
Int. J. Open Problems Compt. Math., Vol. 2, No. 3, September 2009
ISSN 1998-6262; Copyright ©ICSRS Publication, 2009
www.i-csrs.org

Dynamic Task Scheduling with Load
Balancing using Hybrid Particle Swarm

Optimization

P Visalakshi1 , S N Sivanandam2

Senior Lecturer, Dept. of CSE, PSG College of Technology, Coimbatore, India
Professor& Head, Dept. of CSE, PSG College of Technology, Coimbatore, India

e-mail : visapsg@gmail.com , sns@mail.psgtech.ac.in

Abstract

 This paper presents a Hybrid Particle Swarm Optimization (HPSO)
method for solving the Task Assignment Problem (TAP) which is an
np-hard problem. Particle Swarm Optimization (PSO) is a recently
developed population based heuristic optimization technique. The
algorithm has been developed to dynamically schedule heterogeneous
tasks on to heterogeneous processors in a distributed setup. Load
balancing which is a major issue in task scheduling is also considered.
The nature of the tasks are independent and non pre-emptive. The
HPSO yields a better result than the Normal PSO when applied to the
task assignment problem. The results Of PSO and HPSO is also
compared with another popular heuristic optimization technique
namely Genetic Algorithm (GA). The results infer that the PSO
performs better than the GA.

 Keywords: GA, HPSO, Inertia, PSO, TAP, Topology.

1 Introduction
Multiprocessor Scheduling is an np-hard problem. The problem of scheduling a
set of dependent or independent tasks in a distributed computing system is a well-
studied area. In this paper, the dynamic task allocation methodology is examined
in a heterogeneous computing environment. Dynamic allocation techniques can be
applied to large sets of real-world applications that are able to be formulated in a

P Visalakshi and S N Sivanandam 476

manner which allows for deterministic execution. Some advantages of the
dynamic techniques over static techniques are that, static techniques should
always have a prior knowledge of all the tasks to be executed but dynamic
techniques do not require that. The traditional methods such as branch and bound,
divide and conquer, and dynamic programming gives the global optimum, but is
often time consuming or do not apply for solving typical real-world problems.
The researchers [1] have derived optimal task assignments to minimize the sum of
task execution and communication costs with the branch-and-bound method and
evaluated the computational complexity of this method using simulation
techniques. Traditional methods used in optimization are deterministic, fast, and
give exact answers but often tends to get stuck on local optima [2]. The dynamic
task scheduling considering the load balancing issue is an np-hard problem [3]
[4].

Consequently, another approach is needed when the traditional methods cannot
be applied. Modern heuristics [5] are general purpose optimization algorithms.
Their efficiency or applicability is not tied to any specific problem-domain.
Multiprocessor scheduling methods can be divided into list heuristics and Meta
heuristics. In List heuristics, the tasks are maintained in a priority queue in
decreasing order of priority. The tasks are assigned to the free processors in a First
in First Out manner. A meta-heuristic is a heuristic method for solving a very
general class of computational problems by combining user-given black-box
procedures, usually heuristics themselves, in a hopefully efficient way.

Available meta heuristics include Simulated Annealing algorithms, Genetic
Algorithms [6] [7] [8] [9][10] [11], Hill Climbing, Tabu Search, Neural Networks
[12], Particle Swarm Optimization [13][14] and Ant Colony algorithm [15]. PSO
yields faster convergence when compared to GA, because of the balance between
exploration and exploitation in the search space. In this paper, a very fast and
easily implemented dynamic algorithm is presented based on particle swarm
optimization (PSO) and its variants. In this paper, a scheduling strategy is
presented which uses PSO to schedule heterogeneous tasks on to heterogeneous
processors to minimize the total execution time. It operates dynamically, which
allows the new tasks to arrive at any time interval. The remaining of the paper is
organized as follows, Section 2 deals with the problem definition and Section 3
illustrates the working of Particle Swarm Optimization Algorithm. The proposed
methodologies are explained in Section 4. Results and discussion is depicted in
Section 5. Conclusion and future work is dealt in Section 6.Open Problem is
highlighted in Section 7.

2 Problem Description
This paper considers the Task Assignment Problem (TAP) with the following
scenario. The system consists of a set of heterogeneous processors (m) having
different memory and processing resources, which implies that tasks (r), executed
on different processor encounters different execution cost. The communication
links are assumed to be identical, however communication cost between two tasks
will be encountered when executed on different processors. A task will make use
of the resources from its execution processor.

Dynamic Task Scheduling with Load 477

Load Balancing algorithms [16] are designed essentially to equally spread the
load on processors and maximize their utilization while minimizing the total task
execution time. In order to achieve these goals, the load-balancing mechanism
should be fair enough in distributing the load across the processors.

The objective is to minimize the total execution and communication cost
encountered by the task assignment, subject to the resource constraints. A particle
is evaluated by calculating its fitness function. Fitness function indicates the
goodness of the schedule. The objective function calculates the total execution
time of the set of tasks allocated to each processor. The fitness function calculates
the average of the total execution time of the set of tasks allocated to the
processors.

Definition 2.1

The fitness function is given as,
() nutilizatio average x spanmax/1)P(fitness i = (1)

where)P(fitness i is the fitness function of processor iP . The fitness function is
used to evaluate the quality of the task assignment. Effective processor utilization
is needed to support the concept of load balancing. If all the processors are used to
their maximum, then the loads, which are the measures of idleness of processors
are effectively reduced.

Definition 2.2

The average utilization is calculated based on the individual performance of the

processor. The utilization of the individual processor is given by,
() () spanmax/Ptime_completionPnutilizatio xx = (2)

Then dividing the sum of all processors utilization by the total number of
processors gives the average processor utilization. When the average processor
utilization is optimized, then the processors being idle for long time are avoided.

Definition 2.3

 The objective function is represented as shown in equation 3. The objective

function calculates the average of the total execution time of the set of tasks
allocated to the processors.

Objective function= }
m

)P(fitness
max{

m

1i
i∑

= (3)

where m is the number of processors.

The objective is the maximization of the equation (3) mentioned. The value
clearly indicates the optimum schedule along with the balance in the processor
utilization.

P Visalakshi and S N Sivanandam 478

3 Particle Swarm Optimization
PSO is a stochastic optimization technique [17] which operates on the principle of
social behavior like bird flocking or fish schooling. In a PSO system, a swarm of
individuals (called particles) fly through the search space. Rui Mendes [18]
discusses the complete information about the Particle Swarm Optimization. Each
particle represents a candidate solution to the optimization problem. The position
of a particle is influenced by the best position visited by itself i.e. its own
experience and the position of the best particle in its neighborhood i.e. the
experience of neighboring particles [19]. When the neighborhood of a particle is
the entire swarm, the best position in the neighborhood is referred to as the global
best particle, and the resulting algorithm is referred to as the gbest PSO [20].
When smaller neighborhoods are used, the algorithm is generally referred to as
the lbest PSO. The performance of each particle is measured using a fitness
function that varies depending on the optimization problem [21].

Each particle in the swarm is represented by the following characteristics: xid:
The current position of the particle; vid: The current velocity of the particle; pid:
The personal best position of the particle. The personal best position of particle i
is the best position visited by particle i so far. There are two versions for keeping
the neighbors’ best vector, namely lbest and gbest [22]. In the local version, each
particle keeps track of the best vector lbest attained by its local topological
neighborhood of particles. For the global version, the best vector gbest is
determined by all particles in the entire swarm. Hence, the gbest model is a
special case of the lbest model. The equations (4) and (5) are used for the velocity
updation and the position updation.

vid = w vid + c1rand()(pid - xid) + c2Rand()(pgd - xid) (4)

xid = xid + vid (5)
where c1 and c2 are the cognitive coefficients and rand() and Rand() are random

real numbers drawn from U (0, 1). Several topologies exist in literature for the
particles to communicate with one another. The topologies are ring, star, pyramid
and master-slave topologies [23]. The star topology is adopted where each particle
communicates with every other particle in the population to achieve the optimal
solution. Among the topologies, the star is the best topology .The inertia w is used
to achieve a balance in the exploration and exploitation of the search space. The
inertia dynamically reduces during a run which facilitates a balance in the
exploration and exploitation of the search space.

4 Proposed Methodology
This section discusses the proposed dynamic task scheduling using Particle
Swarm Optimization. Table 1 shows an illustrative example where each row
represents the particles which correspond to a task assignment that assigns five
tasks to three processors, and [Particle 3, T4] =P1 means that, in particle 3, the
task 4 is assigned to Processor 1.

Dynamic Task Scheduling with Load 479

Table 1 A PSO Particle Representation

The Algorithm used is for the dynamic task scheduling is as follows: The particles
are generated based on the number of processors used, number of tasks that have
arrived at a particular point of time and the population size specified. Initially the
particles are generated at random and the fitness is calculated which decides the
goodness of the schedule. The pbest and gbest values are calculated. Then the
velocity updation and the position updation are done. The same procedure is
repeated for the maximum number of iterations specified. The global solution
which is the optimal solution is obtained. When a new task arrives, it is compared
with the tasks that are in the waiting queue and a new schedule is obtained. Thus
the sequence keeps on changing with time based on the arrival of new tasks.

Each particle corresponds to a candidate solution of the underlying problem.
Thus, each particle represents a decision for task assignment using a vector of r
elements, and each element is an integer value between 1 to n. The algorithm
terminates when the maximum number of iterations is reached. The near optimal
solution is thus obtained using Particle Swarm Optimization.

4.1 Dynamic Task Scheduling using Genetic Algorithm
Holland proposed Genetic Algorithm (GA) as a heuristic method based on
“Survival of the fittest”. GA was discovered as a useful tool for search and
optimization problem. GA handles a population of possible solutions. Each
solution is called a chromosome. The selection of chromosomes is done by
evaluating the fitness function. The procedure for dynamic task scheduling using
Genetic Algorithm is as follows,

1. Generate an initial population of chromosomes randomly.
2. Evaluate the fitness of each chromosome in the population
3. Create a new population by repeating the following steps until the new

population is complete,
 Selection

Select two parent chromosomes from a population according to
their fitness. (The better the fitness, the higher is the chance for
getting selected).

 Crossover
With a crossover probability, do cross over operations on the
parents to form a new offspring. If no crossover is performed,
offspring is the exact copy of the parents.

 T1 T2 T3 T4 T5
particle 1 P3 P2 P1 P2 P2
particle 2 P1 P2 P3 P1 P1
particle 3 P1 P3 P2 P1 P2
particle 4 P2 P1 P2 P3 P1
particle 5 P2 P2 P1 P3 P1

P Visalakshi and S N Sivanandam 480

 Mutation
With a mutation probability, mutate new offspring at each locus
(position in chromosome)

 Acceptance
Place the new offspring in the new population.

4. Using the newly generated population for a further sum of the
algorithm.

5. If the test condition is satisfied, stop and return the best solution in the
current population.

6. Repeat Step 3 until the target is met.
7. Finally obtain the optimal solution.
The dynamic task scheduling using Genetic Algorithm is done to compare
its performance with the PSO and its variants.

4.2 Scheduling using PSO with fixed (PSO-fi) and variable inertia
(PSO-vi)

The inertia weight, w controls the momentum of the particle in equation (4). The
inertia used is the dynamically varying inertia which decreases gradually during
the long run. The equation used for implementing varying inertia is,

iter
iter

ww
 -ww

max

minmax
 max ×

−
= (6)

where minw = 0.4 and maxw = 0.9, maxiter is the maximum number of iteration
specified and iter is the current iteration in progress. The inertia weight is
introduced in equation (4) to balance between the global and local search abilities.
The large inertia weight facilitates global search while the small inertia weight
facilitates local search. The introduction of the inertia weight also eliminates the
requirement of carefully setting the maximum velocity. Two versions of PSO
algorithm were carried out namely PSO with fixed inertia and PSO with varying
inertia. In PSO with fixed inertia, the inertia value is fixed to a constant value of
0.8 during the whole run of the algorithm. Another version was the PSO with
dynamically reducing inertia in which the inertia decreases from a maximum
value of 0.9 to a minimum value of 0.4 [17] during the whole run of the algorithm.
A significant cost reduction is achieved in variable inertia than with the fixed
inertia.

4.3 Scheduling using PSO with Elitism (EPSO)
 Elitism is the process of selecting the better individuals, or more to the point,
selecting individual with a bias towards the better ones. Elitism is important since
it allows the solutions to get better over time. The best particle in PSO is copied to
the population in the next generation. The rest are chosen in the classical way.
Elitism can very rapidly increase performance of PSO, because it prevents losing
the best found solution to date. A variation is to eliminate an equal number of the

Dynamic Task Scheduling with Load 481

worst solutions, i.e. for each "best particle” carried over a "worst particle” is
deleted.

 In this method, the strategy of replacing the worst string of the new
population with the best string of the current population is adopted. Particle
Swarm Optimization Algorithms with this strategy are referred as Elitism Particle
Swarm Optimization Algorithm or EPSO. The basic steps in an EPSO are
described as follows:

1. Generate an initial population P of size M and calculate the fitness of
each particle S of P using the objective function.

2. Find the best particle pbest of P. If the best particles are not unique, then
call anyone of the best particle in P as pbest.

3. Perform the velocity updation and the position updation on the particles
in the mating pool according to the PSO equation given in (4) and (5) and obtain a
population Ptmp.

4. Compare the fitness of each particle S of Ptmp with pbest. Replace the
worst particle of Ptmp with pbest if the fitness of each particle in Ptmp is less than
the fitness of pbest. Otherwise no replacement takes place in Ptmp. Rename Ptmp
as P.

5. Go to step 3.
A significant improvement in the result is obtained when EPSO is used. Repeat
the steps until the maximum number of iterations is specified.

4.4 Dynamic Task Scheduling using Hybrid PSO
Modern meta-heuristics manage to combine exploration and exploitation search.
The exploration search seeks for new regions, and once it finds a good region, the
exploitation search kicks in. However, since the two strategies are usually inter-
wound, the search may be conducted to other regions before it reaches the local
optima. As a result, many researchers suggest employing a hybrid strategy, which
embeds a local optimizer in between the iterations of the meta-heuristics. Hybrid
PSO was proposed in [24] which makes use of PSO and the Hill Climbing
technique and the author has claimed that the hybridization yields a better result
than normal PSO. This paper uses the hybridization of PSO and the Simulated
Annealing Algorithm.

PSO is a stochastic optimization technique which operates on the principle of
social behavior like bird flocking or fish schooling. PSO has a strong ability to
find the most optimistic result. The PSO technique can be combined with some
other evolutionary optimization technique to yield an even better performance.
Simulated Annealing is a kind of global optimization technique based on
annealing of metal. It can find the global optimum using stochastic search
technology from the means of probability. Simulated Annealing (SA) algorithm
has a strong ability to find the local optimistic result. And it can avoid the problem
of local optimum, but its ability of finding the global optimistic result is weak.
Hence it can be used with other techniques like PSO to yield a better result than
used alone.

The HPSO shown in Fig 1 is an optimization algorithm combining the PSO
with the SA. PSO has a strong ability in finding the most optimistic result.
Meanwhile, at times it has a disadvantage of local optimum. SA has a strong
ability in finding a local optimistic result, but its ability in finding the global
optimistic result is weak. Combining PSO and SA leads to the combined effect of

P Visalakshi and S N Sivanandam 482

the good global search algorithm and the good local search algorithm, which
yields a promising result.

The embedded simulated annealing heuristic proceeds as follows. Given a
particle vector, its r elements are sequentially examined for updating. The value of
the examined element is replaced, in turn, by each integer value from 1 to n, and
retains the best one that attains the highest fitness value among them. While an
element is examined, the values of the remaining r -1 elements remain unchanged.
A neighbor of the new particle is selected. The fitness values for the new particle
and its neighbor are found. They are compared and the minimum value is selected.
This minimum value is assigned to the personal best of this particle. The heuristic
is terminated if all the elements of the particle have been examined for updating

Fig 1 Hybrid PSO for dynamic task scheduling

No

Generate the initial Swarm

Evaluate the initial Swarm using the
fitness function

Initialize the personal best of each particle
and the global best of the entire swarm

Update the particle velocity using personal
best or local best

Apply velocities to the particles positions

Evaluate new particles positions

Re-evaluate the original swarm and find the
new personal best and global best

Has maximum iteration
reached?

Get the best individual from the last

Improve solution quality using simulated
annealing

Yes

Dynamic Task Scheduling with Load 483

and all the particles are examined. The computation for the fitness value due to
the element updating can be maximized. The procedure for Hybrid PSO is as
follows,
1. Generate the initial swarm.
2. Initialize the personal best of each particle and the global best of the entire

swarm.
3. Evaluate the initial swam using the fitness function.
4. Select the personal best and global best of the swarm
5. Update the velocity and the position of each particle using the equations

(4) and (5).
6. Obtain the optimal solution in the initial stage.
7. Apply Simulated Annealing algorithm to further refine the solution.
8. Repeat step 3- step 7 until the maximum number of iterations specified.
9. Obtain the optimal solution at the end.

5 Evaluation and Experimental Results
An effective scheduling algorithm has been developed to schedule the tasks onto
processors in a distributed computing system using PSO and its variants. The
scheduling algorithm has been implemented and applied to benchmark data from
the etaillard and a number of different experiments have also been performed to
demonstrate the effectiveness of the scheduling algorithm. For these experiments
each task was assumed to have a fixed arrival time and execution time. All the
scheduling algorithms were presented with the same set of tasks for scheduling
and all schedulers have the same information available to them.

 Performance of the PSO method and its variants with varying
Population Sizes
Dynamic task scheduling is performed in the global scheduler using Particle
Swarm Optimization. Each possible solution is represented as the particle. It
represents the order in which the tasks are to be executed for a particular
processor. This paper involves 20 processors and 50 jobs. The experimental data
has been taken from the etaillard benchmark. During the experiment period, the
maximum number of iteration was set to 100. The results are compared for
varying population size, where the size ranges from 10 to 250.

 Table 2 and Fig 2 gives a comparative analysis of the performance of the global

scheduler implemented using PSO algorithm and its variants for varying
population sizes. PSO with fixed inertia, PSO with dynamically varying inertia,
PSO with Elitism (EPSO) and Hybrid PSO (HPSO) are considered. The results of
PSO and its variants are also compared with Genetic Algorithm (GA). From the
results it can be inferred that the PSO with varying inertia performs better than
fixed inertia because there is a balance in exploitation and exploration in search
space when the inertia is varied. The result for fixed inertia is 4.6894 in fixed
inertia where as it is 4.7392 for variable inertia for a population size of 250.

P Visalakshi and S N Sivanandam 484

Table 2 PSO and its variants for varying population sizes

Fig 2Cost for HPSO and its variants for varying population sizes

From Table 2 and fig 2, it can be inferred that the HPSO outperforms all other
PSO variants and GA because of the balance in the exploitation and exploration of
the search space.Thus a cost of 4.8002 is obtained for HPSO which is
comparatively better than the other methods tested.

 Performance of the PSO method and its variants for Varying
Number of Iterations

 The results of PSO and its variants are compared for varying number of iterations
which varies from 10 to 250 in Table 3 and Figure 3

Particle
Size

GA PSO-fi PSO-vi EPSO HPSO

10 4.4812 4.5702 4.5826 4.5826 4.6078

20 4.5001 4.5826 4.6312 4.6894 4.6851

50 4.5521 4.5826 4.6312 4.7392 4.6954

100 4.5864 4.6312 4.6894 4.7392 4.7681

250 4.6012 4.6894 4.7392 4.7392 4.8002

HPSO and its varaints for varying population
sizes

4.3

4.4

4.5
4.6

4.7

4.8

4.9

10 20 50 100 250

Population Size

Co
st

GA
PSO-fi
PSO-vi
EPSO
HPSO

Dynamic Task Scheduling with Load 485

Table 3 PSO and its variants for varying number of iterations

HPSO and its variants for varying number of
iterations

3.8

4

4.2
4.4

4.6

4.8

5

10 20 50 100 200 250

No. of Iterations

C
os

t

GA
PSO-fi
PSO-vi
EPSO
HPSO

Fig 3 Cost for HPSO and its variants for varying number of iterations

From Table 3and Fig 3, it can be inferred that the HPSO outperforms all other
methodologies tested. Thus the load balancing is better in HPSO than other
methods.

6 Conclusion and Future work
The objective of this paper is to dynamically schedule the tasks in a
heterogeneous environment. The tasks are independent and non-preemptive in
nature. PSO is chosen as the optimization technique because it has enormous
advantages when compared to other heuristic optimization techniques. Different
approaches for solving the dynamic task scheduling using PSO has been tried
namely PSO with fixed inertia, PSO with variable inertia, PSO with elitism, and
Hybrid PSO. The experimental results show that the Hybrid PSO is cost effective
when compared to other variants of PSO. The PSO results are also compared with
Genetic Algorithm which is another popular heuristic technique. The results show
that the PSO and its variants perform better than the GA. The future work can

Iterations GA PSO-fi PSO-vi EPSO HPSO

10 4.267 4.32 4.4647 4.4647 4.6255

20 4.28 4.3761 4.535 4.6023 4.6193

50 4.3761 4.4134 4.6023 4.6193 4.7324

100 4.4134 4.4647 4.6352 4.6833 4.818

200 4.483 4.4985 4.6635 4.6833 4.8196

250 4.5122 4.535 4.6833 4.6833 4.8113

P Visalakshi and S N Sivanandam 486

involve scheduling tasks which are dependent and pre-emptive in nature. Other
hybridization techniques can also be used with PSO to achieve a better result.

7 Open Problem

Active research is going on in the optimization of the multiprocessor scheduling using
various techniques. The traditional methods are often time consuming and do not
provide exact solutions. Lots of work is being undertaken to solve the problem
using heuristic approaches. There are open problems of the nature of the tasks
involved. We have considered only non-preemptive tasks which are dynamic in
nature. The future work could deal with preemptive task scheduling. The
parameters in PSO applied for dynamic task scheduling may also be analyzed and
updated to achieve an even better performance.

Acknowledgements
The authors would like to thank the Management and the Principal, PSG College
of Technology, Coimbatore, India for having provided all the resources for
successfully carrying out this research work.

References
[1] Dar-Tzen Peng, Kang G. Shin and Tarek F. Abdelzaher, “ Assignment and

Scheduling Communicating Periodic Tasks in Distributed Real-Time
Systems”, IEEE Transactions On Software Engineering, Vol. 23, No.
12(1997), pp. 745-758.

[2] Tzu-Chiang Chiang, Po-Yin Chang, and Yueh-Min Huang, “Multi-Processor
Tasks with Resource and Timing Constraints Using Particle Swarm
Optimization”, IJCSNS International Journal of Computer Science and
Network Security, Vol.6 No.4 (2006), pp. 71-77.

[3] P. Brucker, “Scheduling Algorithms”, Springer, Berlin (2001), 3rd edition.
[4] Hans-Ulrich Heiss and Michael Schmitz, “Decentralized Dynamic Load

Balancing: The Particles Approach”, Information Sciences, Vol. 84, No.2
(1995), pp.115 - 128.

[5] Abdelmageed Elsadek A and Earl Wells B, “A Heuristic model for task
allocation in heterogeneous distributed computing systems”, The International
Journal of Computers and Their Applications, Vol. 6, No. 1(1999), pp. 1 – 36.

[6] Page A.J and Naughton T.J, “Framework for task scheduling in heterogeneous
distributed computing using genetic algorithms”, In 15th Artificial Intelligence
and Cognitive Science Conference, Ireland(2004), pp. 137–146.

[7] Page, A.J and Naughton, T.J, “Dynamic task scheduling using genetic
algorithms for heterogeneous distributed computing”, Proceedings of the 19th

Dynamic Task Scheduling with Load 487

IEEE/ACM International Parallel and Distributed Processing Symposium,
Denver, USA(2005), pp. 1530-2075.

[8] Annie S. Wu, Han Yu, “Shiyuan Jin, Kuo-Chi Lin and Guy Schiavone, “ An
Incremental Genetic Algorithm Approach to Multiprocessor Scheduling”,
IEEE Transactions on Parallel and Distributed Systems, Vol. 15, No.9(2004),
pp. 824 – 834.

[9] Zomaya A.Y and The Y.H, “Observations on using genetic algorithms for
dynamic load-balancing”, IEEE Transactions on Parallel and Distributed
Systems, Vol 12. No.9 (2001), pp.899-911.

[10] Edwin S. H., Hou Ninvan Ansari and Hong Ren, “A genetic algorithm for
multiprocessor scheduling”, IEEE Transactions On Parallel And Distributed
Systems, Vol. 5, No. 2(1994), pp. 113-120.

[11] Manimaran G and Siva Ram Murthy C, “A Fault-Tolerant Dynamic
Scheduling Algorithm for Multiprocessor Real-Time Systems and Its
Analysis”, IEEE Transactions on Parallel and Distributed Systems, Vol. 9,
No.11 (1998), pp. 1137 – 1152.

[12] Ruey-Maw Chen, and Yueh-Min Huang, “Multiprocessor Task Assignment
with Fuzzy Hopfield Neural Network Clustering Techniques”, Journal of
Neural Computing and Applications, Vol.10, No.1 (2001), pp. 12 -21.

[13]Chunming Yang, Simon D, “A new particle swarm optimization technique”,
Proceedings of the International Conference on Systems Engineering(2005),
pp.164-169.
[14]Van Den Bergh, F, Engelbrecht, A.P, “A study of particle swarm
optimization particle trajectories”, Information Sciences (2006), pp. 937–997.

[15] Graham Ritchie, “Static Multi-processor scheduling with Ant Colony
Optimisation and Local search”, Master of Science thesis, University of
Edinburgh (2003), pp. 1- 101.

[16]Xie, T, Andrew Sung , Xiao Qin, Man Lin and Laurence Yang, “ Real Time
Scheduling with quality of security constraints”, International Journal of
High Performance Computing and Networking, Vol.4, No.3(2006), pp. 188-
197.

[17] Yuhui Shi, “Particle Swarm Optimization”, IEEE Neural Network Society,
(2004), pp.8-13.

[18]Rui Mendes, James Kennedy and José Neves, “The Fully Informed Particle
Swarm: Simpler, Maybe Better”, IEEE Transactions of Evolutionary
Computation, Vol. 8, No. 3(2004), pp. 204- 210.

[19] Maurice Clerc and James Kennedy, “The Particle Swarm—Explosion,
Stability, and Convergence in a Multidimensional Complex Space”, IEEE
Transactions On Evolutionary Computation, Vol. 6, No. 1(2002), pp. 58 -73.

[20] Parsopoulos K.E, and Vrahatis M.N, “Recent approaches to global
optimization problems through particle swarm optimization”, Natural
Computing , Vol.1(2002), pp. 235 – 306.

P Visalakshi and S N Sivanandam 488

[21] Schutte J.F, Reinbolt J.A, Fregly B.J, Haftka R.T and George A.D, “Parallel
global optimization with the particle swarm algorithm”, International Journal
for Numerical Methods in Engineering, Vol 6(2004), pp.2296–2315

[22] Kennedy J and Russell C Eberhart, “Swarm Intelligence”, Morgan-
Kaufmann (2001), pp 337-342.

 [23] Fatih Taşgetiren M and Yun-Chia Liang, “A Binary Particle Swarm
Optimization Algorithm for Lot Sizing Problem”, Journal of Economic and
Social Research, Vol.5 No.2 (2004), pp. 1-20.

 [24] Peng-Yeng Yin, Shiuh-Sheng Yu, Pei-Pei Wang, and Yi-Te Wang, “A
hybrid particle swarm optimization algorithm for optimal task assignment in
distributed systems”, Computer Standards & Interfaces , Vol.28(2006), pp.
441-450.

