
Int. J. Open Problems Compt. Math., Vol. 3, No. 1, March 2010
ISSN 1998-6262; Copyright © ICSRS Publication, 2010
www.i-csrs.org

A Novel Approach for Detection and
Elimination of Automorphic Graphs in

Graph Databases

R Vijayalakshmi, R Nadarajan, P Nirmala, and M Thilaga
1PSG College of Technology, Coimbatore-641004, Tamil Nadu, India

e mail: rv@mca.psgtech.ac.in

Abstract

 Graphs have become indispensable in modeling and representing
complicated structured data such as proteins, chemical compounds, and
XML documents. Development of graph databases for use in research and
development is a well-established activity in pharmaceutical and chemical
industries. Storing the graphs into large databases is a challenging task as
it deals with efficient space and time management. Unlike item sets in huge
transactional databases, it becomes essential to ensure the consistency of
graph databases since relationships among edges of a graph are
predominant. One of the necessary procedures required is a mechanism to
check whether two graphs are automorphic. For graphs with more than
one vertex with the same label, more than one adjacency matrix
representations are possible based on the ordering of vertices with identical
labels and there are possibilities that the same graph is stored more than
once using different adjacency matrices, leading to adverse results in
mining graph databases. Difficulty in identifying and eliminating the
automorphic graphs is a challenging problem to the research community.
In this paper, a proficient algorithm is devised that efficiently detects and
avoids the same graph getting stored into the database. The computational
time is also substantially reduced compared to the canonical labeling
approach used in Frequent Subgraph Discovery algorithm. The
experimental results and comparisons offer a positive response to the newly
proposed algorithm.

 Keywords: Graph Database, Graph Mining, Graph Automorphism, Canonical
Labeling, Breadth First Search.

1 Introduction

Many scientific and commercial applications urge for patterns that are more
complex and complicated to process than frequent item sets and sequential

57 A Novel Approach for Detection…

patterns. Such sophisticated patterns range from sets and sequences to trees,
lattices and graphs. As one of the most general form of data representation, graphs
easily represent entities, their attributes and their relationships to other entities.
Using a graph for representing the data therefore is one of the most promising
approaches to extracting knowledge from relational data. Various conferences
over the past few years on mining graphs have motivated researchers to focus on
the importance of mining graph data. One of the major perceptions concerned in
graph mining is discovering frequent patterns [1], [2], [4], [5]. The key operation
required by any frequent subgraph discovery algorithm is a mechanism to check
whether two subgraphs are identical or not.

A well-known representation of graph structured data is an adjacency matrix
representation. Many graph databases such as chemical graphs have more than
one vertex with the same label. These graphs have more than one adjacency
matrix representation based on the ordering of same vertex labels, and it becomes
difficult to identify them uniquely. There are possibilities that the same graph is
stored more than once in the graph database leading to adverse results of mining.
Also, if stored more than once in different adjacency matrices, a single graph
affects the consistency of the graph database [12], [16]. The research community
faces this great challenge while storing graphs in huge databases. To avoid the
ambiguity of representation and inefficiency in the graph pattern search, canonical
labeling approach that produces a unique code for each graph called canonical
code has been used in Frequent Subgraph Discovery algorithm (FSG) [14]. By
comparing this code with the unique codes generated for all the graphs in the
database, we can identify if the graph is already present in the database. In this
paper, the canonical labeling approach used in FSG has been investigated and the
time complexity is also analyzed. An innovative Fast-GraphAutomorphicFilter (F-
GAF) algorithm has been proposed that uses an edge-based representation of
graphs called grid representation to detect automorphic graphs efficiently.

The rest of the paper is organized as follows. Section II presents the formal
definitions and notations used for the proposed research work. Section III reviews
the related work in this area and the drawbacks of canonical labeling. Section IV
introduces the proposed algorithm F-GAF using the novel edge-based graph
representation. Section V discusses the empirical performance evaluation of F-
GAF using synthetic graph datasets.

2 Definitions and Notations

This section introduces the various definitions and notation used for this work.

Definition 1 Labeled Graph

A labeled graph G is a 4-tuple, G = (V,E,,) where V is a finite set of vertices, E
 V×V is a set of edges, : V→LV denotes a vertex labeling function and :

R Vijayalakshmi 58

E→LE denotes a edge labeling function. The following definitions assume a graph
database GD and the graphs G1=(V1,E1,1,1) and G2=(V2,E2,2,2).

Definition 2. Graph Isomorphism

Given a pair of labeled graphs G1, and G2, an isomorphism from G1 to G2 is a
bijection from V1 to V2 such that the induced action on E1 is a bijection onto E2.
For every edge e1=(u,)E1, there exists an edge e2=(f(u),f())E2 such that
1(e1)=2(e2). For every edge e2=(u,)E2, there exists an edge e1=(f -1(u),f-

1())E1 such that 1(e1)=2(e2).

Definition 3. Automorphism

An automorphism between two graphs G1, G2 is an isomorphism mapping where
G1 = G2. That is, it is a graph isomorphism from a graph G to itself. The graph G2
shown in Figure 1 is automorphic to G1.

Fig. 1: Graph Automorphism (G1 = G2)

Definition 4. Canonical Label

The canonical label of a graph G, called cl(G), is defined as a unique code (e.g.,
string) that is invariant on the ordering of the vertices and edges in the graph [3],
[12]. As a result, two graphs will have the same canonical label if they are
automorphic.

3 Related Work

The significance of using graphs to represent complex datasets has been
recognized in different disciplines such as chemical domain [5], [8], [17], [18],
computer vision [15], image and object retrieval [6], [10], and machine learning
[4], [13], [20]. The graph isomorphism problem takes up an important position in
the world of complexity analysis. It is one of the few problems that is in NP
complete[11].

3.1 Canonical labeling

Canonical labels play a critical role in the frequent subgraph discovery [3], [14].
While in frequent item set mining it is trivial to ensure that the same item set is
checked no more than once in the search (using an arbitrary, but fixed global order
of the items), in frequent subgraph mining it is one of the core problems to find

59 A Novel Approach for Detection…

how to avoid redundant search. Since the same graph can be grown in several
different ways by adding the same nodes and edges in different orders, it is
difficult to guarantee that each graph is considered only once. Therefore methods
that rule out redundant search are very important to make the algorithms efficient.
However, the problem of determining canonical label of a graph is equivalent to
determining automorphism between graphs. This is because if two graphs are
automorphic with each other, their canonical labels must be identical.

A simple way of defining the canonical label of an undirected graph is to use the
string obtained by concatenating the upper triangular elements of the graph’s
adjacency matrix when this matrix has been symmetrically permuted such that
this string is the lexicographically largest (or smallest) among the strings obtained
from all such permutations. To obtain a unique code, all the vertex labels of the
graph are associated with unique identifiers to recognize the vertices distinctively.
A graph G1 having vertices with vertex labels v0,v1,… and unique identifiers
a,b,…and one of its adjacency matrices are given in Figure 2. The edges in Graph
G1 have edge labels e0,e1,…

Fig. 2: Graph G1 and one of its Adjacency Matrix

The canonical code of Graph G1 is ‘e00e200e1000e0000e0e100e200e2’

If a graph contains |V| vertices, the worst case time complexity to compute its
canonical code is O(|V|!) since |V|! permutations of vertices have to be checked
before selecting the minimum(or maximum) code. To narrow down the search
space, the vertices are partitioned by their degree and labels using a well-known
technique called the vertex invariants [16].

The adjacency matrix of the graph G1 shown in figure 2 is partitioned into three
groups based on degree of vertices and vertex labels. One of its combinations (a-
beg-cdf) is shown in Figure 3.

R Vijayalakshmi 60

Fig. 3: Partitioned Adjacency Matrix of Graph G1

All possible permutations of vertex labels inside the partitions 1 and 2 would
generate 3! * 3! = 36 combinations, out of which the minimum (or maximum)
code is considered as the canonical code of the graph.

3.2 Weakness of canonical labeling

Assume a graph G is represented as an adjacency matrix with n vertices and p
partitions. If there is more than one vertex with same vertex labels, the vertex
labels need to be partitioned based on vertex degrees and different classes of
vertex labels within each partition. If all vertex labels of n vertices are distinct,
then, p becomes equal to n thus making partitioning impossible.

The two cases of partitioning are (i) each partition has ni vertices with same vertex
labels,(where |ni| is the number of vertices in the ith partition) (1 ≤ i ≤ p) and (ii)
all n vertices have same vertex labels and degrees, hence only one partition (a
complete graph falls under this case).

To demonstrate the aforementioned cases, consider a graph G with 19 vertices.
For case (i), assume p=5, n1= 3, n2= 5, n3= 4, n4= 4, and n5= 3. Then, the number
of canonical codes, N is 3!  5!  4!  4!  3! (=24,88,320). Each canonical code
has 209 elements as a string (similar to the one shown for the adjacency matrix in
Figure 2). To obtain a minimum (or maximum) canonical code among 24,88,320
codes, a string comparison algorithm is needed which further increases the
number of comparisons. For case (ii) p=1 and N=19!, which means
121,645,100,408,832,000 canonical codes are generated and tested. For finding
canonical labels for graphs with self-loops, the computation time is still higher [3].

4 Proposed Work

Since the canonical code computation consumes more time if the candidate
patterns are regular and relatively large [14], the Frequent Subgraph Discovery
algorithm requires more time. To avoid the difficulty in computation for finding

61 A Novel Approach for Detection…

all possible permutations of identical vertices inside p partitions, an efficient
algorithm Fast-Graph Automorphic Filter (F-GAF) has been developed that uses
an edge-based representation of graphs. Given a graph database GD, the proposed
algorithm checks the automorphism of graphs without generating huge number of
permutation matrices unlike the canonical labeling.

The notations used in the F-GAF algorithm are listed in Table 1.

Table 1: Notations used in F-GAF algorithm

Notation Meaning

GD Graph Database

G Graph

Gk Input Graph

N← |V| Number of vertices in G

E ← |E| Number of edges in G

e  (S, IS, D, ID, E) An Edge Tag

EA(G) {(e1,e2, ... ,e|E|)} Edge Array of G

N Number of distinct vertex labels in G

V←{V1,V2,…,VN} Set of vertex labels in G, 1≤|Vi|≤ N

v←{v1, v2,… vn} Distinct vertex labels, 1≤ |vi|≤ N, 1≤ i ≤ n

D Degrees of distinct vertex labels

←{V1(V11,…),V2(V21,…),...,VN(VN1,…)} Set of all vertex labels with their neighbours in

G

vDegree(G)←{v1(d11,d12,...,d1j),

v2(d21,d22,...,d2j),...,vn(d31,d32,...,d3j)},1≤j≤N

Collection of vertex degrees of G

N(G)←{V1(nd11,nd12,...),

V2(nd21,nd22,...) ,...,VN(ndN1,ndN2,...)}

Set of all vertex labels with the degrees of

neighbours in G

GC(G) {N,E,EA(G), vDegree(G),N(G)} Grid Code of G

The three phases of F-GAF algorithm is shown in Figure 4. In the preprocessing
phase, the input graph Gk is expressed as an edge array. The feature extraction
phase constructs a grid code of Gk that contains all the features needed for
identifying automorphism. Pattern matching phase compares this grid code with
the grid codes of the graphs in the database.

R Vijayalakshmi 62

Fig. 4: Phases of F-GAF Algorithm

The phases of the proposed algorithm are described in the following sections.

4.1 Preprocessing

In the pre-processing phase, the input graph Gk is visualized as being placed on a
grid of rows and columns. Each vertex lies at the intersection of a row and a
column. Figure 5 shows the grid representation of Gk.

Fig. 5: Grid representation of Graph Gk

Each edge of the graph is a 5-tuple called edge tag represented as (S, IS, D, ID, E),
S - Source Vertex Label, IS - Identifier of S, D - Destination Vertex Label, ID -
Identifier of D, and E - Edge Label.

Each edge tag is read into Edge Array (EA), which is a collection of information
such as number of vertices N, number of edges E and collection of edge tags using
Breadth First Traversal, starting from 0th row, 0th column including self loop first
(if any), in a left-to-right, top-to-bottom approach so as to include the edges only

63 A Novel Approach for Detection…

once. A unique identifier is assigned to all the vertices. This method of traversing
and representing each edge of the graph exactly once is known as Grid Traversal
Technique. Using this technique, the graph shown in Figure 5 is encoded in to a
set of edge tags as {(v2,a,v2,b,e1), (v1,c,v2,a,e2), (v1,f,v2,a,e2), (v2,b,v2,g,e0),
(v1,d,v2,b,e0), (v0,e,v1,c,e0), (v1,d,v2,g,e1), and (v1,f,v2,g,e2)}.

For an undirected graph, the edge tags are arranged in the lexicographic order of
source, destination and edge labels. Since no edges are repeated, the number of
edge tags in the edge array is the same as the number of edges in the graph. The
efficiency of this representation has been tested against the traditional adjacency
matrix and adjacency list representations on various types of graph data such as
complete, sparse and non-sparse graphs by performing Depth First Traversal. This
representation itself is a Breadth First Traversal of all edges in lexicographic order.
The comparisons prove that the new representation is efficient in terms of time
and space complexities. The results of these comparisons are shown in the Table 2,
Section V.

4.3 Feature Extraction

The grid code is considered as a feature vector consisting of the edge array,
distinct vertex labels and the degrees vDegree and all vertex labels with degrees of
each of its neighbours N of kth graph. The grid code of Gk generated in this phase
is represented as GC(Gk)={N,E,EA(Gk),vDegree(Gk),N(Gk)}. The grid code of a
graph is considered as its unique code like the canonical code that uniquely
identifies a graph.

4.4 Pattern Matching

In this phase, the grid code of Gk is compared with those of the other graphs in
GD to check automorphism.

After computing the grid code of the kth graph, the algorithm compares
GC(Gk)with each graph GC(Gi), 1≤ i ≤k. If the grid code of Gk has the same
values for N, E, EA, vDegree and N as that of Gi, the algorithm concludes that the
graphs are automorphic and terminates without including the grid code of Gk to
GD. In this process of comparison in the specified order, if any of these
parameters are different, the algorithm immediately concludes that the graphs are
different and after adding the grid code of Gk to GD terminates the process.

4.2 Fast-Graph Automorphic Filter(F-GAF) Algorithm for
detecting Graph automorphism

In the preprocessing phase, the algorithm takes the edge array of Gk as input
constructed using the grid traversal technique. The Fast-Graph Automorphic Filter
(F-GAF) algorithm outlines the feature extraction and the pattern matching phases.

R Vijayalakshmi 64

Algorithm Fast-GraphAutomorphicFilter (F-GAF)

Input: GD←{GC(G1),GC(G2),...,GC(Gk-1)}, EA(Gk)←input graph

Output: GD←{GC(G1),GC(G2),...,GC(Gk-1),GC(Gk)}, if GC(Gk) does not exist

 already in GD.

k1; GD

//Feature extraction

GC(Gk)=GridCodeGen(EA(Gk))

//Pattern Matching

If k=1, then

 GDGD+GC(Gk);

 return

Else

 For each graph Gi with NGi= NGk and EGi= EGk and eGi = eGk and

 viDegree(Gi) = viDegree(Gk), do

 If (Ni(Gi) = Nk(Gk)))

 Report ‘Gi and Gk are same’

 Reject Gk

 Else

 GDGD+GC(Gk)

 Return

Algorithm GridCodeGen(GA(Gk))

Construct vDegree(Gk),k, and Nk

Grid Code GC(Gk) {GA(Gk), vDegree(Gk),Nk}

Return GC(Gk)

The key improvement of F-GAF algorithm over canonical labeling is that it

significantly narrows down the search space and drastically reduces the time

65 A Novel Approach for Detection…

needed for identifying automorphic graphs. The vDegree and N are compared

only if N, E and EA are same. This avoids the time consuming comparisons. On

the other hand, the canonical code generation itself consumes more time in

canonical labelling,

4.3 Analysis and Illustration of F-GAF Algorithm

The analysis of the computational time of F-GAF algorithm is described as
follows.

Using a hash based implementation, the algorithm takes 2E comparisons to
compute vDegrees and  from the edge tags (where E is the number of edges in the
input graph). To compute N, the number of comparisons needed is also 2E.
Hence, the total time of GridCodeGen(Gk) is 4E.

The maximum number of comparisons needed to check whether Gk is
automorphic to any of the k-1 graphs would be k(1+1+(3E)+(2N)2+(N*(N-1)), as
the number of vertices and edges, grid arrays(only source, destination vertices,
and edge labels are compared), vDegree, N of k graphs are compared. Therefore, at
the worst case, the total number of comparisons of F-GAF algorithm would be
T(F-GAF) = 4E+k(2+3E+(5N)2-N)

For the comparison of F-GAF with canonical labeling, we used the chemical
datasets in GD acquired from http://pubchem.ncbi.nlm.nih.gov/. For illustration,
the chemical compound Diazepam shown in Figure 6 is used to describe the
efficiency of F-GAF algorithm that detects avoids automorphic graphs getting
stored into chemical databases over canonical labelling.

Fig. 6: Chemical compound Diazepam

The grid representation of Diazepam is given in Figure 6. Here, the vertex labels
C, O, N, and Cl represent the atoms, edge labels s and d represent single and
double bonds and numbers represent unique identifiers of vertices.

R Vijayalakshmi 66

Fig. 6: Grid Representation of Diazepam

The grid code of Diazepam is written as

GC(Diazepam)={19,21,((O,C,d,1,2),(C,C,s,2,3),(C,N,s,2,4),(C,N,s,3,5),

(N,C,s,4,6),(N,C,d,5,7),(C,C,s,6,9),(C,C,d,6,10),(C,C,s,7,10),(C,C,s,7,11),

(C,C,d,8,11),(C,C,s,8,12),(C,C,d,9,13),(C,C,s,10,14),(C,C,s,11,15),

(C,C,d,12,16),(C,C,s,13,17),(C,C,d,14,17),(C,C,d,15,18),(C,C,s,16,18),

(C,Cl,s,17,19)),vDegree(GDiazepam), NDiazepam}.

The degrees of different vertices with same vertex labels is written as

vDegrees (Diazepam)=

The set of vertices with their neighbours and their degrees is written as

(Diazepam)=

67 A Novel Approach for Detection…

The set of vertices with degrees of all its neighbours computed from vDegrees

(Diazepam) and (Diazepam) is written as

N(Diazepam)=

The number of comparisons for computing the vDegrees and  is 2 * 21. The same
number of comparisons are needed for N as well. Hence the total time of
GridCodeGen(Diazepam) is 2 * 42.

Assume there are already 100 graphs in GD. To compare 101th graph with 100
graphs, at the worst case the number of comparisons taken by F-GAF would be
84+100(1+1+(3*21)+((5*19)2)-19) = 907184.

On the other hand, the canonical labeling works with the partitioned adjacency
matrix of Diazepam given in Figure 7.

Fig. 7: Partitioned adjacency matrix of Diazepam

R Vijayalakshmi 68

The number of permutations to compute all possible canonical codes is 2!*9!*6!.
Therefore, 522547200 distinct codes each of length 161 are generated. The
number of comparisons to find unique code accounts to 84130099200. This
unique code of Diazepam is then compared with the 100 graphs in GD leading to
an additional 16100 comparisons at the worst case.

This study shows that F-GAF performs extremely well compared to canonical
labeling.

4.4 Experimental Results of Graph Traversal

A comprehensive study on synthetic data sets to compare (i) time taken for DFS
using adjacency list, adjacency matrix and grid representation (ii) Canonical
labeling Vs. F-GAF Algorithms was conducted.

The time taken for depth first traversal of graphs using adjacency list, adjacency
matrix and grid representation for various types of graphs such as complete, non-
sparse, and sparse graphs was studied. The results are given in Table 2. This work
explores the need for a generic representation of graphs, more specifically,
chemical graphs.

Table 2: Time taken for depth first traversal for complete, sparse and non-sparse
graphs

4.5. Performance Evaluation of F-GAF

Synthetic data sets were chosen for the current experiments since the algorithm
has to analyze all possible types of graphs like complete, sparse and non-sparse

Execution time for DFS in seconds

Complete Graphs

No of

Vertices

No of

Edges

Adjacency

List

Adjacency

Matrix

Grid

Representation
4 7 0.494505 0.274725 0.049451
5 11 0.549451 0.384615 0.214286
6 14 0.714286 0.494505 0.126374
7 18 0.494505 0.659341 0.351648
8 23 0.879121 0.769231 0.576923

Sparse Graphs

4 3 0.494505 0.164835 0.010989
4 4 0.43956 0.164835 0.016484
6 5 0.659341 0.21978 0.021978
6 5 0.659341 0.21978 0.021978
9 8 0.989011 0.32967 0.071429

Non-Sparse Graphs
5 7 0.549451 0.274725 0.038462
6 8 0.659341 0.32967 0.071429
6 11 0.659341 0.43956 0.126374
9 8 0.989011 0.32967 0.065934

69 A Novel Approach for Detection…

graphs to prove its efficiency. Table 3 shows the behaviour of F-GAF against
canonical labeling. The experimental analysis of chemical graph data sets given in
Table 3 also reveals an optimistic performance of F-GAF algorithm over
canonical labeling. The results are obtained on chemical graph data sets with
different number of graphs.

Table 3: Time taken to detect Automorphic graphs using canonical labeling and F-
GAF

Number of graphs in GD=100

N
u

m
b

er
 o

f
 V

er
ti

ce
s

V

%
 o

f
ve

rt
ic

es

h
av

in
g

sa
m

e
la

b
el

s

an
d

 d
eg

re
es

Time in seconds
C

an
on

ic
al

L
ab

el
in

g
F-GAF

Number of Edges

Sparse Non-

Sparse

Complete

1000 3000 4950

100

6 2.09 4.55 14.55 22.44

7 41.7 4.55 14.55 22.44

8 704.8 4.55 14.56 22.44

9 9052.6 4.56 14.56 22.45

10 135789.9 4.56 14.56 22.45

 23940 55860 79800

400

2.0 704.8 123.57 288.96 414.39

2.5 135789.9 123.58 288.98 414.40

2.75 2036835.7 123.58 288.99 414.44

3.0 30552525.9 123.80 289.02 414.46

 37425 87325 124750

500 1.6 704.8 192.04 449.44 631.92

1.8 9052.6 192.07 449.45 631.93

2.0 135789.9 192.09 449.45 631.93

2.2 2036835.7 192.12 449.46 631.94

2.4 30552525.9 192.18 449.46 631.94

 149850 349650 499500

1000

0.8 704.8 406.11 767.96 1101.03

 1.0 135789.9 406.12 767.97 1101.04

1.2 30552525.9 406.12 767.97 1101.05

R Vijayalakshmi 70

From the empirical analysis, it is found that the canonical labeling is based on the
number of vertices as it is a vertex based representation. On the other hand, F-
GAF is edge-based. Hence the time of execution varies for sparse, non-sparse, and
complete graphs.

The time complexity of the canonical labeling algorithm varies from polynomial
(if few vertices have same labels and same degree) to exponential (if more
vertices have same labels and same degrees). The algorithm used in the proposed
study takes almost fixed time for each type of graphs irrespective of the number of
partitions. When most of the vertex labels are same in a graph (such as the carbon
atoms being the vertex labels in chemical graphs), the time complexity of
canonical labeling algorithm is very huge when compared to F-GAF. This
algorithm saves a good amount of storage space, when it is used in chemical
graphs data set. This is because, almost all chemical graphs are non-sparse but not
complete.

5 Conclusion

In canonical labeling, all possible permutations of v vertices with the same vertex
labels and degrees result in |v|! to identify automorphism. In the proposed
algorithm, the search space is drastically narrowed down by exactly locating the
vertex labels avoiding redundant storage of the same graph into the graph
database. Instead of generating all possible permutation matrices, it uses a simple
string comparison procedure to find whether the two graphs match.

6 Open Problems
The active research areas include frequent subgraph mining, maximal subgraph
mining, etc. The efficient storage and retrieval of graph data is still a challenging
problem. The proposed representation could be used for representing graph data
such as chemical graphs, biological networks, and web graphs.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. J. B.
Bocca, M. Jarke, and C. Zaniolo, editors, Proc. of the 20th Int. Conf. on Very
Large Databases (VLDB), pages 487–499. Morgan Kaufmann, September
1994.

[2] R. Agrawal and R. Srikant. Mining sequential patterns. In P. S. Yu and A. L. P.
Chen, editors, Proc. of the 11th Int. Conf. on Data Engineering (ICDE), pages
3–14. IEEE Press, 1995.

[3] Akihiro Inokuchi, Takashi Washio, Hiroshi Motoda: Complete Mining of
Frequent Patterns from Graphs. Mining Graph Data. Machine Learning 50(3):
321-354 (2003)

71 A Novel Approach for Detection…

[4] C.-W. K. Chen and D. Y. Y. Yun. Unifying graph-matching problem with a
practical solution. In Proc. Of International Conference on Systems, Signals,
Control, Computers, September 1998.

[5] R. N. Chittimoori, L. B. Holder, and D. J. Cook. Applying the SUBDUE
substructure discovery system to the chemical toxicity domain. In Proc. of the
12th International Florida AI Research Society Conference, pages 90–94,
1999.

[6] V. A. Cicirello. Intelligent retrieval of solid models. Master’s thesis, Drexel
University, Philadelphia, PA, 1999.

[7] Diane J. Cook, Lawrence B. Holder, Mining Graph Data, John Wiley & sons,
Inc., 2007.

[8] L. Dehaspe, H. Toivonen, and R. D. King. Finding frequent substructures in
chemical compounds. In Proc. of the 4th International Conference on
Knowledge Discovery and Data Mining, pages 30–36, 1998.

[9] M. Deshpande and G. Karypis. Automated approaches for classifying
structures. In Proc. of the 2nd Workshop on Data Mining in Bioinformatics
(BIOKDD ’02), 2002.

[10] D. Dupplaw and P. H. Lewis. Content-based image retrieval with scale-
spaced object trees. In M. M. Yeung, B.-L. Yeo, and C. A. Bouman, editors,
Proc. of SPIE: Storage and Retrieval for Media Databases, volume 3972,
pages 253–261, 2000.

[11] S. Fortin. The graph isomorphism problem. Technical Report TR96-20,
Department of Computing Science, University of Alberta, 1996.

[12] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In Proc. of ACM SIGMOD Int. Conf. on Management of Data,
Dallas, TX, May 2000.

[13] L. Holder, D. Cook, and S. Djoko. Substructure discovery in the SUBDUE
system. In Proceedings of the Workshop on Knowledge Discovery in
Databases, pages 169–180, 1994.

[14] M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. Proc. 1st
IEEE Int. Conf. on Data Mining (ICDM 2001), San Jose, CA), 313–320. IEEE
Press, Piscataway, NJ, USA 2001.

[15] D. A. L. Piriyakumar and P. Levi. An efficient A* based algorithm for
optimal graph matching applied to computer vision. In GRWSIA-98, Munich,
1998.

[16] R. C. Read and D. G. Corneil. The graph isomorph disease. Journal of Graph
Theory, 1:339–363, 1977.

R Vijayalakshmi 72

[17] A. Srinivasan, R. D. King, S. Muggleton, and M. J. E. Sternberg.
Carcinogenesis predictions using ILP. In Proceedings of the 7th International
Workshop on Inductive Logic Programming, volume 1297, pages 273–287,
1997.

[18] A. Srinivasan, R. D. King, S. H. Muggleton, and M. Sternberg. The
predictive toxicology evaluation challenge. In Proceedings of the 15th
International Joint Conference on Artificial Intelligence (IJCAI), pages 1–6,
1997.

[19] R. Vijayalakshmi, R. Nadarajan, and B. Malar. A study of substructure
similarity search in graph data bases using grid-based approach. In
Proceedings of the First International Conference on Information Processing
(ICIP), pages 481-490, 2007.

[20] K. Yoshida and H. Motoda. CLIP: Concept learning from inference patterns.
Artificial Intelligence, 75(1):63–92, 1995.

