An Iterative Algorithm for Two Asymptotically Pseudocontractive Mappings

Arif Rafiq¹, Ana Maria Acu², Florin Sofonea²

Abstract

Let K be a nonempty closed convex subset of a real Banach space $E, T_i: K \to K, i=1,2$ be two uniformly L-Lipschitzian asymptotically pseudocontractive mappings with sequence $\{k_n\}_{n\geq 0} \subset [1,\infty), \ \sum_{n\geq 0} (k_n-1) < \infty \ \text{such that} \ F(T_1) \cap F(T_2) \neq \varphi, \ \text{where}$

 $F(T_i)$ is the set of fixed points of T_i in K and p be a point in $F(T_1) \cap F(T_2)$. Let $\{\alpha_n\}_{n \geq 0}, \{\beta_n\}_{n \geq 0} \subset [0,1]$ be two sequences such that $\sum_{n \geq 0} \alpha_n = \infty$ and $\lim_{n \to \infty} \alpha_n = 0 = \lim_{n \to \infty} \beta_n$. For arbitrary $x_0 \in K$,

let $\{x_n\}_{n\geq 0}$ be a sequence iteratively defined by

$$x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T_1^n y_n,$$

 $y_n = (1 - \beta_n) x_n + \beta_n T_2^n x_n, n \ge 0.$

Suppose there exists a strictly increasing function $\phi:[0,\infty)\to [0,\infty),\ \phi(0)=0$ such that

$$\langle T_i^n x - p, j(x - p) \rangle \le k_n ||x - p||^2 - \phi(||x - p||), \, \forall x \in K, \, i = 1, 2.$$

Then $\{x_n\}_{n\geq 0}$ converges strongly to $p\in F(T_1)\cap F(T_2)$. The results proved in this paper significantly improve the results of Chang et al. [1].

Keywords: Modified Mann iterative scheme, Uniformly L-Lipschitzian mappings, Asymptotically pseudocontractive mappings, Banach spaces

1 Introduction

Let E be a real normed space and K be a nonempty convex subset of E. Let J denote the normalized duality mapping from E to 2^{E^*} defined by

$$J(x) = \{ f^* \in E^* : \langle x, f^* \rangle = ||x||^2 \text{ and } ||f^*|| = ||x|| \},$$

where E^* denotes the dual space of E and $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. We shall denote the single-valued duality mapping by j.

Let $T: D(T) \subset E \to E$ be a mapping with domain D(T) in E.

Definition 1.1 The mapping T is said to be uniformly L-Lipschitzian if there exists L > 0 such that for all $x, y \in D(T)$

$$||T^n x - T^n y|| \le L ||x - y||.$$

Definition 1.2 T is said to be nonexpansive if for all $x, y \in D(T)$, the following inequality holds:

$$||Tx - Ty|| \le ||x - y||$$
 for all $x, y \in D(T)$.

Definition 1.3 T is said to be asymptotically nonexpansive [6], if there exists a sequence $\{k_n\} \subset [1,\infty)$ with $\sum_{n\geq 0} (k_n-1) < \infty$ such that

$$||T^n x - T^n y|| \le k_n ||x - y|| \text{ for all } x, y \in D(T), n \ge 1.$$

Definition 1.4 T is said to be asymptotically pseudocontractive if there exists a sequence $\{k_n\} \subset [1,\infty)$ with $\sum_{n\geq 0} (k_n-1) < \infty$ and there exists $j(x-y) \in J(x-y)$ such that

$$\langle T^n x - T^n y, j(x - y) \rangle \le k_n ||x - y||^2 \text{ for all } x, y \in D(T), n \ge 1.$$

Remark 1.5 1. It is easy to see that every asymptotically nonexpansive mapping is uniformly L-Lipschitzian.

2. If T is asymptotically nonexpansive mapping then for all $x, y \in D(T)$ there exists $j(x-y) \in J(x-y)$ such that

$$\langle T^{n}x - T^{n}y, j(x - y) \rangle \le ||T^{n}x - T^{n}y|| ||x - y||$$

 $\le k_{n} ||x - y||^{2}, n \ge 1.$

Hence every asymptotically nonexpansive mapping is asymptotically pseudocontractive.

3. Rhoades in [11] showed that the class of asymptotically pseudocontractive mappings properly contains the class of asymptotically nonexpansive mappings.

The asymptotically pseudocontractive mappings were introduced by Schu [12] who proved the following theorem:

Theorem 1.6 Let K be a nonempty bounded closed convex subset of a Hilbert space $H, T: K \to K$ a completely continuous, uniformly L-Lipschitzian and asymptotically pseudocontractive with sequence $\{k_n\} \subset [1, \infty)$; $q_n = 2k_n - 1$, $\forall n \in N$; $\sum (q_n^2 - 1) < \infty$; $\{\alpha_n\}, \{\beta_n\} \subset [0, 1]$; $\epsilon < \alpha_n < \beta_n \le b$, $\forall n \in N$, and some $\epsilon > 0$ and some $b \in (0, L^{-2}[(1 + L^2)^{\frac{1}{2}} - 1])$; $x_1 \in K$ for all $n \in N$, define

$$x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T^n x_n.$$

Then $\{x_n\}$ converges to some fixed point of T.

The recursion formula of Theorem 1.6 is a modification of the well-known Mann iteration process (see [9]).

Recently, Chang [1] extended Theorem 1.6 to real uniformly smooth Banach space. In fact, he proved the following theorem:

Theorem 1.7 Let K be a nonempty bounded closed convex subset of a real uniformly smooth Banach space $E, T: K \to K$ an asymptotically pseudocontractive mapping with sequence $\{k_n\} \subset [1, \infty), \lim_{n \to \infty} k_n = 1, \text{ and } x^* \in F(T) = \{x \in K: Tx = x\}.$ Let $\{\alpha_n\} \subset [0, 1]$ satisfying the following conditions: $\lim_{n \to \infty} \alpha_n = 0, \sum \alpha_n = \infty$. For arbitrary $x_0 \in K$ let $\{x_n\}$ be iteratively defined by

$$x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T^n x_n, \ n \ge 0.$$

If there exists a strictly increasing function $\phi:[0,\infty)\to[0,\infty),\ \phi(0)=0$ such that

$$\langle T^n x - x^*, j(x - x^*) \rangle \le k_n ||x - x^*||^2 - \phi(||x - x^*||), \, \forall n \in \mathbb{N},$$

then $x_n \to x^* \in F(T)$.

Remark 1.8 Theorem 1.7, as stated is a modification of Theorem 2.4 of Chang [1] who actually included error terms in his algorithm.

In [10], E. U. Ofoedu proved the following results.

Theorem 1.9 Let K be a nonempty closed convex subset of a real Banach space $E, T: K \to K$ a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with sequence $\{k_n\}_{n\geq 0} \subset [1,\infty), \lim_{n\to\infty} k_n = 1$ such that $x^* \in F(T) = \{x \in K: Tx = x\}$. Let $\{\alpha_n\}_{n\geq 0} \subset [0,1]$ be a sequence such that

 $\sum_{n\geq 0} \alpha_n = \infty, \sum_{n\geq 0} \alpha_n^2 < \infty \text{ and } \sum_{n\geq 0} \alpha_n(k_n-1) < \infty. \text{ For arbitrary } x_0 \in K \text{ let } \{x_n\}_{n\geq 0} \text{ be a sequence iteratively defined by}$

$$x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T^n x_n, n \ge 0.$$

Suppose there exists a strictly increasing function $\phi:[0,\infty)\to[0,\infty), \phi(0)=0$ such that

$$\langle T^n x - x^*, j(x - x^*) \rangle \le k_n ||x - x^*||^2 - \phi(||x - x^*||), \forall x \in K.$$

Then $\{x_n\}_{n\geq 0}$ is bounded.

Theorem 1.10 Let K be a nonempty closed convex subset of a real Banach space $E, T: K \to K$ a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with sequence $\{k_n\}_{n\geq 0} \subset [1,\infty)$, $\lim_{n\to\infty} k_n = 1$ such that $x^* \in F(T) = \{x \in K: Tx = x\}$. Let $\{\alpha_n\}_{n\geq 0} \subset [0,1]$ be be a sequence such that $\sum_{n\geq 0} \alpha_n = \infty$, $\sum_{n\geq 0} \alpha_n^2 < \infty$ and $\sum_{n\geq 0} \alpha_n(k_n - 1) < \infty$. For arbitrary $x_0 \in K$ let $\{x_n\}_{n\geq 0}$ be a sequence iteratively defined by

$$x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T^n x_n, n \ge 0.$$

Suppose there exists a strictly increasing function $\phi:[0,\infty)\to[0,\infty),\,\phi(0)=0$ such that

$$\langle T^n x - x^*, j(x - x^*) \rangle \le k_n ||x - x^*||^2 - \phi(||x - x^*||), \forall x \in K.$$

Then $\{x_n\}_{n\geq 0}$ converges strongly to $x^* \in F(T)$.

Theorem 1.11 Let K be a nonempty closed convex subset of a real Banach space $E, T: K \to K$ a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with sequence $\{k_n\}_{n\geq 0} \subset [1,\infty), \lim_{n\to\infty} k_n = 1$ such that $x^* \in F(T) = \{x \in K: Tx = x\}$. Let $\{a_n\}_{n\geq 0}, \{b_n\}_{n\geq 0}, \{c_n\}_{n\geq 0}$ be real sequences in [0,1] satisfying the following conditions:

- i) $a_n + b_n + c_n = 1$;
- ii) $\sum_{n>0} (b_n + c_n) = \infty;$
- iii) $\sum_{n\geq 0} (b_n + c_n)^2 < \infty;$
- iv) $\sum_{n>0} (b_n + c_n)(k_n 1) < \infty$; and

$$\mathbf{v}) \sum_{n>0} c_n < \infty.$$

For arbitrary $x_0 \in K$ let $\{x_n\}_{n\geq 0}$ be iteratively defined by

$$x_{n+1} = a_n x_n + b_n T^n x_n + c_n u_n, \ n \ge 0,$$

where $\{u_n\}_{n\geq 0}$ is a bounded sequence of error terms in K. Suppose there exists a strictly increasing function $\phi: [0, \infty) \to [0, \infty), \ \phi(0) = 0$ such that

$$\langle T^n x - x^*, j(x - x^*) \rangle < k_n ||x - x^*||^2 - \phi(||x - x^*||), \forall x \in K.$$

Then $\{x_n\}_{n\geq 0}$ converges strongly to $x^* \in F(T)$.

In [1], Chang et al., proved the following results.

Theorem 1.12 Let K be a nonempty closed convex subset of a real Banach space $E, T_i : K \to K, i = 1, 2$ be two uniformly L-Lipschitzian asymptotically pseudocontractive mappings with sequence $\{k_n\}_{n\geq 0} \subset [1,\infty), \lim_{n\to\infty} k_n = 1$ such that $F(T_1) \cap F(T_2) \neq \varphi$, where $F(T_i)$ is the set of fixed points of T_i in K and p be a point in $F(T_1) \cap F(T_2)$. Let $\{\alpha_n\}_{n\geq 0}, \{\beta_n\}_{n\geq 0} \subset [0,1]$ be two sequences such that $\sum_{n\geq 0} \alpha_n = \infty, \sum_{n\geq 0} \alpha_n^2 < \infty, \sum_{n\geq 0} \beta_n < \infty$ and $\sum_{n\geq 0} \alpha_n(k_n-1) < \infty$. For arbitrary $x_0 \in K$, let $\{x_n\}_{n\geq 0}$ be be a sequence iteratively defined by

$$x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T_1^n y_n, y_n = (1 - \beta_n) x_n + \beta_n T_2^n x_n, n \ge 0.$$

Suppose there exists a strictly increasing function $\phi:[0,\infty)\to[0,\infty), \phi(0)=0$ such that

$$\langle T_i^n x - p, j(x - p) \rangle \le k_n ||x - p||^2 - \phi(||x - p||), \, \forall x \in K, \, i = 1, 2.$$

Then $\{x_n\}_{n\geq 0}$ converges strongly to $p\in F(T_1)\cap F(T_2)$.

In this paper our purpose is to improve the results of Chang et al. [1] in a significantly more general context by removing the conditions $\sum_{n\geq 0} \alpha_n^2 < \infty$ and $\sum_{n\geq 0} \alpha_n(k_n-1) < \infty$ from the Theorem 1.12.

2 Main Results

The following lemmas are now well known.

Lemma 2.1 Let $J: E \to 2^E$ be the normalized duality mapping. Then for any $x, y \in E$, we have

$$||x+y||^2 \le ||x||^2 + 2\langle y, j(x+y)\rangle, \quad \forall j(x+y) \in J(x+y).$$

Suppose there exists a strictly increasing function $\phi:[0,\infty)\to[0,\infty)$ with $\phi(0)=0$.

Lemma 2.2 Let $\{\theta_n\}$ be a sequence of nonnegative real numbers, $\{\lambda_n\}$ be a real sequence satisfying

$$0 \le \lambda_n \le 1, \ \sum_{n=0}^{\infty} \lambda_n = \infty$$

and let $\phi \in \Phi$. If there exists a positive integer n_0 such that

$$\theta_{n+1}^2 \le \theta_n^2 - \lambda_n \phi(\theta_{n+1}) + \sigma_n,$$

for all $n \geq n_0$, with $\sigma_n \geq 0$, $\forall n \in \mathbb{N}$, and $\sigma_n = 0(\lambda_n)$, then $\lim_{n \to \infty} \theta_n = 0$.

Theorem 2.3 Let K be a nonempty closed convex subset of a real Banach space $E, T_i : K \to K, i = 1, 2$ be two uniformly L-Lipschitzian asymptotically pseudocontractive mappings with sequence $\{k_n\}_{n\geq 0} \subset [1,\infty), \sum_{n\geq 0} (k_n-1) < \infty$ such that $F(T_1) \cap F(T_2) \neq \varphi$, where $F(T_i)$ is the set of fixed points of T_i in K and p be a point in $F(T_1) \cap F(T_2)$. Let $\{\alpha_n\}_{n\geq 0}, \{\beta_n\}_{n\geq 0} \subset [0,1]$ be two sequences such that $\sum_{n\geq 0} \alpha_n = \infty$ and $\lim_{n\to\infty} \alpha_n = 0 = \lim_{n\to\infty} \beta_n$. For arbitrary $x_0 \in K$, let $\{x_n\}_{n\geq 0}$ be a sequence iteratively defined by

$$x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T_1^n y_n,$$

$$y_n = (1 - \beta_n) x_n + \beta_n T_2^n x_n, n \ge 0.$$
 (1)

Suppose there exists a strictly increasing function $\phi:[0,\infty)\to[0,\infty),\,\phi(0)=0$ such that

$$\langle T_i^n x - p, j(x-p) \rangle \le k_n ||x-p||^2 - \phi(||x-p||), \, \forall x \in K, \, i = 1, 2.$$
 (2)

Then $\{x_n\}_{n\geq 0}$ converges strongly to $p\in F(T_1)\cap F(T_2)$.

Proof. Since T_1 and T_2 are uniformly L-Lipschitzian mappings, so there exists $L_1, L_2 > 0$ such that for all $x, y \in K$,

$$||T_i^n x - T_i^n y|| \le L_i ||x - y||, i = 1, 2.$$

Denote $L = \max\{L_1, L_2\}$, implies

$$||T_i^n x - T_i^n y|| \le L ||x - y||, i = 1, 2.$$

By $\lim_{n\to\infty} \alpha_n = 0 = \lim_{n\to\infty} \beta_n$ and $\lim_{n\to\infty} k_n = 1$, there exists $n_0 \in \mathbf{N}$ such that $\forall n \geq n_0$,

$$\alpha_n \le \min \left\{ \frac{1}{2+3L}, \frac{\phi(2\phi^{-1}(a_0))}{18(1+L)(2+3L)[\phi^{-1}(a_0)]^2} \right\},$$

$$\beta_n \le \min \frac{1}{2} \left\{ \frac{1}{1+L}, \frac{\phi(2\phi^{-1}(a_0))}{18L(1+L)[\phi^{-1}(a_0)]^2} \right\},$$

and

$$k_n - 1 \le \frac{\phi(2\phi^{-1}(a_0))}{54[\phi^{-1}(a_0)]^2}.$$

Define $a_{0,i} := \|x_{n_0} - T_i^{n_0} x_{n_0}\| \|x_{n_0} - p\| + (k_{n_0} - 1) \|x_{n_0} - p\|^2$, i = 1, 2 and $a_0 = \max\{a_{0,1}, a_{0,2}\}$. Then from (2), we obtain that $\|x_{n_0} - p\| \le \phi^{-1}(a_0)$.

CLAIM.
$$||x_n - p|| \le 2\phi^{-1}(a_0) \ \forall n \ge n_0.$$

The proof is by induction. Clearly, the claim holds for $n=n_0$. Suppose it holds for some $n \geq n_0$, i.e., $||x_n-p|| \leq 2\phi^{-1}(a_0)$. We prove that $||x_{n+1}-p|| \leq 2\phi^{-1}(a_0)$. Suppose that this is not true. Then $||x_{n+1}-p|| > 2\phi^{-1}(a_0)$, so that $\phi(||x_{n+1}-p||) > \phi(2\phi^{-1}(a_0))$. Using the recursion formula (1), we have the following estimates

$$||x_n - T_2^n x_n|| \le ||x_n - p|| + ||T_2^n x_n - p||$$

$$\le (1 + L)||x_n - p||$$

$$\le 2(1 + L)\phi^{-1}(a_0),$$

$$||y_n - p|| = ||(1 - \beta_n) x_n + \beta_n T_2^n x_n - p||$$

$$= ||x_n - p - \beta_n (x_n - T_2^n x_n)||$$

$$\leq ||x_n - p|| + \beta_n ||x_n - T_2^n x_n||$$

$$\leq 2\phi^{-1}(a_0) + 2(1 + L)\phi^{-1}(a_0)\beta_n$$

$$\leq 3\phi^{-1}(a_0),$$

$$||x_n - T_1^n y_n|| \le ||x_n - p|| + ||T_1^n y_n - p||$$

$$\le ||x_n - p|| + L||y_n - p||$$

$$\le 2\phi^{-1}(a_0) + 3L\phi^{-1}(a_0)$$

$$= (2 + 3L)\phi^{-1}(a_0),$$

$$||x_{n+1} - p|| = ||(1 - \alpha_n) x_n + \alpha_n T_1^n y_n - p||$$

$$= ||x_n - p - \alpha_n (x_n - T_1^n y_n)||$$

$$\leq ||x_n - p|| + \alpha_n ||x_n - T_1^n y_n||$$

$$\leq 2\phi^{-1}(a_0) + (2 + 3L)\phi^{-1}(a_0)\alpha_n$$

$$\leq 3\phi^{-1}(a_0).$$
(3)

With these estimates and again using the recursion formula (1), we obtain by Lemma 2.1 that

$$||x_{n+1} - p||^{2} = ||(1 - \alpha_{n}) x_{n} + \alpha_{n} T_{1}^{n} y_{n} - p||^{2}$$

$$= ||x_{n} - p - \alpha_{n} (x_{n} - T_{1}^{n} y_{n})||^{2}$$

$$\leq ||x_{n} - p||^{2} - 2\alpha_{n} \langle x_{n} - T_{1}^{n} y_{n}, j(x_{n+1} - p) \rangle$$

$$= ||x_{n} - p||^{2} + 2\alpha_{n} \langle T_{1}^{n} x_{n+1} - p, j(x_{n+1} - p) \rangle$$

$$-2\alpha_{n} \langle x_{n+1} - p, j(x_{n+1} - p) \rangle$$

$$+2\alpha_{n} \langle T_{1}^{n} y_{n} - T_{1}^{n} x_{n+1}, j(x_{n+1} - p) \rangle$$

$$+2\alpha_{n} \langle x_{n+1} - x_{n}, j(x_{n+1} - p) \rangle$$

$$\leq ||x_{n} - p||^{2} + 2\alpha_{n} \left(k_{n} ||x_{n+1} - p||^{2} - \phi(||x_{n+1} - p||) \right)$$

$$-2\alpha_{n} ||x_{n+1} - p||^{2} + 2\alpha_{n} ||T_{1}^{n} y_{n} - T_{1}^{n} x_{n+1}||||x_{n+1} - p||$$

$$+2\alpha_{n} ||x_{n+1} - x_{n}||||x_{n+1} - p||$$

$$\leq ||x_{n} - p||^{2} + 2\alpha_{n} (k_{n} - 1)||x_{n+1} - p||^{2} - 2\alpha_{n} \phi(||x_{n+1} - p||)$$

$$+2\alpha_{n} L ||y_{n} - x_{n+1}||||x_{n+1} - p||$$

$$+2\alpha_{n} ||x_{n+1} - x_{n}||||x_{n+1} - p||,$$

$$(4)$$

where

$$||y_{n} - x_{n+1}|| \leq ||y_{n} - x_{n}|| + ||x_{n+1} - x_{n}||$$

$$= \beta_{n} ||x_{n} - T_{2}^{n} x_{n}|| + \alpha_{n} ||x_{n} - T_{1}^{n} y_{n}||$$

$$\leq 2(1 + L)\phi^{-1}(a_{0})\beta_{n} + (2 + 3L)\phi^{-1}(a_{0})\alpha_{n}.$$
 (5)

Substituting (5) in (4), we get

$$||x_{n+1} - p||^{2} \leq ||x_{n} - p||^{2} - 2\alpha_{n}\phi(||x_{n+1} - p||) + 2\alpha_{n}(k_{n} - 1)||x_{n+1} - p||^{2} + 4L(1 + L)\phi^{-1}(a_{0})\alpha_{n}\beta_{n}||x_{n+1} - p|| + 2(1 + L)(2 + 3L)\phi^{-1}(a_{0})\alpha_{n}^{2}||x_{n+1} - p|| \leq ||x_{n} - p||^{2} - 2\alpha_{n}\phi(2\phi^{-1}(a_{0})) + 18\left[\phi^{-1}(a_{0})\right]^{2}\alpha_{n}(k_{n} - 1)$$
(6)

$$+12L(1+L)\left[\phi^{-1}(a_0)\right]^2 \alpha_n \beta_n$$

$$+6(1+L)(2+3L)\left[\phi^{-1}(a_0)\right]^2 \alpha_n^2$$

$$\leq \|x_n - p\|^2 - 2\alpha_n \phi(2\phi^{-1}(a_0)) + \alpha_n \phi(2\phi^{-1}(a_0))$$

$$= \|x_n - p\|^2 - \alpha_n \phi(2\phi^{-1}(a_0)).$$

Thus

$$\alpha_n \phi(2\phi^{-1}(a_0)) \le ||x_n - p||^2 - ||x_{n+1} - p||^2,$$

implies

$$\phi(2\phi^{-1}(a_0)) \sum_{n=n_0}^{j} \alpha_n \leq \sum_{n=n_0}^{j} (\|x_n - p\|^2 - \|x_{n+1} - p\|^2)$$
$$= \|x_{n_0} - p\|^2,$$

so that as $j \to \infty$ we have

$$\phi(2\phi^{-1}(a_0))\sum_{n=n_0}^{\infty}\alpha_n \le ||x_{n_0} - p||^2 < \infty,$$

which implies that $\sum \alpha_n < \infty$, a contradiction. Hence, $||x_{n+1} - p|| \le 2\phi^{-1}(a_0)$; thus $\{x_n\}$ is bounded.

Now from (6), we get

$$||x_{n+1} - p||^{2} \leq ||x_{n} - p||^{2} - 2\alpha_{n}\phi(||x_{n+1} - p||) +8 \left[\phi^{-1}(a_{0})\right]^{2} \alpha_{n}(k_{n} - 1) +8L(1 + L) \left[\phi^{-1}(a_{0})\right]^{2} \alpha_{n}\beta_{n} +4(1 + L)(2 + 3L) \left[\phi^{-1}(a_{0})\right]^{2} \alpha_{n}^{2} = ||x_{n} - p||^{2} - 2\alpha_{n}\phi(||x_{n+1} - p||) +4 \left[\phi^{-1}(a_{0})\right]^{2} \left[2(k_{n} - 1) + (1 + L)[2L\beta_{n} + (2 + 3L)\alpha_{n}]\right] \alpha_{n}.$$

$$(7)$$

Denote

$$\theta_n = ||x_n - p||,$$

$$\lambda_n = 2\alpha_n,$$

$$\sigma_n = 4 \left[\phi^{-1}(a_0)\right]^2 \left[2(k_n - 1) + (1 + L)[2L\beta_n + (2 + 3L)\alpha_n]\right] \alpha_n.$$

Condition $\lim_{n\to\infty} \alpha_n = 0$ ensures the existence of a rank $n_0 \in \mathbb{N}$ such that $\lambda_n = 2\alpha_n \le 1$, for all $n \ge n_0$. Now with the help of $\sum_{n\ge 0} \alpha_n = \infty$, $\lim_{n\to\infty} \alpha_n = 0 = \infty$

 $\lim_{n\to\infty}\beta_n$, $\lim_{n\to\infty}k_n=1$ and Lemma 2.2, we obtain from (7) that

$$\lim_{n \to \infty} ||x_n - p|| = 0,$$

completing the proof.

Remark 2.4 1. Let $\alpha_n = \frac{1}{n^{\sigma}}$; $0 < \sigma < \frac{1}{2}$, then $\sum \alpha_n = \infty$, but also $\sum \alpha_n^2 = \infty$. Hence the results of Theorems 1.9-1.10 are not true in general. 2. The same argument can be applied for the results of Chang et al. [1] and of Chidume and Chidume [5].

Open Problem 3

We propose that the results of Theorem 2.3 to be extended for the case of three mappings.

References

- et al., Some results for uniformly L-Lipschitzian [1] S. S. Chang Banach Applied *Mathematics* mappings in spaces, Letters,doi:10.1016/j.aml.2008.02.016.
- [2] C. E. Chidume, Iterative algorithm for nonexpansive mappings and some of their generalizations, Nonlinear Anal. (to V. Lakshmikantham on his 80th birthday) 1,2 (2003) 383–429.
- [3] C. E. Chidume, Geometric properties of Banach spaces and nonlinear iterations, in press.
- [4] C. E. Chidume, C. O. Chidume, Convergence theorem for zeros of generalized Lipschitz generalized phi-quasiaccretive operators, Proc. Amer. Math. Soc., in press.
- [5] C. E. Chidume, C. O. Chidume, Convergence theorem for fixed points of uniformly continuous generalized phihemicontractive mappings, J. Math. Anal. Appl. 303 (2005) 545-554.
- [6] K. Goebel, W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972) 171–174.
- [7] S. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc. 44 (1974) 147–150.

- [8] L. S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, *J. Math. Anal. Appl.* 1945 (1995) 114–125.
- [9] W. R. Mann, Mean value methods in iteration, *Proc. Amer. Math. Soc.* 4 (1953) 506–510.
- [10] E. U. Ofoedu, Strong convergence theorem for uniformly L-Lipschitzian asymptotically pseudocontractive mapping in real Banach space, *J. Math. Anal. Appl.* 321 (2006), 722-728.
- [11] B. E. Rhoades, A comparison of various definition of contractive mappings, *Trans. Amer. Math. Soc.* 226 (1977) 257–290.
- [12] J. Schu, Iterative construction of fixed point of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158 (1991) 407–413.
- [13] Y. Xu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive operator equations, *J. Math. Anal. Appl.* 224 (1998) 98–101.