ 0 in Ω× [0, T0], and the proof
is complete. ¤
An immediate consequence of the above lemma is that the solution u of (1)-(2)
is nonnegative in Ω× (0, T ) because the initial datum u0(x) is nonnegative in
Ω.
Now, let us give a result about quenching which says that the solution u of
(1)-(2) always quenches in a finite time. This assertion is stated in the theorem
below.

Theorem 2.3 The solution u of (1)-(2) quenches in a finite time, and its
quenching time Th satisfies the following estimate

T ≤ (1− A)p+1

p + 1
,

where A = 1
|Ω|

∫
Ω

u0(x)dx.

Proof. Since (0, Th) is the maximal time interval of existence of the solution
u, our aim is to show that Th is finite and satisfies the above inequality. Due
to the fact that the initial datum u0(x) is nonnegative in Ω, we know from
Lemma 2.1 that the solution u(x, t) of (1)-(2) is nonnegative in Ω × (0, T ).
Integrating both sides of (1) over (0, t), we find that

u(x, t)− u0(x) =

∫ t

0

∫

Ω

J(x− y)(u(y, s)− u(x, s))dyds

+

∫ t

0

(1− u(x, s))−pds for t ∈ (0, T ). (12)



Quenching Semidiscretizations In Time For Nonlocal 317

Integrate again in the x variable and apply Fubini’s theorem to obtain
∫

Ω

u(x, t)dx−
∫

Ω

u0(x)dx =

∫ t

0

(

∫

Ω

(1− u(x, s))−pdxds for t ∈ (0, T ).(13)

Set
w(t) =

1

|Ω|
∫

Ω

u(x, t)dx for t ∈ [0, T ).

Taking the derivative of w in t and using (13), we arrive at

w′(t) =

∫

Ω

1

|Ω|(1− u(x, s))−pdx for t ∈ (0, T ).

It follows from Jensen’s inequality that w′(t) ≥ (1− w(t))−p for t ∈ (0, T ), or
equivalently

(1− w)pdw ≥ dt for t ∈ (0, T ). (14)

Integrate the above inequality over (0, T ) to obtain

T ≤ (1− w(0))p+1

p + 1
.

Since the quantity on the right hand side of the above inequality is finite, we
deduce that u quenches in a finite time at the time T which obeys the above
inequality. Use the fact that w(0) = A to complete the rest of the proof. ¤

3 Properties of the semidiscrete scheme

In this section, we give some results about the semidiscrete maximum principle
of nonlocal problems for our subsequent use.
The lemma below is a semidiscrete version of the maximum principle for non-
local parabolic problems

Lemma 3.1 For n ≥ 0, let Un, an ∈ C0(Ω) be such that

δtUn(x) ≥
∫

Ω

J(x− y)(Un(y)− Un(x))dy + an(x)Un(x) in Ω, n ≥ 0,

U0(x) ≥ 0 in Ω.

Then, we have Un(x) ≥ 0 in Ω, n > 0 when ∆tn ≤ 1
1+‖an‖∞ .
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Proof. If Un(x) ≥ 0 in Ω, then a straightforward computation reveals that

Un+1(x) ≥ Un(x)(1−∆tn − ‖an‖∞∆tn) in Ω, n ≥ 0. (15)

To obtain the above inequality, we have used the fact that
∫

Ω

J(x− y)Un(y)dy ≥ 0 in Ω, and
∫

Ω

J(x− y)dy ≤
∫

RN

J(x− y)dy = 1.

Making use of (15) and an argument of recursion, we easily check that Un+1(x) ≥
0 in Ω, n ≥ 0. This finishes the proof. ¤
An immediate consequence of the above result is the following comparison
lemma. Its proof is straightforward.

Lemma 3.2 For n ≥ 0, let Un, Vn and an ∈ C0(Ω) be such that

δtUn(x)−
∫

Ω

J(x− y)(Un(y)− Un(x))dy + an(x)Un(x)

≥ δtVn(x)−
∫

Ω

J(x− y)(Vn(y)− Vn(x))dy + an(x)Vn(x) in Ω, n ≥ 0,

U0(x) ≥ V0(x) in Ω.

Then, we have Un(x) ≥ Vn(x) in Ω, n > 0 when ∆tn ≤ 1
1+‖an‖∞ .

Remark 3.3 Set Zn(x) = Un(x)−‖ϕ‖∞ where Un is the solution of (5)-(6).
A straightforward computation reveals that

δtZn(x) ≤
∫

Ω

J(x− y)(Zn(y)− Zn(x))dy in Ω, n ≥ 0,

Z0(x) ≤ 0 in Ω.

It follows from Lemma 2.1 that Un(x) ≤ ‖ϕ‖∞ in Ω, n ≥ 0.

4 The semidiscrete quenching time
In this section, we show that the semidiscrete solution quenches in a finite time
and estimate its semidiscrete quenching time.
Our result concerning the semidiscrete quenching time is stated in the following
theorem.
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Theorem 4.1 The semidiscrete solution Un of (5)-(6) quenches in a finite
time, and its quenching time T∆t obeys the following estimate

T∆t ≤ τϕp+1
min

1− (1− τ ′)p+1
,

where τ ′ = A min{∆tϕ−p−1
min , τ} and A = 1− ‖ϕ‖p+1

∞ .

Proof. We know from Remark 3.1 that ‖Un‖∞ ≤ ‖ϕ‖∞. Since
∫
Ω

J(x−y)dy ≤∫
RN J(x− y)dx = 1, exploiting (1), we see that

δtUn(x) ≤ ‖ϕ‖∞ − (Un(x))−p in Ω, n ≥ 0,

or equivalently

δtUn(x) ≤ −(Un(x))−p(1− ‖ϕ‖∞(Un(x))p) in Ω, n ≥ 0.

Use the fact that ‖Un‖∞ ≤ ‖ϕ‖∞, n ≥ 0 to arrive at

δtUn(x) ≤ −(Un(x))−p(1− ‖ϕ‖p+1
∞ ) in Ω, n ≥ 0.

This estimate may be rewritten as follows

Un+1(x) ≤ Un(x)− A∆tn(Un(x))−p in Ω, n ≥ 0. (16)

Let x0 ∈ Ω be such that Un(x0) = Unmin. Replacing x by x0 in (16), we note
that

Un+1(x0) ≤ Unmin − A∆tnU
−p
nmin, n ≥ 0,

which implies that

Un+1min ≤ Unmin − A∆tnU
−p
nmin, n ≥ 0, (17)

because Un+1(x0) ≥ Un+1min. We observe that

A∆tnU−p−1
nmin = A min{∆tU−p−1

nmin , τ}. (18)

Exploiting (17), we see that Un+1min ≤ Unmin, n ≥ 0, and by induction, we
note that Unmin ≤ U0min = ϕmin. In view of (18), we discover that

A∆tnU−p−1
nmin ≥ A min{∆tϕ−p−1

min , τ} = τ ′. (19)

Therefore, employing (17), we get

Un+1min ≤ Unmin(1− τ ′), n ≥ 0. (20)

Using an argument of recursion, we find that

Unmin ≤ U0min(1− τ ′)n = ϕmin(1− τ ′)n, n ≥ 0. (21)
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This implies that Unmin goes to zero as n approaches infinity. Now, let us
estimate the semidiscrete quenching time. The restriction on the time step
and (21) lead us to

∞∑
n=0

∆tn ≤ τϕp+1
min

∞∑
n=0

((1− τ ′)p+1)n. (22)

Use the fact that the series on the right hand side of the above inequality
converges towards 1

1−(1−τ ′)p+1 to complete the rest of the proof. ¤

Remark 4.2 Due to (20), an argument of recursion reveals that

Unmin ≤ Uqmin(1− τ ′)n−q, n ≥ q.

In view of the above estimate, the restriction on the time step allows us to
write ∞∑

n=q

∆tn ≤ τUp+1
qmin

∞∑
n=q

((1− τ ′)p+1)n−q.

Since the series on the right hand side of the above inequality converges towards
1

1−(1−τ ′)p+1 , we infer that

∞∑
n=q

∆tn ≤
τUp+1

qmin

1− (1− τ ′)p+1
,

or equivalently

T∆t − tq ≤
τUp+1

qmin

1− (1− τ ′)p+1
.

Apply Taylor’s expansion to obtain (1− τ ′)p+1 = 1− (p+1)τ ′+o(τ ′). This im-
plies that τ

1−(1−τ ′)p+1 = τ
τ ′((p+1)+o(1))

. Due to the fact that τ ′ = A min{∆tϕ−p−1
min , τ},

if we choose τ = ∆t, then we note that τ ′
τ

= A min{ϕ−p−1
min , 1}, which implies

that τ
τ ′ = O(1) with the choice τ = ∆t.

In the sequel, we pick τ = ∆t.

5 Convergence of the semidiscrete quenching time
In this section, under some hypotheses, we prove that the semidiscrete solution
quenches in a finite time, and its semidiscrete quenching time converges to the
real one when the mesh size goes to zero. In order to obtain this result, we
firstly prove that the semidiscrete solution approaches the real one in any
interval Ω × [0, T − τ ] with τ ∈ (0, T ). This result is stated in the following
theorem.
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Theorem 5.1 Assume that the problem (3)-(4) admits a solution v ∈ C0,2(Ω×
[0, T − τ ]) with τ ∈ (0, T ). Then, the problem (5)-(6) admits a unique solution
Un ∈ C0(Ω) for ∆t small enough, n ≤ J , and the following relation holds

sup
0≤n≤J

‖Un − u(·, tn)‖∞ = O(∆t) as ∆t → 0,

where J is a positive integer such that
∑J−1

j=0 ∆tj ≤ T − τ , and tn =
∑n−1

j=0 ∆tj.

Proof. The problem (5)-(6) admits for each n ≥ 0, a unique solution Un ∈
C0(Ω). Let N ≤ J be the greatest integer such that

‖Un − u(·, tn)‖∞ <
α

2
for n < N. (23)

Making use of the fact that (23) holds when n = 0, we note that N ≥ 1. An
application of the triangle inequality renders

Unmin ≤ umin(tn) + ‖Un − u(·, tn)‖∞ ≤ α− α

2
=

α

2
for n < N. (24)

Exploit Taylor’s expansion to obtain

δtu(x, tn) = ut(x, tn) +
∆tn
2

utt(x, t̃n) in Ω, n < N,

which implies that

δtu(x, tn) =

∫

Ω

J(x− y)(u(y, tn)− u(x, tn))dy − (u(x, tn))−p

+
∆tn
2

utt(x, t̃n) in Ω, n < N.

Introduce the error en defined as follows

en(x) = Un(x)− u(x, tn) in Ω, n < N.

Invoking the mean value theorem, it is easy to see that

δten(x) =

∫

Ω

J(x− y)(en(y)− en(x))dy + p(ξn(x))−p−1en(x)

−∆tn
2

utt(x, t̃n) in Ω, n < N,

where ξn(x) is an intermediate value between u(x, tn) and Un(x). We infer that
there exists a positive constant K such that

δten(x) ≤
∫

Ω

J(x− y)(en(y)− en(x))dy + p(ξn(x))−p−1en(x)
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+K∆t in Ω, n < N, (25)

because u ∈ C0,2 and ∆tn = O(∆t). Introduce the function Zn defined as
follows

Zn(x) = K∆te(L+1)tn in Ω, n < N,

where L = p
(

α
2

)−p−1. A straightforward computation reveals that

δtZn ≥
∫

Ω

J(x− y)(Zn(y)− Zn(x))dy + p(ξn(x))−p−1Zn(x)

+K∆t in Ω, n < N,

Z0(x) ≥ e0(x) in Ω.

We deduce from Lemma 3.2 that

Zn(x) ≥ en(x) in Ω, n < N.

In the same way, we also show that

Zn(x) ≥ −en(x) in Ω, n < N,

which implies that

|en(x)| ≤ Zn(x) in Ω, n < N,

or equivalently

‖Un − u(·, tn)‖∞ ≤ K∆te(L+1)tn , n < N. (26)

Now, let us reveal that N = J . To prove this result, we argue by contradiction.
Assume that N < J . Replacing n by N in (26), and using (23), we discover
that

α

2
≤ ‖UN − u(·, tN)‖∞ ≤ K∆te(L+1)T .

Since the term on the right hand side of the second inequality goes to zero as
∆t tends to zero, we deduce that α

2
≤ 0, which is impossible. Consequently,

N = J , and the proof is complete. ¤
Now, we are in a position to prove the main result of this section.

Theorem 5.2 Assume that the problem (3)-(4) has a solution u which
quenches in a finite time T such that v ∈ C0,2(Ω × [0, T )). Then, the so-
lution Un of (5)-(6) quenches in a finite time, and its semidiscrete quenching
time T∆t obeys the following relation

lim
∆t→0

T∆t = T.
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Proof. Let 0 < ε < T/2. In view of Remark 4.1, we know that τ
τ
′ is bounded.

Thus, there exists a positive constant ρ such that

τρp+1

1− (1− τ ′)p+1
≤ ε

2
. (27)

Since u quenches at the time T , there exists a time T0 ∈ (T −ε/2, T ) such that

0 < umin(t) <
ρ

2
for t ∈ [T0, T ).

Let q be a positive integer such that

tq =

q−1∑
n=0

∆tn ∈ [T0, T ).

Invoking Theorem 4.1, we know that the problem (5)-(6) admits a unique
solution Un ∈ C0(Ω) such that ‖Uq − u(·, tq)‖∞ ≤ ρ

2
. An application of the

triangle inequality gives Uqmin ≤ umin(tq) + ‖Uq − u(·, tq)‖∞, which implies
that Uqmin ≤ ρ

2
+ ρ

2
= ρ. It follows from Remark 4.1 and (27) that

|T∆t − T | ≤ |T∆t − tq|+ |tq − T | ≤ ε

2
+

ε

2
= ε.

This finishes the proof. ¤

6 Numerical results
In this section, we give some computational experiments to illustrate the theory
given in the previous section. We consider the problem (3)-(4) in the case where
Ω = (−1, 1),

J(x) =

{
3
2
x2 if |x| < 1,

0 if |x| ≥ 1,

ϕ(x) = 2+ε cos(πx)
4

with ε ∈ (0, 1). We start by the construction of some adaptive
schemes as follows. Let I be a positive integer and let h = 2/I. Define the
grid xi = −1 + ih, 0 ≤ i ≤ I, and approximate the solution v of (3)-(4) by the
solution U

(n)
h = (U

(n)
0 , · · · , U

(n)
I )T of the following explicit scheme

U
(n+1)
i − U

(n)
i

∆tn
=

I−1∑
j=0

hJ(xi − xj)(U
(n)
j − U

(n)
i )− (U

(n)
i )−p, 0 ≤ i ≤ I,

U
(0)
i = ϕi, 0 ≤ i ≤ I,
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where ϕi = 2+ε cos(πxi)
4

. In order to permit the discrete solution to reproduce
the properties of the continuous one when the time t approaches the quenching
time T , we need to adapt the size of the time step so that we take

∆tn = min{h2, h2(U
(n)
min)

p+1}
with U

(n)
min = min0≤i≤I U

(n)
i . Let us notice that the restriction on the time

step ensures the positivity of the discrete solution. We also approximate the
solution u of (1)-(2) by the solution U

(n)
h of the implicit scheme below

U
(n+1)
i − U

(n)
i

∆tn
=

I−1∑
j=0

hJ(xi − xj)(U
(n+1)
j − U

(n+1)
i )− (U

(n)
i )−p, 0 ≤ i ≤ I,

U
(0)
i = ϕi, 0 ≤ i ≤ I.

As in the case of the explicit scheme, here, we also choose

∆tn = h2(U
(n)
min)

p+1.

Let us again remark that for the above implicit scheme, existence and positivity
of the discrete solution are also guaranteed using standard methods (see, for
instance [9]).
We need the following definition.
Definition 6.1 We say that the discrete solution U

(n)
h of the explicit scheme

or the implicit scheme quenches in a finite time if limn→∞ Umin = 0, and the
series

∑∞
n=0 ∆tn converges. The quantity

∑∞
n=0 ∆tn is called the numerical

quenching time of the discrete solution U
(n)
h .

In the following tables, in rows, we present the numerical quenching times,
the numbers of iterations, the CPU times and the orders of the approxima-
tions corresponding to meshes of 16, 32, 64, 128. We take for the numerical
quenching time tn =

∑n−1
j=0 ∆tj which is computed at the first time when

∆tn = |tn+1 − tn| ≤ 10−16.

The order (s) of the method is computed from

s =
log((T2h − Th)/(T4h − T2h))

log(2)
.

Remark 6.2 If we consider the problem (3)-(4) in the case where u0(x) =
1/2, then using standard methods, one may easily check that the quenching time
of the solution u is T = 0.125. We note from Tables 1 to 8 that the numerical
quenching time of the discrete solution goes to 0.125 when ε diminishes. We
observe in passing the continuity of the numerical quenching time.

In what follows, we also give some plots to illustrate our analysis. In Figures
1-8, we can appreciate that the discrete solution quenches in a finite time at
the first node.
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Numerical experiments for p = 1
First case: ε = 1

Table 1: Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the explicit Euler

method
I tn n CPU time s
16 0.0317443 927 1.8 -
32 0.0313563 3545 15.5 -
64 0.0312717 13488 136 2.21
128 0.0312546 51131 2162 2.20

Table 2: Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the implicit Euler

method
I tn n CPU time s
16 0.0317562 927 2.2 -
32 0.0313576 3545 21 -
64 0.0312719 13488 186 2.21
128 0.0312547 51131 1879 2.31

Second case: ε = 1/10

Table 3: Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the explicit Euler

method
I tn n CPU time s
16 0.1139599 967 2 -
32 0.1130846 3711 18 -
64 0.1128777 14154 141 2.08
128 0.1128284 53793 2340 2.07

Table 4: Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the implicit Euler

method
I tn n CPU time s
16 0.1140762 967 2.2 -
32 0.1131010 3711 21.5 -
64 0.1128799 14154 196 2.14
128 0.1128286 53793 2460 2.11
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Third case: ε = 1/100

Table 5: Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the explicit Euler

method
I tn n CPU time s
16 0.1248243 970 2 -
32 0.1240248 3723 17.5 -
64 0.1238216 14201 144 1.98
128 0.1237703 53982 1352 1.99

Table 6: Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the implicit Euler

method
I tn n CPU time s
16 0.1249639 970 2.2 -
32 0.1240446 3723 21.3 -
64 0.1238243 14201 196 2.06
128 0.1237706 53982 2380 2.04

Fourth case: ε = 1/1000

Table 7: Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the explicit Euler

method
I tn n CPU time s
16 0.1259359 971 2.5 -
32 0.1251463 3728 18.2 -
64 0.1249438 14205 148 1.17
128 0.1248923 54001 1320 3.95

Table 8: Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the implicit Euler

method
I tn n CPU time s
16 0.1260731 971 2.3 -
32 0.1251665 3728 21 -
64 0.1249465 14205 197 2.04
128 0.1248927 54001 2310 2.03
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Figure 1: Evolution of
the explicit discrete solu-
tion, ε = 1
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Figure 2: Evolution of
the implicit discrete so-
lution, ε = 1
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Figure 3: Evolution of
the explicit discrete solu-
tion, ε = 1/10
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Figure 4: Evolution of
the implicit discrete so-
lution, ε = 1/10
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Figure 5: Evolution of
the explicit discrete solu-
tion, ε = 1/100
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Figure 6: Evolution of
the implicit discrete so-
lution, ε = 1/100

7 Conclusion

In the present paper, we have studied the phenomenon of quenching of a
nonlocal problem using a semidiscrete scheme. Also, due to the fact that the
solution of the above problem increases rapidly when the time t approaches the
quenching time T, we have utilized an adaptive scheme which is the scheme
appropriate to this kind of problems. Finally, some numerical results are given
for a good illustration of the theory developed in the paper.

8 Open Problem

In this paper, we have treated the phenomenon of quenching using a semidis-
crete scheme and a particular nonlinearity. In future studies, one may consider
a similar problem using a general nonlinearity. On the other hand, to han-
dle the phenomenon of quenching, we have taken into account a semidiscrete
scheme. It will be better in the works to come to consider the phenomenon of
quenching using full discrete schemes.
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