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Abstract 

    This paper presents a Hybrid Particle Swarm Optimization (HPSO) 
method for solving the Task Assignment Problem (TAP) which is an 
np-hard problem. Particle Swarm Optimization (PSO) is a recently 
developed population based heuristic optimization technique. The 
algorithm has been developed to dynamically schedule heterogeneous 
tasks on to heterogeneous processors in a distributed setup. Load 
balancing which is a major issue in task scheduling is also considered. 
The nature of the tasks are independent and non pre-emptive. The 
HPSO yields a better result than the Normal PSO when applied to the 
task assignment problem. The results Of PSO and HPSO is also 
compared with another popular heuristic optimization technique 
namely Genetic Algorithm  ( GA). The results infer that the PSO 
performs better than the GA.  

     Keywords: GA, HPSO, Inertia, PSO, TAP, Topology. 

 

1      Introduction 
Multiprocessor Scheduling is an np-hard problem. The problem of scheduling a 
set of dependent or independent tasks in a distributed computing system is a well-
studied area. In this paper, the dynamic task allocation methodology is examined 
in a heterogeneous computing environment. Dynamic allocation techniques can be 
applied to large sets of real-world applications that are able to be formulated in a 
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manner which allows for deterministic execution. Some advantages of the 
dynamic techniques over static techniques are that, static techniques should 
always have a prior knowledge of all the tasks to be executed but dynamic 
techniques do not require that. The traditional methods such as branch and bound, 
divide and conquer, and dynamic programming gives the global optimum, but is 
often time consuming or do not apply for solving typical real-world problems. 
The researchers [1] have derived optimal task assignments to minimize the sum of 
task execution and communication costs with the branch-and-bound method and 
evaluated the computational complexity of this method using simulation 
techniques. Traditional methods used in optimization are deterministic, fast, and 
give exact answers but often tends to get stuck on local optima [2]. The dynamic 
task scheduling considering the load balancing issue is an np-hard problem [3] 
[4]. 

Consequently, another approach is needed when the traditional methods cannot 
be applied. Modern heuristics [5] are general purpose optimization algorithms. 
Their efficiency or applicability is not tied to any specific problem-domain. 
Multiprocessor scheduling methods can be divided into list heuristics and Meta 
heuristics. In List heuristics, the tasks are maintained in a priority queue in 
decreasing order of priority. The tasks are assigned to the free processors in a First 
in First Out manner. A meta-heuristic is a heuristic method for solving a very 
general class of computational problems by combining user-given black-box 
procedures, usually heuristics themselves, in a hopefully efficient way. 

Available meta heuristics include Simulated Annealing algorithms, Genetic 
Algorithms [6] [7] [8] [9][10] [11], Hill Climbing, Tabu Search, Neural Networks 
[12], Particle Swarm Optimization [13][14] and Ant Colony algorithm [15]. PSO 
yields faster convergence when compared to GA, because of the balance between 
exploration and exploitation in the search space. In this paper, a very fast and 
easily implemented dynamic algorithm is presented based on particle swarm 
optimization (PSO) and its variants. In this paper, a scheduling strategy is 
presented which uses PSO to schedule heterogeneous tasks on to heterogeneous 
processors to minimize the total execution time. It operates dynamically, which 
allows the new tasks to arrive at any time interval. The remaining of the paper is 
organized as follows, Section 2 deals with the problem definition and Section 3 
illustrates the working of Particle Swarm Optimization Algorithm. The proposed 
methodologies are explained in Section 4. Results and discussion is depicted in 
Section 5. Conclusion and future work is dealt in Section 6.Open Problem is 
highlighted in Section 7. 

2     Problem Description 
This paper considers the Task Assignment Problem (TAP) with the following 
scenario. The system consists of a set of heterogeneous processors (m) having 
different memory and processing resources, which implies that tasks (r), executed 
on different processor encounters different execution cost. The communication 
links are assumed to be identical, however communication cost between two tasks 
will be encountered when executed on different processors. A task will make use 
of the resources from its execution processor. 
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Load Balancing algorithms [16] are designed essentially to equally spread the 
load on processors and maximize their utilization while minimizing the total task 
execution time. In order to achieve these goals, the load-balancing mechanism 
should be fair enough in distributing the load across the processors.  

The objective is to minimize the total execution and communication cost 
encountered by the task assignment, subject to the resource constraints. A particle 
is evaluated by calculating its fitness function. Fitness function indicates the 
goodness of the schedule. The objective function calculates the total execution 
time of the set of tasks allocated to each processor. The fitness function calculates 
the average of the total execution time of the set of tasks allocated to the 
processors.  

 
Definition 2.1  

The fitness function is given as, 
( ) nutilizatio average x spanmax/1)P(fitness i =            (1) 

where )P(fitness i  is the fitness function of processor iP . The fitness function is 
used to evaluate the quality of the task assignment. Effective processor utilization 
is needed to support the concept of load balancing. If all the processors are used to 
their maximum, then the loads, which are the measures of idleness of processors 
are effectively reduced.  

 
Definition 2.2  

 
The average utilization is calculated based on the individual performance of the 

processor. The utilization of the individual processor is given by, 
( ) ( ) spanmax/Ptime_completionPnutilizatio xx =                                                 (2) 

Then dividing the sum of all processors utilization by the total number of 
processors gives the average processor utilization. When the average processor 
utilization is optimized, then the processors being idle for long time are avoided. 

 
Definition 2.3 

 
 The objective function is represented as shown in equation 3.  The objective 

function calculates the average of the total execution time of the set of tasks 
allocated to the processors.   

Objective function= }
m

)P(fitness
max{

m

1i
i∑

=                                                          (3)                                  

where m is the number of processors. 

The objective is the maximization of the equation (3) mentioned. The value 
clearly indicates the optimum schedule along with the balance in the processor 
utilization. 
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3    Particle Swarm Optimization  
PSO is a stochastic optimization technique [17] which operates on the principle of 
social behavior like bird flocking or fish schooling. In a PSO system, a swarm of 
individuals (called particles) fly through the search space. Rui Mendes [18] 
discusses the complete information about the Particle Swarm Optimization. Each 
particle represents a candidate solution to the optimization problem. The position 
of a particle is influenced by the best position visited by itself i.e. its own 
experience and the position of the best particle in its neighborhood i.e. the 
experience of neighboring particles [19]. When the neighborhood of a particle is 
the entire swarm, the best position in the neighborhood is referred to as the global 
best particle, and the resulting algorithm is referred to as the gbest PSO [20]. 
When smaller neighborhoods are used, the algorithm is generally referred to as 
the lbest PSO. The performance of each particle is measured using a fitness 
function that varies depending on the optimization problem [21]. 

Each particle in the swarm is represented by the following characteristics: xid: 
The current position of the particle; vid: The current velocity of the particle; pid: 
The personal best position of the particle. The personal best position of particle i 
is the best position visited by particle i so far. There are two versions for keeping 
the neighbors’ best vector, namely lbest and gbest [22].  In the local version, each 
particle keeps track of the best vector lbest attained by its local topological 
neighborhood of particles. For the global version, the best vector gbest is 
determined by all particles in the entire swarm. Hence, the gbest model is a 
special case of the lbest model. The equations (4) and (5) are used for the velocity 
updation and the position updation. 

vid = w vid + c1rand()(pid - xid) + c2Rand()(pgd - xid)                                                  (4)        

xid = xid + vid                                                                                             (5) 
where c1 and c2 are the cognitive coefficients and rand() and Rand() are random 

real numbers drawn from U (0, 1). Several topologies exist in literature for the 
particles to communicate with one another. The topologies are ring, star, pyramid 
and master-slave topologies [23]. The star topology is adopted where each particle 
communicates with every other particle in the population to achieve the optimal 
solution. Among the topologies, the star is the best topology .The inertia w is used 
to achieve a balance in the exploration and exploitation of the search space. The 
inertia dynamically reduces during a run which facilitates a balance in the 
exploration and exploitation of the search space. 

4     Proposed Methodology 
This section discusses the proposed dynamic task scheduling using Particle 
Swarm Optimization. Table 1 shows an illustrative example where each row 
represents the particles which correspond to a task assignment that assigns five 
tasks to three processors, and [Particle 3, T4] =P1 means that, in particle 3, the 
task 4 is assigned to Processor 1. 
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Table 1 A PSO Particle Representation 

 

 

 

 

The Algorithm used is for the dynamic task scheduling is as follows: The particles 
are generated based on the number of processors used, number of tasks that have 
arrived at a particular point of time and the population size specified. Initially the 
particles are generated at random and the fitness is calculated which decides the 
goodness of the schedule. The pbest and gbest values are calculated. Then the 
velocity updation and the position updation are done. The same procedure is 
repeated for the maximum number of iterations specified. The global solution 
which is the optimal solution is obtained. When a new task arrives, it is compared 
with the tasks that are in the waiting queue and a new schedule is obtained. Thus 
the sequence keeps on changing with time based on the arrival of new tasks. 

Each particle corresponds to a candidate solution of the underlying problem. 
Thus, each particle represents a decision for task assignment using a vector of r 
elements, and each element is an integer value between 1 to n. The algorithm 
terminates when the maximum number of iterations is reached. The near optimal 
solution is thus obtained using Particle Swarm Optimization. 

4.1 Dynamic Task Scheduling using Genetic Algorithm 
Holland proposed Genetic Algorithm (GA) as a heuristic method based on 
“Survival of the fittest”. GA was discovered as a useful tool for search and 
optimization problem. GA handles a population of possible solutions. Each 
solution is called a chromosome. The selection of chromosomes is done by 
evaluating the fitness function. The procedure for dynamic task scheduling using 
Genetic Algorithm is as follows, 

1. Generate an initial population of chromosomes randomly. 
2. Evaluate the fitness of each chromosome in the population 
3. Create a new population by repeating the following steps until the new 

population is complete, 
 Selection 

Select two parent chromosomes from a population according to 
their fitness. (The better the fitness, the higher is the chance for 
getting selected). 

 Crossover 
With a crossover probability, do cross over operations on the 
parents to form a new offspring. If no crossover is performed, 
offspring is the exact copy of the parents. 

 T1 T2 T3 T4 T5 
particle 1 P3 P2 P1 P2 P2 
particle 2 P1 P2 P3 P1 P1 
particle 3 P1 P3 P2 P1 P2 
particle 4 P2 P1 P2 P3 P1 
particle 5 P2 P2 P1 P3 P1 
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 Mutation 
With a mutation probability, mutate new offspring at each locus 
(position in chromosome) 

 Acceptance 
Place the new offspring in the new population. 

4. Using the newly generated population for a further sum of the 
algorithm. 

5. If the test condition is satisfied, stop and return the best solution in the 
current population. 

6. Repeat Step 3 until the target is met. 
7. Finally obtain the optimal solution. 
The dynamic task scheduling using Genetic Algorithm is done to compare 
its performance with the PSO and its variants.   

4.2   Scheduling using PSO with fixed (PSO-fi) and variable inertia 
(PSO-vi) 

The inertia weight, w controls the momentum of the particle in equation (4). The 
inertia used is the dynamically varying inertia which decreases gradually during 
the long run. The equation used for implementing varying inertia is, 

iter
iter

ww
 -ww

max

minmax
 max ×

−
=                                                         (6) 

where minw  = 0.4 and maxw  = 0.9, maxiter  is the maximum number of iteration 
specified and iter  is the current iteration in progress. The inertia weight is 
introduced in equation (4) to balance between the global and local search abilities. 
The large inertia weight facilitates global search while the small inertia weight 
facilitates local search. The introduction of the inertia weight also eliminates the 
requirement of carefully setting the maximum velocity. Two versions of PSO 
algorithm were carried out namely PSO with fixed inertia and PSO with varying 
inertia. In PSO with fixed inertia, the inertia value is fixed to a constant value of 
0.8 during the whole run of the algorithm. Another version was the PSO with 
dynamically reducing inertia in which the inertia decreases from a maximum 
value of 0.9 to a minimum value of 0.4 [17] during the whole run of the algorithm. 
A significant cost reduction is achieved in variable inertia than with the fixed 
inertia.  

4.3  Scheduling using PSO with Elitism (EPSO) 
 Elitism is the process of selecting the better individuals, or more to the point, 
selecting individual with a bias towards the better ones. Elitism is important since 
it allows the solutions to get better over time. The best particle in PSO is copied to 
the population in the next generation. The rest are chosen in the classical way. 
Elitism can very rapidly increase performance of PSO, because it prevents losing 
the best found solution to date.  A variation is to eliminate an equal number of the 
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worst solutions, i.e. for each "best particle” carried over a "worst particle” is 
deleted. 

 In this method, the strategy of replacing the worst string of the new 
population with the best string of the current population is adopted. Particle 
Swarm Optimization Algorithms with this strategy are referred as Elitism Particle 
Swarm Optimization Algorithm or EPSO. The basic steps in an EPSO are 
described as follows: 

1. Generate an initial population P of size M and calculate the fitness of 
each particle S of P using the objective function. 

2. Find the best particle pbest of P. If the best particles are not unique, then 
call anyone of the best particle in P as pbest. 

3. Perform the velocity updation and the position updation on the particles 
in the mating pool according to the PSO equation given in (4) and (5) and obtain a 
population Ptmp. 

4. Compare the fitness of each particle S of Ptmp with pbest. Replace the 
worst particle of Ptmp with pbest if the fitness of each particle in Ptmp is less than 
the fitness of pbest. Otherwise no replacement takes place in Ptmp. Rename Ptmp 
as P. 

5. Go to step 3. 
A significant improvement in the result is obtained when EPSO is used. Repeat 
the steps until the maximum number of iterations is specified. 

 

4.4  Dynamic Task Scheduling using Hybrid PSO 
Modern meta-heuristics manage to combine exploration and exploitation search. 
The exploration search seeks for new regions, and once it finds a good region, the 
exploitation search kicks in. However, since the two strategies are usually inter-
wound, the search may be conducted to other regions before it reaches the local 
optima. As a result, many researchers suggest employing a hybrid strategy, which 
embeds a local optimizer in between the iterations of the meta-heuristics.  Hybrid 
PSO was proposed in [24] which makes use of PSO and the Hill Climbing 
technique and the author has claimed that the hybridization yields a better result 
than normal PSO. This paper uses the hybridization of PSO and the Simulated 
Annealing Algorithm. 

PSO is a stochastic optimization technique which operates on the principle of 
social behavior like bird flocking or fish schooling. PSO has a strong ability to 
find the most optimistic result. The PSO technique can be combined with some 
other evolutionary optimization technique to yield an even better performance. 
Simulated Annealing is a kind of global optimization technique based on 
annealing of metal. It can find the global optimum using stochastic search 
technology from the means of probability. Simulated Annealing (SA) algorithm 
has a strong ability to find the local optimistic result. And it can avoid the problem 
of local optimum, but its ability of finding the global optimistic result is weak. 
Hence it can be used with other techniques like PSO to yield a better result than 
used alone. 

The HPSO shown in Fig 1  is an optimization algorithm combining the PSO 
with the SA. PSO has a strong ability in finding the most optimistic result. 
Meanwhile, at times it has a disadvantage of local optimum. SA has a strong 
ability in finding a local optimistic result, but its ability in finding the global 
optimistic result is weak. Combining PSO and SA leads to the combined effect of 



 
P Visalakshi and S N Sivanandam                                                                    482 
 

the good global search algorithm and the good local search algorithm, which 
yields a promising result. 

The embedded simulated annealing heuristic proceeds as follows. Given a 
particle vector, its r elements are sequentially examined for updating. The value of 
the examined element is replaced, in turn, by each integer value from 1 to n, and 
retains the best one that attains the highest fitness value among them. While an 
element is examined, the values of the remaining r -1 elements remain unchanged. 
A neighbor of the new particle is selected. The fitness values for the new particle 
and its neighbor are found. They are compared and the minimum value is selected. 
This minimum value is assigned to the personal best of this particle. The heuristic 
is terminated if all the elements of the particle have been examined for updating  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 1 Hybrid PSO for dynamic task scheduling 
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Generate the initial Swarm  

Evaluate the initial Swarm using the 
fitness function

Initialize the personal best of each particle  
and the global best of the entire swarm 
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Evaluate new particles positions 
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new personal best and global best 
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and all the particles are examined. The computation for the fitness value due to 
the element updating can be maximized. The procedure for Hybrid PSO is as 
follows, 
1. Generate the initial swarm. 
2. Initialize the personal best of each particle and the global best of the entire 

swarm. 
3. Evaluate the initial swam using the fitness function. 
4. Select the personal best and global best of the swarm 
5. Update the velocity and the position of each particle using the equations   

(4 ) and (5 ). 
6. Obtain the optimal solution in the initial stage. 
7. Apply Simulated Annealing algorithm to further refine the solution. 
8. Repeat step 3- step 7 until the maximum number of iterations specified. 
9. Obtain the optimal solution at the end. 

5    Evaluation and Experimental Results 
An effective scheduling algorithm has been developed to schedule the tasks onto 
processors in a distributed computing system using PSO and its variants. The 
scheduling algorithm has been implemented and applied to benchmark data from 
the etaillard and a number of different experiments have also been performed to 
demonstrate the effectiveness of the scheduling algorithm. For these experiments 
each task was assumed to have a fixed arrival time and execution time. All the 
scheduling algorithms were presented with the same set of tasks for scheduling 
and all schedulers have the same information available to them.  

 Performance of the PSO method and its variants with varying 
Population Sizes  
Dynamic task scheduling is performed in the global scheduler using Particle 
Swarm Optimization. Each possible solution is represented as the particle. It 
represents the order in which the tasks are to be executed for a particular 
processor. This paper involves 20 processors and 50 jobs. The experimental data 
has been taken from the etaillard benchmark. During the experiment period, the 
maximum number of iteration was set to 100. The results are compared for 
varying population size, where the size ranges from 10 to 250. 

 
 Table 2 and Fig 2 gives a comparative analysis of the performance of the global 

scheduler implemented using PSO algorithm and its variants for varying 
population sizes. PSO with fixed inertia, PSO with dynamically varying inertia, 
PSO with Elitism (EPSO) and Hybrid PSO (HPSO) are considered. The results of 
PSO and its variants are also compared with Genetic Algorithm (GA). From the 
results it can be inferred that the PSO with varying inertia performs better than 
fixed inertia because there is a balance in exploitation and exploration in search 
space when the inertia is varied. The result for fixed inertia is 4.6894 in fixed 
inertia where as it is 4.7392 for variable inertia for a population size of 250.  
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Table 2 PSO and its variants for varying population sizes 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2Cost for HPSO and its variants for varying population sizes 
 
From Table 2 and fig 2, it can be inferred that the HPSO outperforms all other 
PSO variants and GA because of the balance in the exploitation and exploration of 
the search space.Thus a cost of 4.8002 is obtained for HPSO which is 
comparatively better than the other methods tested. 

 Performance of the PSO method and its variants  for  Varying 
Number of Iterations 

 The results of PSO and its variants are compared for varying number of iterations 
which varies from 10 to 250 in Table 3 and Figure 3 

 
 
 

Particle 
Size 

GA PSO-fi PSO-vi EPSO HPSO 

10 4.4812 4.5702 4.5826 4.5826 4.6078 

20 4.5001 4.5826 4.6312 4.6894 4.6851 

50 4.5521 4.5826 4.6312 4.7392 4.6954 

100 4.5864 4.6312 4.6894 4.7392 4.7681 

250 4.6012 4.6894 4.7392 4.7392 4.8002 
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Table 3 PSO and its variants for varying number of iterations 
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Fig 3 Cost for HPSO and its variants for varying number of iterations 

From Table 3and Fig 3, it can be inferred that the HPSO outperforms all other 
methodologies tested. Thus the load balancing is better in HPSO than other 
methods. 

6     Conclusion and Future work 
The objective of this paper is to dynamically schedule the tasks in a 
heterogeneous environment. The tasks are independent and non-preemptive in 
nature. PSO is chosen as the optimization technique because it has enormous 
advantages when compared to other heuristic optimization techniques. Different 
approaches for solving the dynamic task scheduling using PSO has been tried 
namely PSO with fixed inertia, PSO with variable inertia, PSO with elitism,  and 
Hybrid PSO. The experimental results show that the Hybrid PSO is cost effective 
when compared to other variants of PSO. The PSO results are also compared with 
Genetic Algorithm which is another popular heuristic technique. The results show 
that the PSO and its variants perform better than the GA. The future work can 

Iterations GA PSO-fi PSO-vi EPSO HPSO 

10 4.267 4.32 4.4647 4.4647 4.6255 

20 4.28 4.3761 4.535 4.6023 4.6193 

50 4.3761 4.4134 4.6023 4.6193 4.7324 

100 4.4134 4.4647 4.6352 4.6833 4.818 

200 4.483 4.4985 4.6635 4.6833 4.8196 

250 4.5122 4.535 4.6833 4.6833 4.8113 
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involve scheduling tasks which are dependent and pre-emptive in nature. Other 
hybridization techniques can also be used with PSO to achieve a better result. 

 

7    Open Problem 
  
Active research is going on in the optimization of the multiprocessor scheduling using 
various techniques. The traditional methods are often time consuming and do not 
provide exact solutions. Lots of work is being undertaken to solve the problem 
using heuristic approaches. There are open problems of the nature of the tasks 
involved. We have considered only non-preemptive tasks which are dynamic in 
nature. The future work could deal with preemptive task scheduling. The 
parameters in PSO applied for dynamic task scheduling may also be analyzed and 
updated to achieve an even better performance. 
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