

Int. J. Open Problems Compt. Math., Vol. 2, No. 2, June 2009

Reasoning in EHCPRs System

Sarika Jain 1, N.K. Jain 2 and C.K. Goel 3

1 Department of Computer Application, CCS University, Meerut, 250004, India
2 Department of Electronics, Zakir Husain College, University of Delhi, New

Delhi, India
3 Department of Computer Application, CCS University, Meerut, 250004, India

 Abstract

 In this paper, efforts are made to exhibit that how defaults and
various constraints along with other important information required
for the definition and characterization of a natural kind are
represented in an EHCPR. An Extended Hierarchical Censored
Production Rules (EHCPRs) system is a knowledge representation
system for reasoning with real life problems and a step towards a
generalized representation system. There are a number of EHCPRs
at various levels of hierarchy of knowledge structure in the system,
which results in a tree of EHCPRs. The GROWTH algorithm as
suggested for HCPRs system is implemented. Also, the reasoning
thus facilitated due to such representation, i.e., the recognition and
inheritance algorithms are implemented and demonstrated with
various working sessions.

 Keywords: Constraints, Default Reasoning, Extended Hierarchical Censored
Production Rules, Growth, Knowledge Representation, Recognition, Inheritance

1 Introduction

An intelligent system is readily acceptable to all, if it is highly consistent, having
minimum possible redundancy in representation and high degree of integrity in
the stored knowledge. Efficient access to the stored knowledge as reflected in a
very prompt response, to all types of queries possible and addressable, is also an
essential requirement on any intelligent system. All these objectives, which are so
important of an intelligent system, are shown to exhibit through an implemented
system employing EHCPRs as knowledge representation scheme. The
implemented system will be regarded as EHCPRs system, which has different

Sarika Jain, N.K. Jain and C.K. Goel 176

learning and reasoning [1] capabilities. In this paper, various possible procedures
for EHCPRs system are taken up through their fruitful implementation in object
oriented programming language JAVA.

As the world is expanding, the knowledge base of a future intelligent
system should be as general as possible. It should be open for expansion
horizontally, i.e., changes for improvement in already acquired knowledge items,
as well as vertically, i.e., introduction of altogether new knowledge items. A
knowledge item here is referred to be the smallest unit of knowledge in the
system. An EHCPR is one such unit of knowledge, which is suggested as a
knowledge item for tackling real word problems of the so-called intelligent
system. An object is regarded to be of natural kind if it has some defining
properties with assigned values, which can’t be changed in any case. These are the
necessary and sufficient conditions to be satisfied by an object to qualify as a
member of that natural kind. Along with the defining properties, there is another
set of distinct characteristic properties relegated with objects regarded as natural
kinds. The values assigned to these characteristic properties in contrast to defining
properties are subject to various constraint and default. As an example, consider a
Lemon as an example of a natural kind. Though the default characteristic color for
a Lemon is Yellow or Lemon to be more specific; but a rotten Lemon will still be
regarded as Lemon though the color has changed to Brown. The other allowed
color for Lemon will be Green but Blue is never to be considered as a color for
Lemon. So, vegetable Lemon will be allowed to have any color from the set of
allowed colors (“may be regarded as constraints on colors of vegetable Lemon”)
of Green, Yellow, Lemon, or Brown, with default color value of Lemon.

The effort here is to represent various operators along with constraints and
default values in the characteristics features of an object as an EHCPR and,
reasoning thereof in the EHCPRs system. The need to include two sub operators
namely Defaults and Constraints in Has_Part and Has_Property operators of an
EHCPR to record the Default value(s) and Constraint(s) with characteristic parts
and properties is explored in this paper. The suggested Constraints sub operator is
the quantitative or qualitative description of the given object. It gives the range or
set of relevant possible values to the characteristic parts or properties in the
EHCPR. Also the most prominent default value of the characteristic property is
given in the represented EHCPR of the object, satisfying the set of constraints on
it allowed value. In this paper, the representation of defaults and constraints, along
with recognition and inheritance algorithms is exhibited in the implemented
EHCPRs system for animals in general and birds to be more specific. The
characteristics of the implemented EHCPRs system are demonstrated through
example sessions. The Growth algorithm as suggested for HCPRs system [2] is
implemented. The implementation is carried out using programming language
JAVA.

177 Reasoning in EHCPRs System

2 Background

The “rule + exception” models provide a realistic description of the real
world [3]. Whereas, hierarchies give comprehensible knowledge structure that
allows managing the complexity of the large knowledge bases and to view the
knowledge partitioned at different levels of details. Moreover, it provides
direction to the inference engine of the system on the different important aspects
[4] based on the requirement at that particular instance of time. One of such
knowledge representation scheme that combines rules, exceptions, and hierarchy
is Hierarchical Censored Production Rules (HCPRs) System [5, 6].

The CPRs system and its extension HCPRs system have numerous
applications in situations where decision must be taken in real time with uncertain
information and with incomplete data [17, 18, 19, 20, 21, 22]. Various features of
the HCPRs system, including the general control scheme (GCS) have already
been discussed [1, 6]. Several extensions and generalizations of the system have
been proposed incorporating Fuzzy Logic [13, 14, 15], DST [16], Genetic
Algorithms [17], and Neural Networks [18].

The obvious problem for AI is how to characterize, to represent, and to
compute with prototypes in psychology, or to concepts like natural kinds in
philosophy, where default assumptions play a prominent role [19]. A concept in
general is found to possess two types of features, namely, defining features and
characteristic features [20]. Defining features of a concept must be true if an item
(instance or individual) satisfies (or is a member of) that particular concept (class
or category) and must be relegated with the If operator as a precondition part. On
the other hand, the characteristic features usually hold true for an item that is a
member of a particular category. The characteristic features are allowed not to
hold for an item or individual that is an instance of the particular concept
represented by the head of the EHCPR. In order to distinctly represent defining
and characteristic features of a concept along with its instances, an Extended
Hierarchical Censored Production Rules (EHCPRs) System is presented [20, 21,
22], as an attempt toward a generalized knowledge representation and reasoning
system.

An EHCPR with all these operators takes the following general form:

 A {decision/concept/object} /* As Head of rule */

 If B [b1, b2, …, bm] {preconditions (AND conditions)}

 Unless C [c1, c2, …, cn] {censor conditions (OR conditions)}

Sarika Jain, N.K. Jain and C.K. Goel 178

 Generality [G] {General Concept}

 Specificity S [a1, a2, …, ak] {Specific Concepts} /* mutually exclusive set*/

 Has_Part […] {default : structural or body parts}

 Has_Property […] {default : characteristic properties}
 Has_Instance […] {instances}
 : γ, δ

 ………….. (1)

In the above general form of an EHCPR, symbol “A” denotes the decision

to be taken or concept to be satisfied as the case may be, when the rule satisfies.
Symbol “B” with the If operator is the conjunction of premises, which should be
satisfied to infer the decision “A” from the EHCPR. Any exception to the rule will
be checked with the Unless operator. The symbol “C” denotes the set of
disjunction of all the censor conditions to the rule. The Generality information
“G” in an EHCPR is the clue about the just next general concept related to the
concept “A” in the hierarchy of concepts. The Specificity information “S” is the
clue about the next set of more specific concepts (goals/ decisions) in a
knowledge base: which are the most likely to be satisfied after successful
execution of the present EHCPR. The characteristic features (structural parts and
characteristic properties) of the concept are represented through Has_Part and
Has_Property operators. All the known individuals or items that are satisfied as
particular instances of the concept are relegated with the Has_Instance operator.
To represent uniformly all the instances of the general concepts given as EHCPRs
in the knowledge base, as a data item in the database of the EHCPRs system, the
following general form is suggested:

Head /* particular instance of a concept / name of individual object
Instance_Of (a general concept)
Has_Part (set of actual known parts)
Has_Property (set of known true properties) ………………….. (2)

Now consider an EHCPR from the knowledge base for the general class of, say
birds:

Bird
If: “Bipedal”, “Warm Blooded”, “Lay Eggs”
Unless: Nil
Generality: Animal
Specificity: Crow, Ostrich, Parrot, Penguin, Sparrow, Kiwi
Has_Part: {Legs: 2, Wings: Yes, Beak: 1, Teeth: No}
Has_Property: (Fly: Yes, Habitat: Nest)
Has_Instance: (Titu, Mithu, Sweety) ……………… (3)

179 Reasoning in EHCPRs System

And a data item in the database for a particular instance of EHCPR Bird, say Titu:

Titu
 Instance_Of (Bird)
 Has_Part (Legs: 1)
 Has_Property (Fly: No) ………………….. (4)

Consider a sentence that ‘Titu is a bird having one leg and cannot fly’. The
information ‘Titu is a bird’ is explicitly represented in the EHCPR of Bird using
Has_Instance operator, and using Instance_Of operator in data item for Titu.
The override or peculiar properties of Titu are kept with the Has_Part and
Has_Property operators of the data item. Titu implicitly inherits other properties
from the concept of Bird, Animal, and so on in the hierarchy, to which it is
connected by the Instance_Of and then through the Generality operator. The
information about subsumed classes of Bird (for example, Crow and Parrot) is
represented with the Specificity operator. Defining properties are relegated with
If operator though Unless operator records censor conditions to the rule. So, in
this way Meta knowledge (i.e., knowledge about knowledge) is captured through
various operators in the EHCPRs system of representation.

EHCPRs systems support professionals engaged in design, diagnosis, or
evaluation of complex situations. They can be used either as interactive advisors
or as automated tools for converting data into recommendations or other
conclusions [23]. The EHCPRs system of representation incorporates temporal,
spatial, default or fuzzy information in its knowledge structure naturally and
efficiently [6].

3 Constraints and Defaults

The issues of representing natural kinds, default reasoning, and context
sensitive reasoning are lacking in a HCPRs based system. Extended Hierarchical
Censored Production Rules (EHCPRs) System [22] employs a general
representation shown [20] to have merits of all four formalisms: logic, semantic
networks, frames, and production rules. The characterization of any concept
(EHCPR) might require suitable constraints imposed on the various defined
attributes already available in the system in the form of EHCPRs (like Habitat;
Cardinality of (Legs, Wings, Beak); Color; Flyness; Level of voice; Age;
Position; Duration; Time; Location etc.). For example: To characterize a Human,
the constraints on age of Human may be put {Infant, Adolescent, Young, Middle-
Aged, Old}. But the Age of Stars, Sun, or Universe is millions of years. So in the
absolute terms, Age in itself is not having any constraints but for different objects
or system it will have different constraints on its value. The Constraints as a
Range or Set of values is quantitative or qualitative description of a given concept
as EHCPRs.

Sarika Jain, N.K. Jain and C.K. Goel 180

Every concept in the Has_Part and Has_Property operators will have an
appropriate default value as and where possible in the hierarchy along with the
constraints. For example: The Has_Property operator of the concept Human has a
property Age with constraints on its value {Infant, Adolescent, Young, Middle-
Aged, Old} and default, say Young. Though in the instances, the default value is
allowed to override by the actual present value of the individual’s age. So
wherever values are entered they will be checked for type or range mismatched. If
some one provides Red as value of Age, it will not be accepted and appropriate
action has to be initiated by the system by going through a fixed procedure.

With the inclusion of the details of Default and Constraints, the Has_Part
and Has_Property operators in an EHCPR takes the following modified form:

Has_Part {Part_Concept1: [Default], [Constraints], Part_Concept2: [Default], [Constraints]...
Part_Conceptp: [Default], [Constraints]}

Has_Property {Property_Concept1: [Default], [Constraints], Property_Concept2: [Default],
[Constraints]… Property_Conceptq: [Default], [Constraints]} ………… (5)

For example, after the inclusion of defaults and constraints as sub

operators in the Has_Part and Has_Property operator of the EHCPR Bird, the
Has_Part and Has_Propery operators of the EHCPR Bird takes the following
modified form:

Bird
Has_Part: {Legs: 2 [0, 1, 2], Wings: Yes [Yes], Beak: 1 [0, 1], Teeth: No [Yes, No]}
Has_Property: {Fly: Yes [Yes, No], Habitat: Nest [Nest, Sky, Tree, Ground], Voice:
Sweet [Sweet, Harsh]} ……………… (6)

4 Implementation Details

Every EHCPR in the knowledge base is an instance of the class EHCPR
defined as follows:

class EHCPR
{
 String concept;

 LinkedList preConditions;
 EHCPR generality;

LinkedList specificity;
LinkedList censors;
LinkedList hasPart;

 LinkedList hasProperty;
 LinkedList hasInstance;
}

 ……………… (7)

181 Reasoning in EHCPRs System

Figure 1: Knowledge Base

KB

EHCPR of
Property

EHCPR of
Part

EHCPR of
Object

EHCPR of
Event

 null

EHCPR of
Relation

There is an initializer program InitializeKnowledgeBase.java, which
initializes the knowledge base. The knowledge base is a linked list of EHCPRs
trees as shown in Fig 1. The EHCPRs tree with object as root EHCPR has been
displayed with great detail in Fig 2.

All the symbolic representation is available only once in the system. The
multiple references to it at different EHCPRs and that too at different operators
are filled or referred by employing suitable pointer to unique occurrence of that
concept in the system. Our filling of operators is by reference and not by value. In
network representation of displaying the knowledge base, it will be shown that
operators are filled by reference/links to appropriate concept/EHCPR. All
premises and censors are themselves EHCPRs.

Sarika Jain, N.K. Jain and C.K. Goel 182

Figure 2: The Detailed EHCPR of Object

4.1 Search and Growth

183 Reasoning in EHCPRs System

It has been shown that by simple and general snippets of code, the

EHCPRs system of knowledge representation is able to acquire new pieces of
knowledge and assimilate it properly in the already acquired knowledge base.
There are a number of EHCPRs at various levels of hierarchy of knowledge
structure in the system, which results in a tree of EHCPRs. This EHCPRs tree has
the capability of continuous growth through new added EHCPRs to it at proper
place. The EHCPRs tree will become richer in knowledge as time passes.

To reason around, we require a knowledge base and a database in first
place. So Search and Growth algorithms as suggested in [2] for the HCPRs
system have been implemented in programming language JAVA and presented
here (removing the technical intricacies). They need to be modified for the
EHCPRs system. The user is asked to enter the preconditions of the new
HCPR(X), which is searched in the knowledge base, and if not found, it is entered
in the knowledge base at its proper place.

Here every HCPR is assumed to be an instance of the class HCPR defined as
follows:

class HCPR {

String concept;
LinkedList preConditions;
HCPR generality;
LinkedList specificity;
LinkedList censors;

 }
search () {

preX = Linked List of premises of the HCPR to be searched
Y = Pointer to the Linked List of roots of HCPRs trees
int i;
Iterate in the Linked List of roots of HCPRs trees, i.e., Y
while (there is a HCPR tree in Y) {

currentHCPR = Pointer to next root HCPR in Y
preY = Linked List of premises of currentHCPR
i = subset (preX, preY)
if (i == 0)

return with output that HCPR has been found
Y.remove (currentHCPR)
Y.addFirst (currentHCPR)

if (i == 1)
return with output that the HCPR to be searched is in specificity list of currentHCPR
Y.remove (currentHCPR)
Y.addFirst (currentHCPR)

if (i == 2)
return with output that the HCPR to be searched is more general than currentHCPR
Y.remove (currentHCPR)
Y.addFirst (currentHCPR)

Sarika Jain, N.K. Jain and C.K. Goel 184

if (i == 3)//HCPR to be searched is not related to currentHCPR at all so fetch next HCPRs
 //tree

}
}

subset (preX, preY) {

Iterate in the premises lists preX and preY {
while (there is an element left in both the lists) {// both preX and preY have more

premises
currentY = Nest Premise in linked list preY
currentX = Next Premise in linked list preX
if (currentY != currentX)

return (3) // preX and prey are not at all related
}

}
if (both preX and prey have no more premises)

return (0) // preY and preX are exactly same
else if (preY has no more premises)

 return (1) // Y is proper subset of X
else if (preX has no more premises)

return (2); // X is proper subset of y
}

grow () {

int i = search ()
if (i == 0)

return with output “the new HCPR is already present as currentHCPR. So No Growth
Required”

else if (i == 1) // the new HCPR is in specificity list of currentHCPR
iEqualsOne ()

else if (i == 2) // the new HCPR is more general than currentHCPR
iEqualsTwo ()

else if (i == 3) {//the new HCPR has to be added as root of new HCPRs tree in the linked list
Y
X = new HCPR ("New HCPR", preX, null, specX, null);
Y.addFirst(X);

}
}
iEqualsOne () {// the new HCPR (X) is in specificity list of currentHCPR
// preX = preX – preY Here release the premises in preX which are common to X andY. It is
//assumed that the common premises are at the beginning of the list always.

Iterate in the premises list of Y (preY)
while (there is a premise in preY) {

preX.removeFirst ();
Go to next premise in preX

 }
 Iterate in the specificity list of currentHCPR {
 while (there is some HCPR in specificity list of currentHCPR) {

currentHCPR = Next HCPR in specificity list
preY = Linked List of premises of currentHCPR
i = subset (preX, preY);
if (i == 0)

return with output that the new HCPR is already present as currentHCPR. So No

185 Reasoning in EHCPRs System

Growth Required

else if (i == 1) // the new HCPR is in specificity list of currentHCPR
iEqualsOne ()
return;

else if (i == 2) // the new HCPR is more general than currentHCPR
iEqualsTwo ()

 return;
 }
 currentHCPR = currentHCPR.generality;
}
 X = new HCPR ("New HCPR", preX, currentHCPR, specX, null);
 currentHCPR.specificity.addFirst(X);

}
iEqualsTwo () { // the new HCPR is more general than currentHCPR
// preY = preY – preX Here release the premises in preY which are common to X andY. It is
//assumed that the common premises are at the beginning of the list always.

Iterate in the premises list of X (preX)
while (there is a premise in preX) {
 currentY.preConditions.removeFirst ();

Go to next premise in preX
}
HCPR temp = currentY.generality;
X = new HCPR ("New HCPR", preX, temp, specX, null);
if (temp!=null)
 temp.specificity.remove (currentHCPR);
specX.add (currentHCPR);
currentHCPR.generality = X;
if (temp != null)

temp.specificity.addFirst(X)
else {

Y.remove (currentHCPR);
Y.addFirst(X);

 }
}

fission (HCPR x) {
/*Say x is the recently added HCPR. The following functions are assumed to be available as
library functions
• intersect(premisesSet1,premisesSet2) returns common premises of two sets
• createName(x, y) generates a name for the newly created HCPR.
*/
Iterate in the linked list, x belongs to, starting from the second element as x is always the first
element in its list.

while (there is some HCPR in the list) {
 currentY = Next HCPR in the list

currentCommon (currentNumber) =intersect (X.preConditions, currentY.preConditions);
if (maxNumber < currentNumber) {

 common = currentCommon;
 maxNumber = currentNumber;
 y = currentY;
 }

Sarika Jain, N.K. Jain and C.K. Goel 186

}
if (maxNumber == 0)

 return; // no restructuring required
if (y.preConditions.size () == maxNumber) {
//premises of Y is subset of premises of X.Y is general concept of X

preconditions of X = preconditions of X – preconditions of Y
// Here release the premises of X which are common to X and Y
x.generality = y;
y.specificity.addFirst(x);
parent.specificity.remove(x);
return;

}
else if (x.preConditions.size () == maxNumber) {
//premises of X is subset of premises of Y.X is general concept of Y

preconditions of Y = preconditions of Y – preconditions of X
// Here release the premises of Y which are common to X and Y

 y.generality = x;
 x.specificity.addFirst(y);
 parent.specificity.remove(y);
 return;

}
else {
//X is neither a superset nor a subset of Y; a new HCPR is created with common as defining
//properties of the new HCPR.

 newName = createName(x, y)
// remove the common preconditions from X and Y and add them to new HCPR

 for (int i=0; i<maxNumber; i++) {
 HCPR temp = x.preConditions.removeFirst ()
 preNewHCPR.add (temp);
 y.preConditions.removeFirst ();
 }

HCPR newHCPR = new HCPR (newName, preNewHCPR, parent, specNewHCPR);
 parent.specificity.remove(x);
 parent.specificity.remove(y);
 parent.specificity.addFirst (newHCPR);
 specNewHCPR.add(x);
 specNewHCPR.add(y);
 x.generality = newHCPR;
 y.generality = newHCPR;

}
}

The search, growth, and fission algorithms have been implemented with
required modifications, and other learning and maintenance algorithms are
currently under implementation. These algorithms have been done for the HCPRs
system and are under implementation for the EHCPRs system.

4.2 Constraints and Defaults

187 Reasoning in EHCPRs System

The first EHCPRs tree in the knowledge base has root EHCPR of

Property. The Property EHCPR has in its specificity list all possible characteristic
properties that an object can possess (shown in Fig 3a). The second EHCPRs tree
in the knowledge base has root EHCPR of Part. The Part EHCPR has in its
specificity list all possible structural parts that an object can possess (shown in Fig
3b). These parts and properties have been stored with possible constraints on their
values.

Parts and properties of an object are both characteristic attributes of an

object. For the sake of implementation in this paper, we are not making any
distinction between the two. From this point onwards, any part or property of an
object will be called attribute in general. Every attribute has constraints on its
value. All attributes are stored in the form of a linked list along with the possible
constraints on their values. In the knowledge base, the third EHCPRs tree has root
EHCPR of “Object” as shown in screenshots in Fig 2. The EHCPR of Object has
linked list of four attributes: Color, Taste, Smell, Touch) in the hasAttributes part.
These attributes have reference to the same storage where the EHCPRs of Color,
Smell, Taste, and Touch are stored. The default for each attribute is stored here
with the particular EHCPR, which may be overridden in the specific EHCPRs and
with the actual value in the instances. The LivingOrganism EHCPR gets all these
attributes of Object through inheritance and the additional attributes (Parts (Legs:
4, Age: Young), Properties (Sight: Good, Habitat: Earth, Hear: Yes)) are shown to
have links through the LivingOrganism EHCPR, which is the most general
EHCPR for these attributes. The Bird EHCPR has six added attributes {Parts
(Wings: Yes, Beak: 1), Properties (Fly: Medium, Voice: Sweet, Behavior: Active
during the day time, FoodHabbit: Seed and Insects)} and three override attributes
{Parts (Legs: 2, Teeth: No), Properties (Habitat: Nest)}. The LivingOrganism
EHCPR has link to attribute of Legs with default value 4. The Bird EHCPR has
link to the same storage of attribute Legs but with default 2. The Reptile EHCPR

Figure 3: Parts and Properties of an Object

Part

Legs Teeth Wings Nose Eyes

(b)

(a)Property

Habitat Fly Voice Age Color

Sarika Jain, N.K. Jain and C.K. Goel 188

does not have any link to the storage of attribute Legs, as in reptiles it is neither an
added nor an override attribute. The Reptile EHCPR gets the attribute Legs
through inheritance from the EHCPR of LivingOrganism. The Snake EHCPR can
further override this default of Legs to 0 as King Cobra has no legs at all.

4.3 Recognition and Inheritance

Inheritance means getting the default and preconditions from the
hierarchy. Recognition means matching and giving an unknown input concept a
system name or classification. A child looks at a tortoise, but is not able to name
the concept “Tortoise” as he/she is seeing it for the first time. The system asks
him certain questions regarding the defining properties of the tortoise and keeps
on giving him replies, which becomes more and more specific at each run. Refer
Fig 4.

recognition () {

Y = Pointer to the Linked List of roots of HCPRs trees
Iterate in the Linked List of roots of HCPRs trees, i.e., Y
while (there is a HCPR tree in Y) {

currentHCPR = Pointer to next root HCPR in Y
if (currentHCPR.concept == “Object”)

break;
}
// Now currentHCPR is pointing to the HCPRs Tree with root HCPR of Object
previousResult is an empty string
attObject is empty string
do {

attributes (currentHCPR) // now attObject contains the string representation of the
attributes of the concept “Object”

OUTPUT: “The concept to be identified is a “+currentHCPR.concept + previousResult
+” with attributes “+attObject

previousResult = " which is a "+currentHCPR.concept +previousResult;
flag = false
Iterate in the specificity list of currentHCPR
while (there is a some HCPR in the specificity list of currentHCPR) {

temp = Pointer to next HCPR in the specificity list
preTemp = temp.preConditions;
answer = Ask the user if preTemp match the premises of the concept to be identified
if (answer == YES)

currentHCPR = temp
flag = true
break

else // if answer == NO
continue

 }
}while(flag)

}
attributes(HCPR obj){

// attObject contains all the properties in all the general concepts of this obj up in the hierarchy
if(obj.hasProperty != null){ // means some attributes are listed in the Has_Property operator

of the concept obj

189 Reasoning in EHCPRs System

Iterate in the Linked List of properties of obj
while(there is a property in obj.hasProperty){

currentProp = Pointer to next property in obj.hasProperty
if (currentProp is already in attObject)// means it is an override property, so we need
to keep the new one from this point onwards

Remove the old default value and put the new default value
else // it is an added property

add currentProp to attObject
}

}
}

(a)

(b)

(c)

Sarika Jain, N.K. Jain and C.K. Goel 190

(d)

(e)

(f)

191 Reasoning in EHCPRs System

Figure 4: Screenshots of Recognition of Crow

5 Open Problem

Different current projects in Artificial Intelligence, such as Thought Treasure [24],
CYC [25], WordNet [26], OWL [27], etc., are successful to represent extensively
large knowledge base and reasoning there forth. But they have used multiple
representation schemes to represent different types of concepts. In place of
employing multiple representation schemes, the EHCPRs system adopts a general
representation by means of EHCPRs for any entity or concept, which is possible
in the universe, whether it is real or imaginary. An EHCPR is aptly regarded as a
unit of knowledge to represent any complex or simple concept employing the

(g)

(h)

Sarika Jain, N.K. Jain and C.K. Goel 192

same general syntax and associated semantics. This general structure of an
EHCPR facilitates common and hence general procedures of reasoning and
learning irrespective of the domain where these EHCPRs are applied. The
important feature that is lacking in the reasoning of all previous systems [24, 25,
26, 27] is that, these systems are not made for exhibiting variable precision with
variable constraints on resources [such as time and memory]. Another important
requirement on these systems is variable response for the same query, based on
variable context of say time, location, user background, and even state of
reasoning system (i.e., amount of knowledge & data and complexity of programs).
An EHCPRs system is an open-ended evolving system and lots have been done
and lots have to be done to make it as general as possible.

6 Discussion and Conclusion

This paper is an important and long-standing requirement in the subject area. The
Extended Hierarchical Censored Production Rules (EHCPRs) system is a
knowledge representation system for reasoning with real life problems and a step
towards a generalized representation scheme. This work is first serious attempt
towards implementing the EHCPRs system as a full-fledged system. The way in
which the knowledge base has been managed provides (1) Minimum Redundancy
(minimum or no duplicity of storage of any piece of knowledge), (2) Highest
Consistency (always result in non contradictory results), and (3) Integrity
(truthfulness) of stored knowledge and Facts. The knowledge base also provides
ease of maintenance and adaptation in ever-changing and external real world
situations and circumstances.

Defaults can be override with correct instances, say legs may be 1 in
number for some PH category person. So cardinality is defined in EHCPR of
Human and instances can select from allowed values. The advantage of this in
management is that reasoning based on general information is available with
EHCPRs without repetition. Though Growth algorithm is implemented with some
modification but other learning and maintenance algorithms are currently under
implementation.

References

[1] Sarika Jain, N.K. Jain, C.K. Goel, “Implementing General Control Scheme in
EHCPRs System”, Proceedings of Second National Conference on
Mathematical Techniques : Emerging Paradigms for Electronics and IT
Industries (MATEIT-2008), New Delhi, September 26-28, 2008.

[2] N.K. Jain and K.K. Bharadwaj, “Some Learning Techniques in Hierarchical
Censored Production Rules (HCPRs) System”, International Journal of
Intelligent Systems, vol. 13, John Wiley and Sons, Inc. North Holland, 1998.

193 Reasoning in EHCPRs System

[3] Yiyu Yao, Fei- YueWang and JueWang, “Rule + Exception Strategies for

Knowledge Management and Discovery”, LNAI 3642, Springer-Verlag, 2005,
69-78.

[4] B. Liu, M. Hu, and W. Hsu, “Multilevel Organization and Summarization of
the Discovered Rules”, SIGKDD-2000, Boston, USA, Aug 20-23, 2000, 208-
217.

[5] K. K. Bharadwaj, and N.K. Jain, “Hierarchical Censored Production Rules
(HCPRs) System”, Data and Knowledge Engineering, vol 8, North Holland,
1992, 19-34.

[6] N.K. Jain, “Variable Precision Logic: A Hierarchical Censored Production
Rules System”, M.Tech dissertation, School of Computers and Systems
Sciences, Jawaharlal Nehru Univ., New Delhi, India, 1989.

[7] K.K. Bharadwaj, N.M. Hewahi, and M.A. Brandao, “Adaptive Hierarchical
Censored Production Rule-based System: A genetic algorithm approach”,
Lecture notes in Artificial Intelligence, No. 1159, D.L.Borges and C.A.
Kaestner, Eds., Advances in Artificial Intelligence, SBIA’96, Curitiba, Brazil,
Proceedings, Springer-Verlag, 1996, 81-90.

[8] K.K. Bharadwaj and R. Varshneya, “Parallelization of Hierarchical Censored
Production Rule-based System”, Information and Software Technology,
Elsevier Science, B.V. (UK), 37, 1995, 453-460.

[9] N.M. Hewahi, “Real Time Variable Certainty Systems”, Proceedings of the 4
th

World Congress on Expert Systems, Applications of Advanced Information
Technology, Mexico, vol 2, 1998, 692-697.

[10] N.M. Hewahi, “Real Time Variable Precision Logic Systems”, in Flavio
Moreira de Oliveira, (Ed.), Lecture Notes in Artificial Intelligence, Advances
in Artificial Intelligence 1515, Springer Verlag, Germany, 1998, 201-208.

[11] N.M. Hewahi and K.K. Bharadwaj, “Bucket Brigade Algorithm for
Hierarchical Censored Production Rules (HCPRs) System”, International
Journal of Intelligent Systems, vol. 11, 1996, 197-226, John Wiley and Sons,
Inc. North Holland.

[12] K.K. Bharadwaj and N.K. Jain, “Towards Integrating Hierarchical Censored
Production Rules (HCPRs) System and Neural Networks”, SBIA’98, Lecture
Notes in Artificial Intelligence, No. 1515, Berlin, Germany, Springer-Verlag,
1998, 121-130.

[13] Fadl M. Baa-Alwi and K.K. Bharadwaj, “Automated Discovery of

Sarika Jain, N.K. Jain and C.K. Goel 194

Hierarchical Ripple-Down Rules, Proceedings of the 23
rd

 IASTED
International Multi-Conference, Artificial Intelligence and Applications”,
Innsbruck, Austria, 2005.

[14] Neerja and K.K. Bharadwaj, “Calculus of Fuzzy Hierarchical Censored
Production Rules (FHCPRs) System”, International Journal of Intelligent
Systems, vol. 2 (1-25), John Wiley and Sons, Inc. North Holland, 1996.

[15] Fadl M. Baa-Alwi and K.K. Bharadwaj, “Discovery of Production Rules with
Fuzzy Hierarchy”, Proceedings of World Academy of Science, Engineering
and Technology, vol 4, 2005, ISSN 1307-6884.

[16] K.K. Bharadwaj, Neerja, and G.C. Goel, “Hierarchical Censored Production
Rules System employing Dampster Shafer Uncertainty Calculus”,
Information and Software Technology, Elsevier Science B.V., 36, 1994, 155-
164.

[17] Basheer M. Al-Maqaleh and K.K. Bharadwaj, “Genetic Programming
Approach to Hierarchical Censored Production Rules Discovery”,
Proceedings of the ENFORMATIKA-6, Istanbul, Turkey, 2005, 271-274.

[18] J.D.S. da Silva and K.K. Bharadwaj, Integration of Hierarchical Censored
Production Rules (HCPRs) System and Neural Networks”, SBRN’98,
Proceedings of IEEE Computer Society, Las Alamitos, California, USA,
1998, 73-88.

[19] R. Reiter, “Nonmonotonic Reasoning”, Annual Review of Computer Science,
2, 1987, pgs 147- 186.

[20] N.K. Jain, K.K. Bharadwaj, Norian Marranghello, “Extended Hierarchical
Censored Production Rules (EHCPRs) System: An Approach toward
Generalized Knowledge Representation”, Journal of Intelligent Systems, vol
9, 3-4, 1999, pgs 259-295.

[21] N.K. Jain, “Hierarchical Censored Production Rules (HCPRs) System: A
Generalized Representation Scheme”, Ph.D. Thesis, School of Computers and
Systems Sciences, Jawaharlal Nehru Univ., New Delhi, India, 1997.

[22] Sarika Jain, N.K. Jain, C.K. Goel, “A Generalized Knowledge
Representation System and its Implementation: An Extended Hierarchical
Censored Production Rules (EHCPRs) System”, MERI, Journal of
Management and IT, April 2007, vol. 1, pp. 88-101.

[23] Sarika Jain, N.K. Jain, C.K. Goel, 2009, “EHCPRs System and Needs of
Management System”, Journal of IPEM, vol3, Issue 1, pp. 1-17.

195 Reasoning in EHCPRs System

[24] Erik T. Muller, “Natural Language Processing with Thought Treasure, New

York, Signiform, 1998.

[25] Douglas B. Lenat, CYC: A Large-Scale Investment in Knowledge
Infrastructure, Communications of the ACM, 38(11) ,1995, pg. 33-48.

[26] Christiane Felbaum(Ed.), WordNet: An Electronic Lexical Database,
Cambridge, MA, MIT Press, 1998.

[27] Peter Szolovits, Lowell B. Hawkinson, William A. Martin, “An Overview of
OWL, A Language for Knowledge Representation”, June, 1977,
Massachusetts Institute of Technology, Laboratory for Computer Science,
(formerly Project MAC), Cambridge Massachusetts, 02139.

