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Abstract

In this article we introduced some sequence spaces gener-
ated by ∆(r)- and ∆r-difference of infinite matrices. We inves-
tigate these spaces for some linear topological structures. This
article also introduces the application of ∆(r) and ∆r operator
to infinite matices.
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1 Introduction

Let w denote the space of all real or complex sequences. By c, c0 and `∞, we
denote the Banach spaces of convergent, null and bounded sequences x = (xk),
respectively normed by

‖x‖ = sup
k
|xk|.

A linear functional L on `∞ is said to be a Banach limit (see [1]) if it has
the properties:
(i) L(x) ≥ 0 if x ≥ 0,
(ii) L(e) = 1, where e = (1, 1, 1, . . . ),
(iii) L(Dx) = L(x), where D is the shift operator defined by D(xn) = (xn+1).

Let B be the set of all Banach limits on `∞. A sequence x is said to be
almost convergent to a number l if L(x) = l for all L in B. Let ĉ denote the
set of all almost convergent sequences. Lorentz [3] proved that

ĉ = {x : lim
m→∞

1

m + 1

m∑
i=0

xn+i exists uniformly in n}.
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Similarly ĉ0 denote the set of all sequences which are almost convergent to
Zero.

In [6] the spaces ĉ0 and ĉ were extended to ĉ0(p) and ĉ(p) in the same
manner as `∞, c and c0 are extended to `∞(p), c(p) and c0(p) respectively (see
for instance Maddox [5]).

Several authors including Lorentz [3], King [2] and Nanda [7, 8] have stud-
ied almost convergent sequences.

The notion of difference sequence space was introduced by Kizmaz [4], who
studied the difference sequence spaces `∞(∆), c(∆) and c0(∆). The notion was
further generalized by Tripathy and Esi [9] by introducing the spaces `∞(∆r),
c(∆r) and c0(∆r).

Let r be non- negative integers, then for Z a given sequence space we have

Z(∆r) = {x = (xk) ∈ w : (∆rxk) ∈ Z},

where ∆rx = (∆rxk) = (xk − xk+r) and ∆0xk = 0 for all k ∈ N .
Taking r = 1, we get the spaces `∞(∆), c(∆) and c0(∆) introduced and studied
by Kizmaz[4].

Let A = (ank) be an infinite matrix of non-negative real numbers and (pk)
be a bounded sequence of positive real numbers. We write

Bmn(x) =
∞∑

k=1

amkxk+n, if the series converges for each m and n.

Let r be a non-negative integer. Then we define the following sequence
spaces:

(Â, p, ∆(r))0 = {x : lim
m→∞

|∆(r)Bmn(x)|pm = 0 uniformly in n},

(Â, p, ∆(r)) = {x : lim
m→∞

|∆(r)Bmn(x−le)|pm = 0 for some l uniformly in n},

(Â, p, ∆(r))∞ = {x : sup
m,n

|∆(r)Bmn(x)|pm < ∞},

where ∆(r)Bmn(x) = Bmn(x)−Bm−r,n(x) =
∞∑

k=1

∆(r)amkxk+n, ∆(r)amk = amk−

am−r,k and ∆(0)amk = amk for all m ∈ N . (e.g., ∆(2)amk = amk − am−2,k). In
this definition it is important to note that we take am−r,k = 0, for non-positive
values of m− r. (e.g., ∆(2)a13 = a13 − a−1,3 = a13 etc.).
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If in the definition of the spaces we take r = 0, then (Â, p, ∆(r))0 = (Â, p)0,

(Â, p, ∆(r)) = (Â, p) and (Â, p, ∆(r))∞ = (Â, p)∞. The spaces (Â, p)0, (Â, p)

and (Â, p)∞ are studied by Nanda [8]. If we take pk = 1, for all k ∈ N , then
(Â, p, ∆(r))0 = (Â, ∆(r))0 etc.

If in the definitions of the spaces we take A = (C, 1) and r = 0, then
(Â, p, ∆(r))0 = ĉ0(p), (Â, p, ∆(r)) = ĉ(p) and (Â, p, ∆(r))∞ = m̂(p), which can
be found in Nanda [7].

Similarly using the difference operator ∆r, we can define the spaces (Â, p, ∆r)0,
(Â, p, ∆r) and (Â, p, ∆r)∞.

The following inequality will be used in the article.
Let p = (pk) be a positive sequence of real numbers with 0 < pk ≤ sup pp =

G, D = max{1, 2G−1}. Then for all ak, bk ∈ C for all k ∈ N , we have

|ak + bk|pk ≤ D{|ak|pk + |bk|pk} (1)

and for all λ ∈ C,
|λ|pk ≤ max(1, |λ|G) (2)

2 Main Results

In this section we study some linear topological structures of the spaces (Â, p, ∆(r))0,

(Â, p, ∆(r)), (Â, p, ∆(r))∞, (Â, p, ∆r)0, (Â, p, ∆r) and (Â, p, ∆r)∞.

Without loss of generality, we may assume that 0 < pm ≤ 1, for if 0 <
pm < ∞ and sup pm < ∞, then 0 < pm

sup pm
≤ 1.

Theorem 2.1 (i) (Â, p, ∆(r))0 ⊂ (Â, p, ∆(r)),

(ii) (Â, p, ∆(r))0 ⊂ (Â, p, ∆(r))∞,

(iii) (Â, p, ∆(r)) ⊂ (Â, p, ∆(r))∞, if

sup
m
|
∞∑

k=1

∆(r)amk|pm < ∞. (3)

Proof: Proof of (i) and (ii) are easy and so omitted. We give the proof of
(iii) only.

Let x ∈ (Â, p, ∆(r)) and sup
m
|
∞∑

k=1

∆(r)amk|pm < ∞.

Now
|∆(r)Bmn(x)|pm = |∆(r)Bmn(x− le + le)|pm
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≤ |∆(r)Bmn(x− le)|pm + |l
∞∑

k=1

∆(r)amk|pm , using (1) (4)

≤ |∆(r)Bmn(x− le)|pm + sup |l|pm|
∞∑

k=1

∆(r)amk|pm .

Hence x ∈ (Â, p, ∆(r))∞. This completes the proof.

Remark 2.2 Similar results hold for the spaces (Â, p, ∆r)0, (Â, p, ∆r) and
(Â, p, ∆r)∞ also.

Theorem 2.3 The spaces (Â, p, ∆(r))0, (Â, p, ∆(r)), (Â, p, ∆(r))∞, (Â, p, ∆r)0,

(Â, p, ∆r) and (Â, p, ∆r)∞ are linear.

Proof: We give the proof only for the space (Â, p, ∆(r)) and for other
spaces it will follow on applying similar arguments.

Let x = (xk) and y = (yk) be any two elements of (Â, p, ∆(r)). Then there
exist l and l′ such that

|∆(r)Bmn(x− le)|pm → 0 and |∆(r)Bmn(y − l′e)|pm → 0,

as m →∞ uniformly in n.

|∆(r)Bmn(αx + βy − (αl + βl′)e)|pm

≤ sup |α|pm|∆(r)Bmn(x− le)|pm + sup |β|pm|∆(r)Bmn(y − l′e)|pm , using (1).

→ 0 as m →∞ uniformly in n.

Thus (Â, p, ∆(r)) is linear.

Theorem 2.4 (i) The space (Â, p, ∆(r))0 is a paranormed space, paranormed
by g, defined by

g(x) = sup
m,n

|∆(r)Bmn(x)|pm (5)

(ii) The space (Â, p, ∆(r))∞ is a paranormed space, paranormed by g if inf pm

> 0,
(iii) The space (Â, p, ∆(r)) is a paranormed space, paranormed by g if (3) holds.

Proof: We give the proof only for (i) and proof of (ii) and (iii) follow
similarly.
Clearly g(x) = g(−x); x = θ implies g(x) = 0.
Let x = (xk) and y = (yk) any two elements of (Â, p, ∆(r))0. Then
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g(x + y) = sup
m,n

|∆(r)Bmn(x + y)|pm

≤ sup
m,n

|∆(r)Bmn(x)|pm + sup
m,n

|∆(r)Bmn(y)|pm , using (1).

= g(x) + g(y)

Thus g(x + y) ≤ g(x) + g(y).

The continuity of the scalar multiplication follows from the following equal-
ity:

g(αx) = sup
m,n

|∆(r)Bmn(αx)|pm = sup
m
|α|pmg(x)

Theorem 2.5 (i) The space (Â, p, ∆r)0 is a paranormed space, paranormed
by g, defined by

g(x) = sup
m,n

|∆rBmn(x)|pm

(ii) The space (Â, p, ∆r)∞ is a paranormed space, paranormed by g if inf pm

> 0.
(iii) The space (Â, p, ∆r) is a paranormed space, paranormed by g if

sup
m
|
∞∑

k=1

∆ramk|pm < ∞ holds.

Proof: This is routine verification and so omitted.
For the following results we shall assume that A = (ank) be an infinite

matrix of non-negative real numbers such that αi1 = ∆(r)ai1 6= 0 and βij =
|∆(r)aij −∆(r)ai,j−1| = 0, for every i, j

Theorem 2.6 (i) The space (Â, p, ∆(r))∞ is a complete paranormed space
under the paranormed g, defined by (5) if inf pm > 0.
(ii) The space (Â, p, ∆(r))0 is a complete paranormed space under the para-
normed g, defined by (5).
(iii) The space (Â, p, ∆(r)) is a complete paranormed space under the para-

normed g, defined by (5) if |
∞∑

k=1

∆(r)amk|pm → 0 as m →∞.

Proof: (i) Let (xi) be any Cauchy sequence in (Â, p, ∆(r))∞. Then for
ε(0 < ε < 1), there exists a positive integer n0 such that

g(xi − xj) < ε, for all i, j ≥ n0.

using (5), we have

sup
m,n

|∆(r)Bmn(xi
k − xj

k)|
pm < ε, for all i, j ≥ n0.
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Hence

|∆(r)Bmn(xi
k − xj

k)|
pm < ε, for all i, j ≥ n0 and for each m, n.

It follows that

|∆(r)Bmn(xi
k − xj

k)| < ε, for all i, j ≥ n0 and for each m,n.

Thus (∆(r)Bmn(xi
k)) is a Cauchy sequence in C, for each m, n. Therefore

(∆(r)Bmn(xi
k)) is convergent in C, for each m,n.

i.e., {∆(r)Bmn(x1
k), ∆(r)Bmn(x2

k) . . . , ∆(r)Bmn(xi
k), . . . }=

{
∞∑

k=1

∆(r)amkx
1
k+n,

∞∑
k=1

∆(r)amkx
2
k+n, . . . ,

∞∑
k=1

∆(r)amkx
i
k+n, . . . } is convergent in

C, for each m,n.

Let lim
i→∞

∞∑
k=1

∆(r)amkx
i
k+n = ymn, say for every m, n.

This implies that

lim
i→∞

{∆(r)am1x
i
1+n+∆(r)am2x

i
2+n+∆(r)am3x

i
3+n+. . . } = ymn, for every m, n.

Replacing n by n + 1, we get

lim
i→∞

{∆(r)am1x
i
2+n + ∆(r)am2x

i
3+n + ∆(r)am3x

i
4+n + . . . } = ym,n+1, for every

m,n.

Subtracting above two expressions, we have

lim
i→∞

{∆(r)am1x
i
1 + (∆(r)am2 −∆(r)am1)x

i
2 + (∆(r)am3 −∆(r)am2)x

i
3 + . . . } =

ym,n − ym,n+1

Hence by the assumptions that αi1 = ∆(r)ai1 6= 0 and βij = |∆(r)aij −
∆(r)ai,j−1| = 0, for every i, j, we have lim

i→∞
xi

1 exists.

Proceeding in this way we can conclude that lim
i→∞

xi
k = xk, say exists for

every k ≥ 1.

Now we can have for all i, j ≥ n0,

sup
m,n

|∆(r)Bmn(xi
k − xj

k)|
pm < ε.

Then
sup
m,n

|∆(r)Bmn(xi
k − lim

j→∞
xj

k)|
pm < ε, for all i ≥ n0.
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Hence
sup
m,n

|∆(r)Bmn(xi
k − xk)|pm < ε, for all i ≥ n0.

This implies that (xi−x) ∈ (Â, p, ∆(r))∞. Since (Â, p, ∆(r))∞ is linear, we have

x = xi − (xi − x) ∈ (Â, p, ∆(r))∞. Hence (Â, p, ∆(r))∞ is complete.

(ii) This is same with part (i).

(iii) If |
∞∑

k=1

∆(r)amk|pm → 0 as m →∞, then (3) holds and it follows from the

inequality (4), that (Â, p, ∆(r)) = (Â, p, ∆(r))0 and therefore the completeness

of (Â, p, ∆(r)) follows from the completeness of (Â, p, ∆(r))0.

Remark 2.7 We get similar results as of Theorem 5 for the spaces (Â, p, ∆r)0,
(Â, p, ∆r) and (Â, p, ∆r)∞ also.

Theorem 2.8 The spaces (Â, ∆(r))0 and (Â, ∆(r))∞ are normed linear space,
normed by

‖x‖ = sup
m,n

|∆(r)Bmn(x)|

and (Â, ∆(r)) is a normed linear space under the same norm if

sup
m
|
∞∑

k=1

∆(r)amk| < ∞.

Proof: We give the proof only for the space (Â, ∆(r))0 and for the other
spaces it will follow similarly.

It is obvious that x = θ implies ‖x‖ = 0, ‖αx‖ = |α|‖x‖, for any scalar α
and ‖x + y‖ ≤ ‖x‖+ ‖y‖.

Let us assume that for any x = (xk) ∈ (Â, ∆(r))0, ‖x‖ = 0. Using the
definition of norm, we have

sup
mn

|∆(r)Bmn(x)| = 0

Then we have

∆(r)Bmn(x) =
∞∑

k=1

∆(r)amkxk+n = 0, for each m, n

i.e.,

∆(r)am1x1+n + ∆(r)am2x2+n + ∆(r)am3x3+n + · · · = 0, for each m,n
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Taking n = 0, m = 1, we get

∆(r)a11x1 + ∆(r)a12x2 + ∆(r)a13x3 + · · · = 0

Again taking n = 1, m = 1, we get

∆(r)a11x2 + ∆(r)a12x3 + ∆(r)a13x4 + · · · = 0

Subtracting above two expressions, we get

∆(r)a11x1 + (∆(r)a12 −∆(r)a11)x2 + (∆(r)a13 −∆(r)a12)x3 + · · · = 0

Hence by the assumptions that αi1 = ∆(r)ai1 6= 0 and βij = |∆(r)aij −
∆(r)ai,j−1| = 0, for every i, j, we have x1 = 0.

Proceeding in this way we shall get xk = 0, for every k ∈ N .
Thus x = θ.

Remark 2.9 We get similar results as of Theorem 6 for the spaces (Â, ∆r)0,
(Â, ∆r) and (Â, ∆r)∞ also.

Theorem 2.10 Let A = (C, 1). Then the spaces (Â, ∆(r))∞ and (Â, ∆r)∞
are isometrically isomorphic with the space `∞.

Proof: We give the proof for the space (Â, ∆(r))∞ only and for the other
space it will follow similarly.

In fact if A = (C, 1), then (Â, ∆(r))∞ = `∞(∆(r)).
Let us consider the mapping T : `∞(∆(r)) −→ `∞, defined by
T (x) = y = (∆(r)xk), for every x ∈ `∞(∆(r)).
Then ‖x‖ = sup

k
|∆(r)xk| = sup

k
|yk| = ‖Tx‖.

Also clearly T is bijective linear.
Hence `∞(∆(r)) is isometrically isomorphic with `∞.

3 Open Problem

In this paper, the spaces (Â, p, ∆(r))∞, (Â, p, ∆(r))0 and (Â, p, ∆(r)) are not
always complete paranormed spaces. By imposing some conditions on the
infinite matrix A = (ank), we have shown that they are complete paranormed
spaces. Therefore it remains open to characterize all such infinite matrices
A = (ank) for which the spaces (Â, p, ∆(r))∞, (Â, p, ∆(r))0 and (Â, p, ∆(r)) are
complete paranormed spaces.
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