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Abstract

Let K be a nonempty closed convex subset of a real Banach
space E, T; : K — K, i = 1,2 be two uniformly L-Lipschitzian
asymptotically pseudocontractive mappings with sequence {ky},>0
C [1,00), Z(k” — 1) < oo such that F(T1) N F(1Tz) # ¢, where

n>0

F(T;) is the set of fized points of T, in K and p be a point in
F(Th)NF(Ty). Let {an}n>0,{Bntn>0 C [0,1] be two sequences such
that Z a, =00 and lim «, =0= lim (,. For arbitrary xo € K,
let {ar,;}nzo be a sequence iteratively defined by

Tn+l = (1 - an) Tn + anTlnynv
Yn = (1 - /Bn) Tn +ﬁnT2nxna n > 0.
Suppose there exists a strictly increasing function ¢ : [0,00) —
[0,00), ¢(0) =0 such that
(T = p. (e = p)) < kalle = pl> = 6]l — pll), Vo € K, i = 1,2.

Then {z,}n,>0 converges strongly to p € F(T1) N F(Ty) . The
results proved in this paper significantly itimprove the results of
Chang et al. [1].
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1 Introduction

Let E be a real normed space and K be a nonempty convex subset of F. Let
J denote the normalized duality mapping from E to 2F" defined by

J(@) ={f € E": (a, f*) = lllI* and [|f*]| = [lzll},

where E* denotes the dual space of E and (-, -) denotes the generalized duality
pairing. We shall denote the single-valued duality mapping by j.
Let T: D(T) C E — E be a mapping with domain D(T) in E.

Definition 1.1 The mapping T is said to be uniformly L-Lipschitzian if
there ezists L > 0 such that for all x,y € D(T')

17" = T"y|| < Lile =yl

Definition 1.2 T is said to be nonexpansive if for all x, y € D(T), the
following inequality holds:

Tz —Ty|| < ||z —vyl|| forall x,y € D(T).

Definition 1.3 T is said to be asymptotically nonexpansive [6], if there

exists a sequence {k,} C [1,00) with Y (k, — 1) < co such that
n>0

1T"% = T"y|| < kn [lz =yl for all z, y € D(T), n = 1.

Definition 1.4 T s said to be asymptotically pseudocontractive if there

exists a sequence {k,} C [1,00) with Y (k,—1) < 0o and there ezists j(x—y) €
n>0

J(x —y) such that

Remark 1.5 1. It is easy to see that every asymptotically nonexpansive
mapping is uniformly L-Lipschitzian.
2. If T' is asymptotically nonexpansive mapping then for all x, y € D(T)
there ezists j(x —y) € J(x —y) such that
(T"e =Ty, j(x—y)) < [T =T"y|[lz -yl
< knllz—yl®,n>1

Hence every asymptotically nonexpansive mapping is asymptotically pseudo-
contractive.

3. Rhoades in [11] showed that the class of asymptotically pseudocontractive
mappings properly contains the class of asymptotically nonexpansive mappings.
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The asymptotically pseudocontractive mappings were introduced by Schu
[12] who proved the following theorem:

Theorem 1.6 Let K be a nonempty bounded closed conver subset of a
Hilbert space H, T : K — K a completely continuous, uniformly L-Lipschitzian
and asymptotically pseudocontractive with sequence {k,} C [1,00); ¢, = 2k, —
1,Vne N; Y (2 —1) < oo; {an}, {8} C[0,1]; e < v, < B, < b, Vn € N, and
some € > 0 and some b € (0, L72[(14 L2)2 —1]); 21 € K for alln € N, define

Tpr1 = (1 —ap) xp + @, Tz,
Then {x,} converges to some fized point of T'.

The recursion formula of Theorem 1.6 is a modification of the well-known
Mann iteration process (see [9]).

Recently, Chang [1] extended Theorem 1.6 to real uniformly smooth Banach
space. In fact, he proved the following theorem:

Theorem 1.7 Let K be a nonempty bounded closed convex subset of a real
uniformly smooth Banach space E, T : K — K an asymptotically pseudocon-
tractive mapping with sequence {k,} C [1,oc>),nliiEo kn, =1, and z* € F(T) =
{r € K : Tx = x}. Let {a,} C [0,1] satisfying the following conditions:
7}13)10 a, =0, Y a,, = o0. For arbitrary xy € K let {x,} be iteratively defined
by

Tpi1 = (1 —ay) x, + 0, T"x,, n > 0.
If there exists a strictly increasing function ¢ : [0,00) — [0,00), ¢(0) = 0 such
that

(I"z — 2", j(z — 2")) < kallz — 2"|* = 6(||z — 27[]), Yn € N,
then x, — z* € F(T).

Remark 1.8 Theorem 1.7, as stated is a modification of Theorem 2.4 of
Chang [1] who actually included error terms in his algorithm.

In [10], E. U. Ofoedu proved the following results.

Theorem 1.9 Let K be a nonempty closed conver subset of a real Ba-
nach space E, T : K — K a uniformly L-Lipschitzian asymptotically pseu-
docontractive mapping with sequence {ky}n>0 C [1, OO),JLIEIO k, = 1 such that
€ F(T)={r € K:Tx =xz}. Let {a,}n>0 C [0,1] be a sequence such that
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Zan = o0, Zai < oo and Zan(k‘n — 1) < oco. For arbitrary o € K let
n>0 n>0 n>0
{Zn}n>0 be a sequence iteratively defined by

Tpr1 = (1 —ayp)xy + @, T"x,, n > 0.

Suppose there exists a strictly increasing function ¢ : [0,00) — [0,00), ¢(0) =0
such that

(T"z — 2", j(z — ")) < kallz — 27| = é(||lz — 27|]), Vo € K.
Then {x, }n>0 is bounded.

Theorem 1.10 Let K be a nonempty closed convexr subset of a real Ba-
nach space E, T : K — K a uniformly L-Lipschitzian asymptotically pseu-
docontractive mapping with sequence {ky}n>0 C [1, OO),JLIEIO k, = 1 such that
e F(T)={x e K :Tx =z}. Let {an}n>0 C [0,1] be be a sequence such
that >, =00, Y a2 < oo and Y ay(k, — 1) < co. For arbitrary zy € K

n>0 n>0 n>0
let {x,}n>0 be a sequence iteratively defined by

Tpi1 = (1 —ay) x, + 0, T 2, n > 0.

Suppose there exists a strictly increasing function ¢ : [0,00) — [0,00), ¢(0) =0
such that

(T — 2, jw - 2) < kulle — *|2 = o}z — o|I), Vo € K.
Then {x,}n>0 converges strongly to x* € F(T).

Theorem 1.11 Let K be a nonempty closed convex subset of a real Ba-
nach space E, T : K — K a uniformly L-Lipschitzian asymptotically pseu-
docontractive mapping with sequence {ky}n>0 C [1, OO)’JLHQO k, = 1 such that
e F(T) ={r € K : Tx = x}. Let {an}n>0,{bn},0 {Cn},-, be real se-
quences in [0, 1] satisfying the following conditions: B B

i) an +bp+c,=1;
ii) Z(bn +¢p) = o0;

n>0

i) D (by + cn)® < o0;

n>0

iv) D (bn +cn)(k, — 1) < 00; and

n>0
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v) Y cp < o0

n>0
For arbitrary xo € K let {x,}n>0 be iteratively defined by
Tpy1 = App + bnTnxn + Cpllp, N 2> 07

where {uy }n>0 is a bounded sequence of error terms in K. Suppose there exists
a strictly increasing function ¢ : [0,00) — [0,00), ¢(0) = 0 such that

(T — o, (e — ")) < kallz — 2|2 = 6(]la — 2*]]), Vo € K.
Then {x,}n>0 converges strongly to x* € F(T).
In [1], Chang et al., proved the following results.

Theorem 1.12 Let K be a nonempty closed convex subset of a real Banach
space E, T; : K — K, i = 1,2 be two uniformly L-Lipschitzian asymptotically
pseudocontractive mappings with sequence {ky}n>0 C [1,00), nangO kn, =1 such
that F(Ty) N F(Ty) # ¢, where F(T;) is the set of fixed points of T; in K and
p be a point in F(T1) N F(Ty). Let {on}n>0,{Bn}n>0 C [0,1] be two sequences
such that Zozn = 00, Zai < 00, Zﬂn < 00 and Zan(k‘n —1) < o0. For

n>0 n>0 n>0 n>0
arbitrary xo € K, let {x,}n>0 be be a sequence iteratively defined by

Tp+1 = (1_an)xn+anT1nyna
Yo = (1= 0n)an+ B T3, n = 0.

Suppose there exists a strictly increasing function ¢ : [0,00) — [0,00), ¢(0) =0
such that

(T'z —pj(x —p)) < kallz = pl* = ¢(lle = pll), Yz € K, i =1,2.
Then {x,}n>0 converges strongly to p € F(T1) N F(Ty).

In this paper our purpose is to improve the results of Chang et al. [1] in
a significantly more general context by removing the conditions ,,5¢ a2 < 0o
and Y an(k, — 1) < oo from the Theorem 1.12.

n>0
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2 Main Results

The following lemmas are now well known.

Lemma 2.1 Let J : E — 2% be the normalized duality mapping. Then for
any x,y € E, we have

llz +yll* < [l2l* +2(y.j(z +y)), Vi(z+y) € J(@+y)

Suppose there exists a strictly increasing function ¢ : [0,00) — [0,00) with

$(0) = 0.

Lemma 2.2 Let {0,} be a sequence of nonnegative real numbers, {\,} be
a real sequence satisfying

0<A <L Y N=o0

n=0

and let ¢ € ®. If there exists a positive integer ng such that

0721-1-1 < 9721 - /\ngb(6’n+1) + Op,

for all n > ng, with o, >0, Vn € N, and o, = 0(\,,), then nhrglo 0, = 0.

Theorem 2.3 Let K be a nonempty closed convex subset of a real Banach
space E, T; : K — K, i = 1,2 be two uniformly L-Lipschitzian asymptotically
pseudocontractive mappings with sequence {ky}n>0 C [1,00), Y (k, — 1) < 00

n>0
such that F(Ty) N F(Ty) # ¢, where F(T;) is the set of fized points of T; in
K and p be a point in F(Ty) N F(Ty). Let {ay,}n>0, {Gn}tn>0 C [0,1] be two
sequences such that Z a, = o0 and nlljg() a, =0 = 7}13010 Bn. For arbitrary
n>0
xg € K, let {x,}n>0 be a sequence iteratively defined by

Tp+1 = (1 - an) Ty + OénTlnyna

Suppose there exists a strictly increasing function ¢ : [0,00) — [0,00), ¢(0) =0
such that

(T7z —p,j(x —p)) < kallz = plI* = ¢(||lz —pll), vz € K, i=1,2.  (2)

Then {x,}n>0 converges strongly to p € F(Ty) N F(13).
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Proof. Since T} and T5 are uniformly L-Lipschitzian mappings, so there exists
Ly, Ly > 0 such that for all x,y € K,

|7 — Tyl < Li|jlz — vyl ,i=1,2.
Denote L = max{Ly, Ly}, implies
TP — TPyl < Lz —yll,i=1,2.

By lim o, = 0 = lim 3, and lim k, = 1, there exists ng € N such that
n—oo n—oo n—oo
Vn > ng,

. 1 ( (QO))
O‘"Smm{zwL 18(1+ L)(2+3L)[¢~ " (a0)]? }

1 626 (a)
ﬁ”gmmz{lm ISL(1L 1 L)o (a0 }

o < 0207 @)
54[¢~(ao)]*

Define Qo,i = ||l’n0 - ﬂnoxn0||||xno - p” + ( no 1>Hxno - p||27 i =1,2 and

ap = max{ag 1, a02}. Then from (2), we obtain that ||z, — p|| < ¢ (ay).

CLAIM. ||z, — p|| < 2¢7(ag) Yn > ny.

The proof is by induction. Clearly, the claim holds for n = ng. Suppose it
holds for some n > ny, i.e., ||z, — p|| < 2¢7(ag). We prove that ||z,,1 —p| <
2¢(ap). Suppose that this is not true. Then ||z,1 — p|| > 2¢*(ap), so that
O(|wns1r — pll) > (207 (ap)). Using the recursion formula (1), we have the
following estimates

and

|0 = T3'wall < lzn — pll + |13 — pl]
< (I+ L) —pl
< 2(1+4 L)¢p (ayp),
Hyn - p” = H (1 - ﬁn) Tn + B 15T, _pH
= ”mn —p = Bulxn — Tann)”
< ”xn _pH + ﬁonn - Tznan
< 20 Hag) +2(1 + LYo (ag) B
< 3¢~ '(ao),
[z — Tyl < [lzn —pll + 1 T7yn — pl
< ll@n—pl + Llly. — p
< 2¢ '(ao) + 3L¢ ™ (ao)

(24 3L)¢ *(ap),
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[Znia =pl = 1| (1 = an) @ + anTi'yn = pll

|20 —p — anl@n — T{'yn) ||

[0 = pll + |20 = T"yn|

207" (ao) + (2 + 3L)¢™" (ao)avn

367" (ao)- (3)

IA A A

With these estimates and again using the recursion formula (1), we obtain by
Lemma 2.1 that

Hxn—&-l _p||2

where

IN

IA

IN

| (1= an) @ + a7y — p”2

|20 —p — an(n — Tlnyn)H2

|z — pH2 — 200 (Tn — T1"Yn, j(Tns1 — p))

|7 — p||2 + 200 (1] Tpy1 — P, §(Tny1 — p))

=20 (Tpg1 — P, §(Tnt1 — P))

+200 (17 Yn — T Tnt1, 5 (Tng1 — p))

+200(Tnt1 — Ty J(Tny1 — P))

Iz = pII* + 200 (knllznia = pII* = $(l[zn i1 — pI]))

=20 [|Tnt1 — pH2 + 200 |17y — TV T || 2041 — ]
200 [|2n41 — @[ [|[Tnsa — pl|

[ = plI* + 200 (ks = D1 = plI* = 2006|211 — pl|)
200 L {[yn = T || [|nr1 — pl]

200 [[ 2041 — 2ol [| 201 — Pl (4)

Hyn - anrl” < Hyn - xn” + Hanrl - an

= Bullvn — T3zl + anllzn — 11yl
< 2(1+4 L)¢ ag)Bn + (2 +3L)¢ ™ ag)aun. (5)

Substituting (5) in (4), we get

lner = pII* < Ml = plI* = 200|201 — pl])

+200, (K — D||2psr — pl?

+4L(1 + L>¢_1(a0)anﬁn||mn+1 - p||

+2(1+ L)(2 4+ 3L)¢ (ag)a ||zns1 — Pl (6)
20 = plI* = 20,6(26™ " (a0))

+18 [(ﬁil(ao)r an(kn — 1)

IN
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+12L(1 + L) [¢(a0)]” vl

+6(1+ L)(2+3L) [¢ 7 (ao)] a2
< lwn = plI* = 2006(207" (a0)) + n (20 (a0))
= [lzn = pII* = @0 (267 (a0)).

Thus
and(2¢0~" (a0)) < |z — plI*> = llzner — plI*,

implies

626 (@) 3 on < 3 (ln— ol — wer — pl?)

n=no n=ng

so that as j — oo we have
#2907 (a0)) D o < |z, — pl” < o0,
n=ng

which implies that 3" v, < 0o, a contradiction. Hence, ||z,11 —p|| < 267 (ao);
thus {z,} is bounded.
Now from (6), we get

|z = oI <z = pII* = 2000(||2ns1 — pl)
+8[¢7(a0)]” alkn — 1)
+8L(1+ L) [67(a0)] b
+4(1+ L)(2 +3L) [¢ 7 (ao)] a2
= |lzn =2l = 20,8(|[zn41 — )
+4[¢7(a0)]” [2(kn — 1) + (1 + L)2LB, + (2 + BL)aw]] .
(7)

Denote
0, = ||xn - p||a
An = 2am

o0 = 4[67a0)] [2(ky — 1) + (1 + D)L, + (2 + 3L)a]] a.

Condition lim «, = 0 ensures the existence of a rank ny € N such that
n—oo

An = 2a, < 1, for all n > ng. Now with the help of Z a, =00, lim o, =0=

n—00
n>0
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lim (3,, nhrglo k, =1 and Lemma 2.2, we obtain from (7) that

n—oo

lim [[z, —pl| = 0,

n—oo

completing the proof.

1 1
Remark 2.4 1. Let o, = —; 0 < 0 < 2 then Zan = oo, but also
nO’

Zai = o0. Hence the results of Theorems 1.9-1.10 are not true in general.

2. The same argument can be applied for the results of Chang et al. [1]
and of Chidume and Chidume [5].

3 Open Problem

We propose that the results of Theorem 2.3 to be extended for the case of
three mappings.
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