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Abstract

For any prime number p, we shall construct a real abelian extension
k over Q of degree p such that the Iwasawa module associated with the
cyclotomic Zy-extension koo [k is finite and has arbitrarily large p-rank.
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1 Introduction

In the theory of Z,-extensions, Greenberg’s conjecture is one of the most fas-
cinating open problem:

Greenberg’s conjecture. For any totally real number field £ and prime
number p, the both of Iwasawa A-invariant A,(k) and p-invariant p,(k) of the
cyclotomic Z,-extension k. /k are vanished. In other words, the Galois group
X}, of the maximal unramified abelian p-extension over k., which is called
the Twasawa module associated with k.. /k, is finite.

In connection with this conjecture, many research papers, as Greenberg [3],
Iwasawa [4], Ozaki-Taya [8], Yamamoto [10], Fukuda [1], [2], Komatsu [5], deal
with the construction of families of totally real p-extension fields k£ over Q with

A (k) = () = 0.
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We are interested in not only constructing various families of totally real p-
extension k/Q with A\, (k) = u,(k) = 0 but also what kind of finite Z,-modules
appear as Xj__.

In the present paper, we shall construct real abelian extensions k& over QQ
of degree p such that A\,(k) = p,(k) = 0 and the Iwasawa module associated
with the cyclotomic Z,-extension k., /k has arbitrarily large p-rank. Our main
result is;

Theorem 1. Let p be any prime number. For any M > 0, there is a
real abelian field k of degree p such that \,(k) = p,(k) = 0, prank Xy :=
dimg, Xy /0 Xk, = M, and the prime p is inert in k, where Xy, is the Iwa-
sawa module associated with the cyclotomic Z,-extension ke /k.

We shall also give some applications of our construction.

2 Proof of Theorem 1.

We first introduce some notations, which we shall use below; In what follows,
We fix a prime number p once for all. For any number field F', we denote by
Ep, Ir and CI(F) the unit group, the ideal group and the ideal class group
of F, respectively, and we write A(F) for the p-part of CI(F'). Let F,, denote
the n-th layer of the cyclotomic Z,-extension F,/F for any number field F' of
finite degree and n > 0. For any module M, r € Z, and a prime number p, we
put Mr] = {m € M| rm = 0} and p-rank M = dimg, M/pM. Also we define
M[p>] to be U,», M[p"].

Since Xj,, > lim A(k,), the projective limit being taken with respect to the
norm maps, and the norm map A(k,,) — A(k,) is surjective if k., / k, is totally
ramified at some prime, p-rank X;_ > M is equivalent to that p-rank A(k,) >
M for such n > 0.

Assume that prime numbers ¢ and r satisfy

(C1) ¢ =1 (mod 2pN*1), r =1 (mod 2p), r Z 1 (mod 2p?),

(C2) g7 #1 (mod 1),

(C3) p7 #1 (mod r),

for a given integer N > 1. Denote by Q@ (q) and Q@ (r) the real abelian
fields of degree p with conductors ¢ and r, respectively. Such abelian fields
certainly exist by conditions (C1). Let k be a subfield of Q® (¢q)Q®(r) with
conductor gr such that [k : Q] = p and the prime p remains prime in k.
Such k certainly exists because p remains prime in Q® (r) by condition (C3),
and, in the case where p = 2, the prime 2 splits in Q”)(¢) by condition (C1).
Then Q®(¢)Q® (r) is the genus p-class field of k/Q, that is, the maximal
abelian p-extension field over Q which is unramified over k, and we have
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Gal(Q®) (q)QW (r)/k) ~ A(k)/(c — 1)A(k) by class field theory, where o is
a generator of Gal(k/Q). Since the prime q of k lying above ¢ does not split
in Q™ (¢)Q® (r)/k by (C2), the ideal class containing the prime q generates
A(k)/(o — 1)A(k), which implies that it generates A(k) itself and that A(k)
is cyclic by Nakayama’s lemma. We shall show that the prime g capitulates
in ks, which is equivalent to A,(k) = p,(k) = 0 by [3, Theorem 1|, and that
p-rank A(ky) > M under some additional conditions on ¢ and N.

Lemma 1. Let p be a prime number and F'/F a degree p cyclic extension
of number fields of finite degree. We assume that \,(F) = pu,(F) = 0. Let I
be a prime ideal of F' which ramifies in F'/F. If " splits completely in F! and
p-rank A(F)) < p" for some n > 0, then we have g (I') = 0 for the natural
projection map wpr_ : Ip — A(FL).

Proof. Let H,, = Ker(j, o : A(F)) — A(F.))), where j, « is the natural
map induced by the inclusion Iry C I, . We write £ for a prime of F}, lying
above I'. Since £7 € I, and A(F,) = 0 by our assumption \,(F) = u,(F) =
0, we have 7 (£')P € H,, for the natural projection map 7p; : I[p, — A(F}).
We consider the homomorphism v : F,[Gal(F),/F")] — (A(F))/H,)[p], a —
anp (£) mod H,. It follows from the assumption that

#(A(F,)/Hy)p) < p" = #,[Gal(F, /F")].
Hence Ker (1)) # 0, which implies Ker(¢))S(Fa/F) -£ (. Because

F,[Gal(F,/F)C /) = F, S~ 4,

~EGal(F!, /F")
we have » g )V € Ker(¢). Therefore
T (1) = Z 7, (£) € Hy,
YEGal(F,/F')
which implies 7p;_(I') = 0. O

Since A\, (Q) = p,(Q) = 0, and the prime q splits completely in ky by (C1),
if prank A(ky) < p" then q capitulates in ko and A\, (k) = p,(k) = 0 by
Lemma 1. Hence we shall control the p-rank of A(ky) in what follows.

Lemma 2. We have
pN - p—rank (EQN/(E@N N NkN/QNk]>\<f))
< p-rank A(ky)
< p(p" — prank (Eqy /(Egy N Niyjouky)))-



Construction of Real Abelian Fields 345

Proof. Since A(Qy) is trivial, A(kn)/(c — 1)A(ky) is an elementary
abelian p-group. The number of primes of Qy which ramify in ky is p™v + 1
because the prime ¢ splits completely and the prime r remains prime in Qy/Q
by (C1). Hence it follows from genus formula for ky/Qy that

p-rank A(ky) > p-rank (A(ky)/(c — 1)A(ky))
= pN - p—rank (EQN/(EQN N NkN/QNk]>\<f))a

It follows from the filtration of submodules of A(ky)
A(ky) 2 (0 = DA(ky) 2 (0 = 1)*A(ky) -+ 2 (0 — 1)PA(ky),
and (o0 — 1)PA(k,) C pA(k,) that
prank A(ky) < p(p-rank (A(ky)/(c — 1)A(kn))).
Thus we have the lemma. O

Let v be a fixed generator of Gal(ky/k) and (ky)g, the completion of ky
at the unique prime Q, above a fixed prime Qg of Qu lying over ¢.

By virtue of Lemma 2, we can control the p-rank of A(ky) by controlling
Eoy/Eqy N Niyjoyky- Hence we shall investigate the map

p: Egy — Gal(kn /Qn)®", p(e) = (v7'(e), (kn)a, /Qa))s

where (%, (kn)g,/Qq) denotes the local Artin symbol for (ky)g,/Qg. Then it
follows from the Hasse norm theorem and the product formula of the local
Artin symbols that

Ker(ﬂ) = EQN N NkN/@Nk]>\</7

since the ramified primes of ky/Qp are exactly the primes lying above ¢ and
the unique prime lying above r,
Hence we have

Eqgy /Egy N Niyjonky ~ Im(p). (2.1)
v—1 -2 4-25]\7'*‘2 —1
Let = Noun/n (Grer = 1770 (when p 2 2), or = Gun =0
(when p = 2), where (,,, denotes a primitive m-th root of unity for m > 1.
Then Cp, = (—1,7'n|0 < i < p" — 2) is the cyclotomic unit group of Qy

and p 1 [Eg, : Co,l as well known. Hence we have Im(p) = p(Cqp,) =
P(Z[Gal(Qx/Q)}y) since p(~1) = 1.
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Lemma 3. Let o be a fized generator of Gal(ky/Qn). If we assume that

(v, (kn)g,/Qq) = { ) -~ = (2.2)

Then we have p-rank (Eg, /Egy N Niyoxky) =0~ —pV 1+ 1.
Proof. It follows from the definition of the map p and (2.2) that

i+1 i+pN 1

) 6’ ) ¢

o, e 1) o< < pN = pNTL

N1 i

(1,---,1

i—(pN —p [
. 5 A, 1,0, ,0)
if pV —pN Tl 41 <i<pN — 1.

Clearly p(v'n) (0 < i < pN — pN~1) are independent in Gal(ky/Qy)%"
(Fp)@pN' For pV —pN=1 +1 <4 <p" — 1, we have

12

p—2

i . N-1 i (pN —pN =1y inN—1 | _
p(v'n) = p(m [ | (p(v(]“)” Mp(y' =0 TP ) 1)-
=0

Therefore Im(p) is generated by {p(y'n)| 0 < i < p" — pN~1}, from which we
conclude that

p-rank Eg, /Eg, N Niy oy ky = p-rank Im(p)
= prank p(Z[Gal(Qy/Q)]n) =p~ —p"" +1

by using (2.1) O
If assumption (2.2) of Lemma 3 holds, then we have
pV Tt —1 < prank A(ky) <pV —p < pV

by Lemma 2. Hence it follows that A\,(k) = p,(k) = 0 and p-rank X >
prank A(ky) > pN =1 — 1. If we take an integer N so that p™¥ =1 —1 > M, the
field k certainly satisfies the requirement of the statement of Theorem 1.

Now we choose primes ¢ and r such that conditions (C1), (C2), (C3), and
(2.2) hold.

Since 77 (0 < < pV —2) (and —1 if p = 2) are independent in Qx((,)*
as well known, y~'n mod (QX)? (0 < i < pV —2) (and —1 mod (Qx)? if
p = 2) are independent in QF/(Qy)?. Hence, by taking the norm Ng, (¢,)/Qy >
we can see that y~'n mod (Qn(¢,)*)P (0 <i <pV —2) (and —1 mod (Q5)?
if p = 2) are independent also in Qn(()* /(Qn ()™ )P. Therefore there exists a
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degree one prime Q of Qn(G) (= Q(¢v+1) (if p # 2), = Qn = Q((on+2 —I—C2_N1+2)
(if p = 2)) such that

7_%7(%( Y 2@)/%(@))_1 B {Cp (0<i<pV'-1),

(2.3)

by Cebotarev density theorem, where (%) denotes the Artin symbol. Note

that N(Q) is a prime number with N(Q) = 1 (mod pN*') (if p # 2), or
N(Q) =41 (mod 2N (if p = 2). )
Furthermore, in the case where p = 2, we can choose the prime £ so that

(@NuCIVQN):ly

9
which is equivalent to N(Q) = 1 (mod 2V*2). We note that if Q satisfies

(2.3), then
oN < R/w—(PN—Un,cp)/@N(cp))
-1
=1

(2.4)

[5)

{ 7‘(”“”77( , (2.5)

because Hfio_l v~ = 4+1. We take the prime number N(Q) as a prime
number g. Then ¢ =1 (mod 2p™*1). We choose a degree one prime t of Q(¢,)
(degree one implies that N(t) is a prime number with N(t) =1 (mod p)) such

that (@(gp, w)/@@p)) 41 (Q(Cp? W)/@(Cp)) 21,

T

N()-1 N()—1

which is equivalent to p~ » # 1 (mod N(tr)) and ¢ »  # 1 (mod N(v)),
respectively, and that

(Q(sz)/(@<gp)

T

QWV-1)/Q

T

)#ratp2). ( )= titp=2)
which is equivalent to N(t) # 1 (mod p?) (when p # 2) and N(xr) = 1
(mod 4) (when p = 2), respectively. This is possible by the Cebotarev density
theorem because p mod (Q({,)*)?, ¢ mod (Q((,)*)?, and ¢, mod (Q(¢,)*)?
are independent in Q(¢,)* /(Q((,)*)P as one can see easily by taking the norm
to Q. We take the prime number N(t) as a prime number . Then prime
numbers ¢ and r satisfy conditions (C1), (C2) and (C3) (In the case where
p = 2, it follows from 2™ # 1 (mod N(v)) that N(r) # 1 (mod 8)). And
let k£ be a real abelian field of degree p with conductor ¢r in which the prime p
does not split. We shall verify the field k and a certain prime Qg of Qy lying
above ¢ satisfy the assumption (2.2) of Lemma 3 in the following.
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Let us take the prime of Qu below Q as 9y, and let § € Q, be a uniformizer
such that Q,(¥/§) = (kn)g,- Then we can see

Qn (¥ ~"n.¢p)/Qn (Cp)
\/g(v ', (kn)g,/Qa)— _ {/7_2771 ( 5 )

by a property of local and global Artin symbols. Therefore we see that

(v, (kn)g,/Qq) = (0, (kwv)g, /Qq) # 1

for 1 <i <p"~'—1, and (v7'n, (kn)g,/Qq) = 1 for p"~1 < i < p" —1 by
(2.3) and (2.5). Therefore condition (2. 2) holds. Thus the above abelian field
k satisfies A, (k) = p, (k) = 0 and p-rank Xy > prank A(ky) > pV~1—1> M.
We have completed the proof of Theorem 1.

3 Applications of Theorem 1

We shall give some applications of Theorem 1 in this section.
As a corollary to Theorem 1, we have the following result on the maximal
unramified p-extensions of Z,-extension fields over totally real number fields:

Corollary 1. For any prime number p, there exists a real abelian fields
k with [k : Q] = p such that the maximal unramified abelian p-extension
L(kso) koo is finite but the mazimal unramified p-extension L(ko)/keo is infi-
nite, ks being the cyclotomic Z,-extension field of k.

Proof. In the proof of Theorem 1, we have shown that for any given
number N, there exists a real abelian field k of degree p such that )\p(k) =
pp(k) = 0 and prank A(ky) > p¥=' — 1. If we choose N so that p™¥~
1> 2+2/r(kyn), r(kny) = pV*! being the number of archimedean places of
ky, it follows from Golod-Shafarevich criterion (see for example [7, Theorem
(10.8.6)]) that the maximal unramified p-extension L(ky) over ky is infinite.
Therefore the extension L(ku)/kso is infinite since L(ky)kso C L(koo). Also,
the finiteness of [L(kw) : koo| follows from the condition A, (k) = p,(k) = 0. O

Remark 1. Mizusawa [6] give an different type example of Z,-extension
field koo with [L(keo) : koo] < 00 and [L(kuo) @ koo = 00. Let p = 3 and k =
Q(+/39345017). In this case, L(k)/k is an infinite extension. Mizusawa verified
A3(k) = ps(k) = 0 by numerical computation. Hence [L(kw) : ko] < 00 and
[L(kog) : kso] = 00 for the cyclotomic Zg-extension ko over k.

We also obtain a result concerning the delay of the stabilization of #A(k,)
in the Iwasawa class number formula as a corollary to Theorem 1.
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For any number field k£ and prime number p, we let ng(k, p) be the minimum
non-negative integer such that

Cl(k,)[p*°] = prrIntem ke (K)

for all n > ny(k, p), where k, is the n-th layer of the cyclotomic Z,-extension
kso/k, and A, (k), pp(k) and v,(k) denote Iwasawa invariants of k. /k.

Corollary 2. For any prime number p and integer M, there exists a real
abelian field k of degree p such that \,(k) = p,(k) = 0 and no(k,p) > M

Proof. By the construction in the proof of Theorem 1, for any give N > 1,
there exists a real abelian field k£ of degree p such that A\ (k) = u,(k) = 0,
prank A(ky) > pV~! — 1, A(k) is a cyclic group, and the prime p remains
prime in k. Since k., has a unique prime lying over p, we have

Alkn) ~ X /(7" = D X,

where v is a fixed generator of I' := Gal(ky/k). It follows from the above
isomorphism and the cyclicity of A(k) that X is a cyclic Z,[[I']]-module
by Nakayama’s lemma, Z,[[I']] being the completed group ring of I' over Z,.
Hence, by using the assumption # X < oo, we may assume that

Koo /DX ke = Fp[[T1]/ (v = 1)°,
for some e > 0. Thus we have
Alkn)/pA(ky) = F[[TN)/((y = 1)°, (v = 1)) = F[[T]]/(y — 1)minter™

for n > 0, from which we find that

e > min{e,p"} = p-rank A(ky) > pV ! — 1. (3.1)
On the other hand, we see that

pt) > e, (3-2)

since

min{e, p" P} = prank A(Kno (i p))
= p-rank A(kpno (e p)+1) = min{e, proP)+1Y,

Thus we conclude from (3.1) and (3.2) that
pno(k,p) Z prl —1.

Because N is an arbitrarily given number, the proof have been completed. O
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Example 1. Here we give an example of Theorem 1. Let p = 2 and
k = Q(+v/5-732678913) (732678913 is a prime number). Then we can see
that A\o(k) = po(k) = 0 and 2-rank X = 19, where k. /k is the cyclotomic
Zos-extension (cf. Theorem 1).

For this real quadratic field &, we see that [L(kso) : kso] < 00 and [L(kso) :
koo] = 00, where L(koo) /Koo and L(kso) /keo are the maximal unramified abelian
2-extension and the maximal unramified 2-extension, respectively (cf. Corol-
lary 1).

Also we find that ng(k,2) > 5 (cf. Corollary 2). Specifically, we can see
2-rank Cl(k,) = 2" for 0 <n < 4 and 2-rank Cl(k,) = 19 for n > 5.

4 Open Question

The paper [9] shows that for any given finite Z,-module X there exists a totally
real number field k of finite degree such that X, ~ X. The author would like
to know whether we can always choose the above k to be a real abelian field
of degree p.
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