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Abstract

In this article we introduced some sequence spaces gener-
ated by A(,)- and A,-difference of infinite matrices. We inves-
tigate these spaces for some linear topological structures. This
article also introduces the application of A,y and A, operator
to infinite matices.
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1 Introduction

Let w denote the space of all real or complex sequences. By ¢, ¢y and £, we
denote the Banach spaces of convergent, null and bounded sequences x = (zk),
respectively normed by

lzll = sup |4

A linear functional L on /, is said to be a Banach limit (see [1]) if it has
the properties:
(1) L(z) > 0if 2 > 0,
(13) L(e) =1, where e = (1,1,1,...),
(1ii) L(Dx) = L(x), where D is the shift operator defined by D(z,) = (zp41).

Let B be the set of all Banach limits on /.. A sequence z is said to be
almost convergent to a number [ if L(xz) = [ for all L in B. Let ¢ denote the
set of all almost convergent sequences. Lorentz [3] proved that

m
¢={z: lim —— E Ty exists uniformly in n}.
i=0
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Similarly ¢, denote the set of all sequences which are almost convergent to
Zero.

In [6] the spaces ¢ and ¢ were extended to ¢y(p) and ¢é(p) in the same
manner as o, ¢ and ¢q are extended to £ (p), ¢(p) and cq(p) respectively (see
for instance Maddox [5]).

Several authors including Lorentz [3], King [2] and Nanda [7, 8] have stud-
ied almost convergent sequences.

The notion of difference sequence space was introduced by Kizmaz [4], who
studied the difference sequence spaces £o(A), ¢(A) and ¢y(A). The notion was
further generalized by Tripathy and Esi [9] by introducing the spaces (o (4,;),
c(A,) and co(A,).

Let r be non- negative integers, then for Z a given sequence space we have
Z(A) ={z = (x) e w: (Ayxy) € 2},

where A,z = (A,x) = (v — Tgor) and Agxy = 0 for all k € N.
Taking r = 1, we get the spaces (o (A), ¢(A) and ¢o(A) introduced and studied
by Kizmaz[4].

Let A = (an) be an infinite matrix of non-negative real numbers and (py)
be a bounded sequence of positive real numbers. We write

o0
B (z) = E mkTrin, if the series converges for each m and n.
k=1

Let r be a non-negative integer. Then we define the following sequence
spaces:

(fl,p, Apy)o ={x: lim |Ayyg,,,. @ ['™ = 0 uniformly in n},

A

(A, p,Apy) =A{x: lim |Aps,,.,(@—t1e)[P™ = 0 for some [ uniformly in n},

(A,p, A(r))oo = {;U . sup |A(T)an(m)|pm < OO},

where A(T)an(x> = an(ﬂf) - Bmfr,n(x) = Z A(r)amkazkﬂrnu A(T)a/mk = Qmk —
k=1

Um—rje ANd A)amp = amy for all m € N. (e.g., Ap)amr = Amk — Gm—2). In
this definition it is important to note that we take a,,—,; = 0, for non-positive
values of m — 7. (e.g., Agya1z = a3 — a_1,3 = a3 etc.).
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If in the definition of the spaces we take r = 0, then (A, p, A ) = (121 P)os
(A,p,Apy) = (A,p) and (A,p, Apy)eo = (A,P)s. The spaces ( o, (4,p)
and (A, p)o are studied by Nanda [8]. If we take p, = 1, for all k € N, then
(A, P, Awy)o = (A, Ay )o ete.

If in the definitions of the spaces we take A = (C,1) and r = 0, then
(A, p, Ao = Go(p), (A, p, Ayy) = é(p) and (A, p, Agy)eo = (p), which can
be found in Nanda [7].

_ Similarly using the difference operator A, we can define the spaces (/Al? D, Ao,
(A,p,Ar) and (A,p, A) e

The following inequality will be used in the article.
Let p = (px) be a positive sequence of real numbers with 0 < p;, < supp, =
G, D = max{1,2971}. Then for all ay, b, € C for all k € N, we have

|a + bi[** < D{fax|" + [bx|"*} (1)

and for all A € C,
AP < max(1, [A]%) (2)

2 Main Results

In this section we study some linear topological structures of the spaces (A, P, Ay)os
(A va ) (A b, A(r )oov (A b, Ar)Oa (A7p7 Ar) and (Aapa Ar)oo

Without loss of generality, we rnay assume that 0 < p,, < 1, for if 0 <
Pm < 00 and sup p,, < 0o, then 0 < - <1

pm

Theorem 2.1 (Z) (Aapa A(7“))0 - (A7p7 A(T))?

( ) (A b, A(r ) (fiivpu A(r))oo;

('L“) (A p7 ) (A b, A(1”))00; Zf
sup | Z Agyamp '™ < 00. (3)
™ k=1

Proof: Proof of (i) and (ii) are easy and so omitted. We give the proof of
(i4i) only.

Pm < 00.

Let z € (A, p, Agy) and sup | 37 Agyame
m k=1
Now

|A(T)an(x)‘pm = |A(T)an((£ —le+ le)]pm
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< Ay B (z —le)[Pm 41 Z Ay i [P, using (1) (4)
k=1

< |A(T’)an(x - le)|pm + sup |l‘pm‘ Z A(7”)a/mk|pm-
k=1

Hence z € (A,p, A))oo- This completes the proof.

Remark 2.2 Similar results hold for the spaces (A,p, Ao, (/l,p, A,) and
(A, p, A) o also.

~ ~

Theorem 2.3 The spaces (A,p,A(T))O, (A,p,A(T)), (A, 0, Agy)oos (A1, Ar)o,
(A,p, A,) and (A,p, A,)s are linear.

Proof: We give the proof only for the space (A, P, A¢y) and for other
spaces it will follow on applying similar arguments.

Let 2 = (x3) and y = (y;,) be any two elements of (A, p, A¢y). Then there
exist [ and I’ such that

|A(7‘)an(w - l6)|pm — 0 and |A(T)an(y o l’€)|Pm — 0,

as m — oo uniformly in n.
| A Binn (0 + By — (al + Bl )e) [P
< sup |afP™|Ag) Bin(x — le) [P + sup | B]P™|Aqy Bon(y — U'e)|Pm, using (1).
— 0 as m — oo uniformly in n.
Thus (A,p, A(y) is linear.

Theorem 2.4 (i) The space (/Al,p, A@y)o is a paranormed space, paranormed
by g, defined by
9(x) = sup [A¢) By () P (5)

(1) The space (fl,p, A@y)so @5 a paranormed space, paranormed by g if inf pp,
>0,
(1ii) The space (fl,p, A(y) s a paranormed space, paranormed by g if (3) holds.

Proof: We give the proof only for (i) and proof of (i) and (iii) follow
similarly.
Clearly g(z) = g(—=x); x = 6 implies g(x) = 0.
Let © = (xy) and y = (y) any two elements of (fl,p, A¢y)o- Then
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g(:E + y) = Sup |A(r)an(x + y)|pm

m,n

< sup | Ay Bimn () [P + sup | Ay Bima (y) [P, using (1).

m,n

= g(x) + g(y)
Thus g(z +y) < g(x) + g(y).

The continuity of the scalar multiplication follows from the following equal-
ity:

g(ax) = sup |Ag) By (o) |P™ = sup |afPmg(x)

m,n

Theorem 2.5 (i) The space (fl,p, A,)o s a paranormed space, paranormed
by g, defined by

Pm

g(x) = sup |A, By ()

m,n

(1) The space (A,p, A,)oo @8 a paranormed space, paranormed by g if inf p,,
> 0. R
(1ii) The space (A,p,A,) is a paranormed space, paranormed by g if

sup | > Apapi|P™ < 0o holds.
m k=1

Proof: This is routine verification and so omitted.

For the following results we shall assume that A = (a,;) be an infinite
matrix of non-negative real numbers such that a;; = Apya; # 0 and §;; =
|Agyai; — Agyagj—1| = 0, for every i, j

Theorem 2.6 (i) The space (fl,p, A@))so @5 a complete paranormed space
under the paranormed g, defined by (5) if inf p,, > 0.
(1) The space (A,p, A@y)o is a complete paranormed space under the para-
normed g, defined by (5).
(1ii) The space (/l,p,A(r)) is a complete paranormed space under the para-

normed g, defined by (5) if | Y- Agyame/P™ — 0 as m — oo.
k=1
Proof: (i) Let (z') be any Cauchy sequence in (A,p,A(T))OO. Then for
e(0 < e < 1), there exists a positive integer ng such that
g(z" — %) < g, for all 4,5 > ny.
using (5), we have

SUp | Ay By (7, — )P < €, for all i, j > ny.

m,n
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Hence
|A () Bonn (2}, — ) [P < ¢, for all 4,j > ng and for each m, n.
It follows that
|A ) B (7, — )| < &, for all i, > ng and for each m, n.

Thus (A¢yBmn(z})) is a Cauchy sequence in C, for each m,n. Therefore
(A Bimn(z})) is convergent in C, for each m,n.

i.e., {A(T)an(xllc), A(T)an(x%) e A(T)an(xZ), c. }:
{> A(r)amkm,{:Jrn, > A(T)amkajiJrn, " A(T)amsz+n, ...} is convergent in
k=1 k=1

k=1
C, for each m,n.

Let lim i A(r)amkx}'ﬁn = Ymn, say for every m,n.
10 k=1
This implies that
iliI?O{A(T)amlx§+n+A(T)am2x§+n+A(r)am3xé+n+. .. } = Yumn, for every m, n.
Replacing n by n + 1, we get
lm {A gy amiah,, + Apyamathy, + Apyamsis, + ...} = Ymny1, for every

1—00

m,n.
Subtracting above two expressions, we have

I {A Gy am1y + (A ama = D)@ )75 + (D) ms = Aey@ma) T + .-} =

Ymmn — Ymn+1

Hence by the assumptions that a;; = A(r)ail # 0 and 3 = |Apyay; —
Agya;j—1| = 0, for every i, j, we have lim ] exists.
11— 00
Proceeding in this way we can conclude that lim 2, = zy, say exists for
1—00

every k > 1.

Now we can have for all 7,5 > ng,

sup | A () B (), — 2) [P < e
Then |
sup |A ) By (), — jllrilo z ) [P < g, for all i > ny.

m,n
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Hence '
sup | A B (7, — 1) [P < ¢, for all i > ny.

This implies that (2! —z) € (fl,p, A@))so- Since (A,p, A@))oo is linear, we have
r=a— (' —z) e (Ap, A@))so- Hence (A, p, A@))so is complete.
(¢7) This is same with part (7).

(i) If | 3= Agyame[P™ — 0 as m — oo, then (3) holds and it follows from the
k=1

inequality (4), that (121, 2, Agy) = (121, P, A¢y)o and therefore the completeness
of (4,p, A(y) follows from the completeness of (A, p, Awy)o-

Remark 2.7 We get similar results as of Theorem 5 for the spaces (A,p, Ao,
(A, p,A,) and (A, p, A,) s also.

Theorem 2.8 The spaces (121, Aqy)o and (fl, A@y)so are normed linear space,
normed by
2] = sup |Ap) B ()]
and (A, Aqy) is a normed linear space under the same norm if

o
sup | > Agyami| < 00.
m k=1

Proof: We give the proof only for the space (A, A@y)o and for the other
spaces it will follow similarly.

It is obvious that z = ¢ implies ||z|| = 0, |laz|| = |a|||z||, for any scalar «
and [z +yl| < [lzf| + [ly[l.

Let us assume that for any o = (73) € (A, Agy)o, ||z]] = 0. Using the
definition of norm, we have

51D | A gy By ()] = 0

Then we have

[e.e]

Ay B () = Z Ay Trn = 0, for each m,n
k=1

ie.,

Ay am1T14n + Ay amaTotn + Ay Am3Tsqn + - - = 0, for each m,n
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Taking n = 0,m = 1, we get
Apyanxy + Agyanss + Agyazrs + - =0
Again taking n = 1,m = 1, we get
Apyan e + Agyainrs + Agyarzry + - =0
Subtracting above two expressions, we get
Agyaney + (Apyais — Agyan)zs + (Agyais — Agyarg)zs +--- =0

Hence by the assumptions that a; = Agpan # 0 and 5 = [Agya; —
Agya;j—1| = 0, for every 4, j, we have x; = 0.

Proceeding in this way we shall get x;, = 0, for every k € N.
Thus z = 6.

Remark 2.9 We get similar results as of Theorem 6 for the spaces (fl, Ao,
(A, A,) and (A, A,) also.

Theorem 2.10 Let A = (C,1). Then the spaces (A, Apy)oo and (A, A))o
are isometrically isomorphic with the space {o.

Proof: We give the proof for the space (121, A))so only and for the other
space it will follow similarly.
In fact if A = (C,1), then (A, Apy)eo = loo(Ag)-
Let us consider the mapping 7" : {5 (A¢)) — {s, defined by
T(z) =y = (Apar), for every o € loo(Apy).
Then [z = sup |A | = supus] = ||

Also clearly T is bijective linear.
Hence (o (A(y) is isometrically isomorphic with £o.

3 Open Problem

In this paper, the spaces (zzl,p,A(r))oo, (A,p,A(T))O and (A, p, A() are not
always complete paranormed spaces. By imposing some conditions on the
infinite matrix A = (a,;), we have shown that they are complete paranormed
spaces. Therefore it remains open to characterize all such infinite matrices
A = (ayy,) for which the spaces (A, p, A@))oos (A,p,A(T))O and (A, p, A() are
complete paranormed spaces.
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