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Abstract 

     Graphs have become indispensable in modeling and representing 
complicated structured data such as proteins, chemical compounds, and 
XML documents. Development of graph databases for use in research and 
development is a well-established activity in pharmaceutical and chemical 
industries. Storing the graphs into large databases is a challenging task as 
it deals with efficient space and time management. Unlike item sets in huge 
transactional databases, it becomes essential to ensure the consistency of 
graph databases since relationships among edges of a graph are 
predominant. One of the necessary procedures required is a mechanism to 
check whether two graphs are automorphic. For graphs with more than 
one vertex with the same label, more than one adjacency matrix 
representations are possible based on the ordering of vertices with identical 
labels and there are possibilities that the same graph is stored more than 
once using different adjacency matrices, leading to adverse results in 
mining graph databases. Difficulty in identifying and eliminating the 
automorphic graphs is a challenging problem to the research community. 
In this paper, a proficient algorithm is devised that efficiently detects and 
avoids the same graph getting stored into the database. The computational 
time is also substantially reduced compared to the canonical labeling 
approach used in Frequent Subgraph Discovery algorithm. The 
experimental results and comparisons offer a positive response to the newly 
proposed algorithm. 

     Keywords: Graph Database, Graph Mining, Graph Automorphism, Canonical 
Labeling, Breadth First Search. 

1      Introduction 

Many scientific and commercial applications urge for patterns that are more 
complex and complicated to process than frequent item sets and sequential 
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patterns. Such sophisticated patterns range from sets and sequences to trees, 
lattices and graphs. As one of the most general form of data representation, graphs 
easily represent entities, their attributes and their relationships to other entities. 
Using a graph for representing the data therefore is one of the most promising 
approaches to extracting knowledge from relational data. Various conferences 
over the past few years on mining graphs have motivated researchers to focus on 
the importance of mining graph data. One of the major perceptions concerned in 
graph mining is discovering frequent patterns [1], [2], [4], [5]. The key operation 
required by any frequent subgraph discovery algorithm is a mechanism to check 
whether two subgraphs are identical or not.  

A well-known representation of graph structured data is an adjacency matrix 
representation. Many graph databases such as chemical graphs have more than 
one vertex with the same label. These graphs have more than one adjacency 
matrix representation based on the ordering of same vertex labels, and it becomes 
difficult to identify them uniquely. There are possibilities that the same graph is 
stored more than once in the graph database leading to adverse results of mining. 
Also, if stored more than once in different adjacency matrices, a single graph 
affects the consistency of the graph database [12], [16]. The research community 
faces this great challenge while storing graphs in huge databases. To avoid the 
ambiguity of representation and inefficiency in the graph pattern search, canonical 
labeling approach that produces a unique code for each graph called canonical 
code has been used in Frequent Subgraph Discovery algorithm (FSG) [14]. By 
comparing this code with the unique codes generated for all the graphs in the 
database, we can identify if the graph is already present in the database. In this 
paper, the canonical labeling approach used in FSG has been investigated and the 
time complexity is also analyzed. An innovative Fast-GraphAutomorphicFilter (F-
GAF) algorithm has been proposed that uses an edge-based representation of 
graphs called grid representation to detect automorphic graphs efficiently.  

The rest of the paper is organized as follows. Section II presents the formal 
definitions and notations used for the proposed research work. Section III reviews 
the related work in this area and the drawbacks of canonical labeling. Section IV 
introduces the proposed algorithm F-GAF using the novel edge-based graph 
representation. Section V discusses the empirical performance evaluation of F-
GAF using synthetic graph datasets.  

2      Definitions and Notations 

This section introduces the various definitions and notation used for this work. 

Definition 1  Labeled Graph 

A labeled graph G is a 4-tuple, G = (V,E,,) where V is a finite set of vertices, E 
 V×V is a set of edges, : V→LV denotes a vertex labeling function and : 
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E→LE denotes a edge labeling function. The following definitions assume a graph 
database GD and the graphs G1=(V1,E1,1,1) and G2=(V2,E2,2,2). 

Definition 2. Graph Isomorphism 

Given a pair of labeled graphs G1, and G2, an isomorphism from G1 to G2 is a 
bijection from V1 to V2 such that the induced action on E1 is a bijection onto E2. 
For every edge e1=(u,)E1, there exists an edge e2=(f(u),f())E2 such that 
1(e1)=2(e2). For every edge e2=(u,)E2, there exists an edge e1=(f -1(u),f-

1())E1 such that 1(e1)=2(e2). 

Definition 3. Automorphism 

An automorphism between two graphs G1, G2 is an isomorphism mapping where 
G1 = G2. That is, it is a graph isomorphism from a graph G to itself. The graph G2 
shown in Figure 1 is automorphic to G1.  

 

Fig. 1: Graph Automorphism (G1 = G2) 

Definition 4. Canonical Label 

The canonical label of a graph G, called cl(G), is defined as a unique code (e.g., 
string) that is invariant on the ordering of the vertices and edges in the graph [3], 
[12]. As a result, two graphs will have the same canonical label if they are 
automorphic.  

3       Related Work 

The significance of using graphs to represent complex datasets has been 
recognized in different disciplines such as chemical domain [5], [8], [17], [18], 
computer vision [15], image and object retrieval [6], [10], and machine learning 
[4], [13], [20]. The graph isomorphism problem takes up an important position in 
the world of complexity analysis. It is one of the few problems that is in NP 
complete[11].   

3.1     Canonical labeling 

Canonical labels play a critical role in the frequent subgraph discovery [3], [14]. 
While in frequent item set mining it is trivial to ensure that the same item set is 
checked no more than once in the search (using an arbitrary, but fixed global order 
of the items), in frequent subgraph mining it is one of the core problems to find 



  
 
 
59                                                                       A Novel Approach for Detection… 

how to avoid redundant search. Since the same graph can be grown in several 
different ways by adding the same nodes and edges in different orders, it is 
difficult to guarantee that each graph is considered only once. Therefore methods 
that rule out redundant search are very important to make the algorithms efficient. 
However, the problem of determining canonical label of a graph is equivalent to 
determining automorphism between graphs. This is because if two graphs are 
automorphic with each other, their canonical labels must be identical.  

A simple way of defining the canonical label of an undirected graph is to use the 
string obtained by concatenating the upper triangular elements of the graph’s 
adjacency matrix when this matrix has been symmetrically permuted such that 
this string is the lexicographically largest (or smallest) among the strings obtained 
from all such permutations. To obtain a unique code, all the vertex labels of the 
graph are associated with unique identifiers to recognize the vertices distinctively.  
A graph G1 having vertices with vertex labels v0,v1,… and unique identifiers 
a,b,…and one of its adjacency matrices are given in Figure 2. The edges in Graph 
G1 have edge labels e0,e1,…  

  

Fig. 2: Graph G1 and one of its Adjacency Matrix 

The canonical code of  Graph G1 is ‘e00e200e1000e0000e0e100e200e2’ 

If a graph contains |V| vertices, the worst case time complexity to compute its 
canonical code is O(|V|!) since |V|!  permutations of vertices have to be checked 
before selecting the minimum(or maximum) code. To narrow down the search 
space, the vertices are partitioned by their degree and labels using a well-known 
technique called the vertex invariants [16].  

The adjacency matrix of the graph G1 shown in figure 2 is partitioned into three 
groups based on degree of vertices and vertex labels. One of  its combinations (a-
beg-cdf) is shown in Figure 3. 
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Fig. 3:  Partitioned Adjacency Matrix of Graph G1 

All possible permutations of vertex labels inside the partitions 1 and 2 would 
generate 3! * 3! = 36 combinations, out of which the minimum (or maximum) 
code is considered as the canonical code of the graph.    

3.2     Weakness of canonical labeling 

Assume a graph G is represented as an adjacency matrix with n vertices and p 
partitions. If there is more than one vertex with same vertex labels, the vertex 
labels need to be partitioned based on vertex degrees and different classes of 
vertex labels within each partition. If all vertex labels of n vertices are distinct, 
then, p becomes equal to n thus making partitioning impossible.  

The two cases of partitioning are (i) each partition has ni vertices with same vertex 
labels,(where |ni| is the number of vertices in the ith partition) (1 ≤  i ≤ p) and (ii) 
all n vertices have same vertex labels and degrees, hence only one partition (a 
complete graph falls under this case). 

To demonstrate the aforementioned cases, consider a graph G with 19 vertices. 
For case (i), assume p=5, n1= 3, n2= 5, n3= 4, n4= 4, and n5= 3. Then, the number 
of canonical codes, N is 3!  5!  4!  4!  3! (=24,88,320). Each canonical code 
has 209 elements as a string (similar to the one shown for the adjacency matrix in 
Figure 2). To obtain a minimum (or maximum) canonical code among 24,88,320 
codes, a string comparison algorithm is needed which further increases the 
number of comparisons. For case (ii) p=1 and N=19!, which means 
121,645,100,408,832,000 canonical codes are generated and tested. For finding 
canonical labels for graphs with self-loops, the computation time is still higher [3].   

4      Proposed Work 

Since the canonical code computation consumes more time if the candidate 
patterns are regular and relatively large [14], the Frequent Subgraph Discovery 
algorithm requires more time. To avoid the difficulty in computation for finding 
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all possible permutations of identical vertices inside p partitions, an efficient 
algorithm Fast-Graph Automorphic Filter (F-GAF) has been developed that uses 
an edge-based representation of graphs. Given a graph database GD, the proposed 
algorithm checks the automorphism of graphs without generating huge number of 
permutation matrices unlike the canonical labeling. 

The notations used in the F-GAF algorithm are listed in Table 1.  

Table 1: Notations used in F-GAF algorithm 

Notation Meaning 

GD Graph Database 

G Graph 

Gk Input Graph  

N← |V| Number of vertices in G 

E ← |E| Number of edges in G 

e  (S, IS, D, ID, E)    An Edge Tag  

EA(G) {(e1,e2, ... ,e|E|)} Edge Array of G 

N Number of distinct vertex labels in G 

V←{V1,V2,…,VN} Set of vertex labels in G, 1≤|Vi|≤ N 

v←{v1, v2,… vn} Distinct vertex labels, 1≤ |vi|≤ N, 1≤ i ≤ n 

D Degrees of distinct vertex labels 

←{V1(V11,…),V2(V21,…),...,VN(VN1,…)} Set of all vertex labels with their neighbours in 

G 

vDegree(G)←{v1(d11,d12,...,d1j), 

v2(d21,d22,...,d2j),...,vn(d31,d32,...,d3j)},1≤j≤N 

Collection of vertex degrees of G  

N(G)←{V1(nd11,nd12,...), 

V2(nd21,nd22,...) ,...,VN(ndN1,ndN2,...)}  

Set of all vertex labels with the degrees of 

neighbours in G 

GC(G) {N,E,EA(G), vDegree(G),N(G)}  Grid Code of G 

The three phases of F-GAF algorithm is shown in Figure 4.  In the preprocessing 
phase, the input graph Gk is expressed as an edge array. The feature extraction 
phase constructs a grid code of Gk that contains all the features needed for 
identifying automorphism.  Pattern matching phase compares this grid code with 
the grid codes of the graphs in the database. 
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Fig. 4: Phases of F-GAF Algorithm 

The phases of the proposed algorithm are described in the following sections. 

4.1 Preprocessing 

In the pre-processing phase, the input graph Gk is visualized as being placed on a 
grid of rows and columns. Each vertex lies at the intersection of a row and a 
column.  Figure 5 shows the grid representation of Gk. 

 

Fig. 5: Grid representation of Graph Gk 

Each edge of the graph is a 5-tuple called edge tag represented as (S, IS, D, ID, E), 
S - Source Vertex Label, IS - Identifier of S,  D - Destination Vertex Label, ID - 
Identifier of D, and E - Edge Label.  

Each edge tag is read into Edge Array (EA), which is a collection of information 
such as number of vertices N, number of edges E and collection of edge tags using 
Breadth First Traversal, starting from 0th row, 0th column including self loop first 
(if any), in a left-to-right, top-to-bottom approach so as to include the edges only 
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once. A unique identifier is assigned to all the vertices. This method of traversing 
and representing each edge of the graph exactly once is known as Grid Traversal 
Technique. Using this technique, the graph shown in Figure 5 is encoded in to a 
set of edge tags as {(v2,a,v2,b,e1), (v1,c,v2,a,e2), (v1,f,v2,a,e2), (v2,b,v2,g,e0), 
(v1,d,v2,b,e0), (v0,e,v1,c,e0), (v1,d,v2,g,e1), and (v1,f,v2,g,e2)}. 

For an undirected graph, the edge tags are arranged in the lexicographic order of 
source, destination and edge labels. Since no edges are repeated, the number of 
edge tags in the edge array is the same as the number of edges in the graph. The 
efficiency of this representation has been tested against the traditional adjacency 
matrix and adjacency list representations on various types of graph data such as 
complete, sparse and non-sparse graphs by performing Depth First Traversal. This 
representation itself is a Breadth First Traversal of all edges in lexicographic order. 
The comparisons prove that the new representation is efficient in terms of time 
and space complexities. The results of these comparisons are shown in the Table 2, 
Section V.   

4.3      Feature Extraction 

The grid code is considered as a feature vector consisting of the edge array, 
distinct vertex labels and the degrees vDegree and all vertex labels with degrees of 
each of its neighbours N of kth graph. The grid code of Gk generated in this phase 
is represented as GC(Gk)={N,E,EA(Gk),vDegree(Gk),N(Gk)}. The grid code of a 
graph is considered as its unique code like the canonical code that uniquely 
identifies a graph. 

4.4     Pattern Matching 

In this phase, the grid code of Gk is compared with those of the other graphs in 
GD to check automorphism. 

After computing the grid code of the kth graph, the algorithm compares 
GC(Gk)with each graph GC(Gi), 1≤ i ≤k. If the grid code of Gk has the same 
values for N, E, EA, vDegree and N as that of Gi, the algorithm concludes that the 
graphs are automorphic and terminates without including the grid code of Gk to 
GD. In this process of comparison in the specified order, if any of these 
parameters are different, the algorithm immediately concludes that the graphs are 
different and after adding the grid code of Gk to GD terminates the process.  

4.2  Fast-Graph Automorphic Filter(F-GAF) Algorithm for 
detecting Graph automorphism  

In the preprocessing phase, the algorithm takes the edge array of Gk as input 
constructed using the grid traversal technique. The Fast-Graph Automorphic Filter 
(F-GAF) algorithm outlines the feature extraction and the pattern matching phases. 
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Algorithm Fast-GraphAutomorphicFilter (F-GAF) 

Input: GD←{GC(G1),GC(G2),...,GC(Gk-1)}, EA(Gk)←input graph  

Output: GD←{GC(G1),GC(G2),...,GC(Gk-1),GC(Gk)}, if GC(Gk) does not exist   

               already in GD.  

k1; GD         

//Feature extraction 

GC(Gk)=GridCodeGen(EA(Gk)) 

//Pattern Matching 

If k=1, then  

     GDGD+GC(Gk ); 

      return 

Else 

       For each graph Gi with NGi= NGk and EGi= EGk  and eGi = eGk and  

       viDegree(Gi) = viDegree(Gk), do 

         If (Ni(Gi) = Nk(Gk))) 

           Report ‘Gi and Gk are same’   

           Reject Gk 

              Else  

           GDGD+GC(Gk) 

        Return 

 

Algorithm GridCodeGen(GA(Gk)) 

Construct vDegree(Gk),k, and Nk 

Grid Code GC(Gk) {GA(Gk), vDegree(Gk),Nk} 

Return GC(Gk) 

 

The key improvement of F-GAF algorithm over canonical labeling is that it 

significantly narrows down the search space and drastically reduces the time 
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needed for identifying automorphic graphs.   The vDegree and N are compared 

only if N, E and EA are same. This avoids the time consuming comparisons. On 

the other hand, the canonical code generation itself consumes more time in 

canonical labelling,   

4.3     Analysis and Illustration of F-GAF Algorithm 

The analysis of the computational time of F-GAF algorithm is described as 
follows.  

Using a hash based implementation, the algorithm takes 2E comparisons to 
compute vDegrees and  from the edge tags (where E is the number of edges in the 
input graph). To compute N, the number of comparisons needed is also 2E. 
Hence, the total time of GridCodeGen(Gk) is 4E.  

The maximum number of comparisons needed to check whether Gk is 
automorphic to any of the k-1 graphs would be k(1+1+(3E)+(2N)2+(N*(N-1)), as 
the number of vertices and edges, grid arrays(only source, destination vertices, 
and edge labels are compared), vDegree, N of k graphs are compared. Therefore, at 
the worst case, the total number of comparisons of F-GAF algorithm would be 
T(F-GAF) = 4E+k(2+3E+(5N)2-N)  

For the comparison of F-GAF with canonical labeling, we used the chemical 
datasets in GD acquired from http://pubchem.ncbi.nlm.nih.gov/. For illustration, 
the chemical compound Diazepam shown in Figure 6 is used to describe the 
efficiency of F-GAF algorithm that detects avoids automorphic graphs getting 
stored into chemical databases over canonical labelling. 

 

Fig. 6: Chemical compound Diazepam 

The grid representation of Diazepam is given in Figure 6. Here, the vertex labels 
C, O, N, and Cl represent the atoms, edge labels s and d represent single and 
double bonds and numbers represent unique identifiers of vertices.   
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Fig. 6: Grid Representation of Diazepam 

The grid code of Diazepam is written as 

GC(Diazepam)={19,21,((O,C,d,1,2),(C,C,s,2,3),(C,N,s,2,4),(C,N,s,3,5), 

(N,C,s,4,6),(N,C,d,5,7),(C,C,s,6,9),(C,C,d,6,10),(C,C,s,7,10),(C,C,s,7,11), 

(C,C,d,8,11),(C,C,s,8,12),(C,C,d,9,13),(C,C,s,10,14),(C,C,s,11,15), 

(C,C,d,12,16),(C,C,s,13,17),(C,C,d,14,17),(C,C,d,15,18),(C,C,s,16,18), 

(C,Cl,s,17,19)),vDegree(GDiazepam), NDiazepam}. 

 

The degrees of different vertices with same vertex labels is written as 

vDegrees (Diazepam)= 

 

 

The set of vertices with their neighbours and their degrees is written as 

(Diazepam)=  
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The set of vertices with degrees of all its neighbours computed from vDegrees 

(Diazepam) and (Diazepam) is written as  

N(Diazepam)=   

 

The number of comparisons for computing the vDegrees and  is 2 * 21. The same 
number of comparisons are needed for N as well. Hence the total time of 
GridCodeGen(Diazepam) is 2 * 42.  

Assume there are already 100 graphs in GD. To compare 101th graph with 100 
graphs, at the worst case the number of comparisons taken by F-GAF would be 
84+100(1+1+(3*21)+((5*19)2)-19) = 907184.  

On the other hand, the canonical labeling works with the partitioned adjacency 
matrix of Diazepam given in Figure 7.  

 

Fig. 7: Partitioned adjacency matrix of Diazepam  
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The number of permutations to compute all possible canonical codes is 2!*9!*6!. 
Therefore, 522547200 distinct codes each of length 161 are generated.  The 
number of comparisons to find unique code accounts to 84130099200. This 
unique code of Diazepam is then compared with the 100 graphs in GD leading to 
an additional 16100 comparisons at the worst case.  

This study shows that F-GAF performs extremely well compared to canonical 
labeling. 

4.4    Experimental Results of Graph Traversal 

A comprehensive study on synthetic data sets to compare (i) time taken for DFS 
using adjacency list, adjacency matrix and grid representation (ii) Canonical 
labeling Vs. F-GAF Algorithms was conducted. 

The time taken for depth first traversal of graphs using adjacency list, adjacency 
matrix and grid representation for various types of graphs such as complete, non-
sparse, and sparse graphs was studied. The results are given in Table 2. This work 
explores the need for a generic representation of graphs, more specifically, 
chemical graphs.  

Table 2: Time taken for depth first traversal for complete, sparse and non-sparse 
graphs 

 
 

 

 

 

 

 

 

 

 

 

4.5. Performance Evaluation of F-GAF 

Synthetic data sets were chosen for the current experiments since the algorithm 
has to analyze all possible types of graphs like complete, sparse and non-sparse 

Execution time for DFS in seconds 

Complete Graphs 

No of 

Vertices 

No of 

Edges 

Adjacency  

List 

Adjacency 

Matrix 

Grid 

Representation 
4 7 0.494505 0.274725 0.049451 
5 11 0.549451 0.384615 0.214286 
6 14 0.714286 0.494505 0.126374 
7 18 0.494505 0.659341 0.351648 
8 23 0.879121 0.769231 0.576923 

Sparse Graphs 

4 3 0.494505 0.164835 0.010989
4 4 0.43956 0.164835 0.016484
6 5 0.659341 0.21978 0.021978
6 5 0.659341 0.21978 0.021978
9 8 0.989011 0.32967 0.071429

Non-Sparse Graphs
5 7 0.549451 0.274725 0.038462
6 8 0.659341 0.32967 0.071429
6 11 0.659341 0.43956 0.126374
9 8 0.989011 0.32967 0.065934 
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graphs to prove its efficiency. Table 3 shows the behaviour of F-GAF against 
canonical labeling. The experimental analysis of chemical graph data sets given in 
Table 3 also reveals an optimistic performance of F-GAF algorithm over 
canonical labeling. The results are obtained on chemical graph data sets with 
different number of graphs. 

 
Table 3: Time taken to detect Automorphic graphs using canonical labeling and F-
GAF 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of graphs in GD=100  

N
u

m
b

er
 o

f 
 V

er
ti

ce
s 

V
 

%
 o

f 
ve

rt
ic

es
 

h
av

in
g 

sa
m

e 
la

b
el

s 

an
d

 d
eg

re
es

 

Time in seconds 
C

an
on

ic
al

 

L
ab

el
in

g 
F-GAF 

Number of Edges 

Sparse Non- 

Sparse 

Complete 

 

1000 3000 4950 

 

 

100 

6 2.09 4.55 14.55 22.44 

7 41.7 4.55 14.55 22.44 

8 704.8 4.55 14.56 22.44 

9 9052.6 4.56 14.56 22.45 

10 135789.9 4.56 14.56 22.45 

 23940 55860 79800 

 

400 

2.0 704.8 123.57 288.96 414.39 

2.5 135789.9 123.58 288.98 414.40 

2.75 2036835.7 123.58 288.99 414.44 

3.0 30552525.9 123.80 289.02 414.46 

 37425 87325 124750 

500 1.6 704.8 192.04 449.44 631.92 

1.8 9052.6 192.07 449.45 631.93 

2.0 135789.9 192.09 449.45 631.93 

2.2 2036835.7 192.12 449.46 631.94 

2.4 30552525.9 192.18 449.46 631.94 

 149850 349650 499500 

 

1000 

0.8 704.8 406.11 767.96 1101.03 

     1.0 135789.9 406.12 767.97 1101.04 

1.2 30552525.9 406.12 767.97 1101.05 
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From the empirical analysis, it is found that the canonical labeling is based on the 
number of vertices as it is a vertex based representation. On the other hand, F-
GAF is edge-based. Hence the time of execution varies for sparse, non-sparse, and 
complete graphs.  

The time complexity of the canonical labeling algorithm varies from polynomial 
(if few vertices have same labels and same degree) to exponential (if more 
vertices have same labels and same degrees). The algorithm used in the proposed 
study takes almost fixed time for each type of graphs irrespective of the number of 
partitions. When most of the vertex labels are same in a graph (such as the carbon 
atoms being the vertex labels in chemical graphs), the time complexity of 
canonical labeling algorithm is very huge when compared to F-GAF. This 
algorithm saves a good amount of storage space, when it is used in chemical 
graphs data set. This is because, almost all chemical graphs are non-sparse but not 
complete. 

5      Conclusion 

In canonical labeling, all possible permutations of v vertices with the same vertex 
labels and degrees result in |v|! to identify automorphism. In the proposed 
algorithm, the search space is drastically narrowed down by exactly locating the 
vertex labels avoiding redundant storage of the same graph into the graph 
database. Instead of generating all possible permutation matrices, it uses a simple 
string comparison procedure to find whether the two graphs match.  

6      Open Problems 
The active research areas include frequent subgraph mining, maximal subgraph 
mining, etc. The efficient storage and retrieval of graph data is still a challenging 
problem. The proposed representation could be used for representing graph data 
such as chemical graphs, biological networks, and web graphs.  
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