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1 Introduction

The theory of chaotic dynamical systems is developed in [6,7,11,13]. At-
tanassov [1,2,3,4,5] introduced the notion of intuitionistic fuzzy sets and devel-
oped its theory. Following George and Veeramani [10], Park [15] has defined
intuitionistic fuzzy metric space and obtained several classical theorems on it.
The concept of intuitionistic fuzzy 2-metric space can be viewed in [14].

The purpose of this paper is to introduce the notion of semigroup actions
in intuitionistic fuzzy 2-metric space as a generalization of semigroup action
in intuitionistic fuzzy metric space by Yaoyao Lan and Qingguo Li [17]. We
also investigate the dynamical systems in the context of semigroup actions in
intuitionistic fuzzy 2-metric space and provide results on it.
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2 Preliminaries

In this section we recall some useful definitions and results.

Definition 2.1 [14]. A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is a contin-
uous t-norm if ∗ satisfies the following conditions:
(i) ∗ is commutative and associative
(ii) ∗ is continuous
(iii) a ∗ 1 = a, for all a ∈ [0, 1]
(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d and a, b, c, d ∈ [0, 1].

Definition 2.2 [14]. A binary operation � : [0, 1]× [0, 1] → [0, 1] is continuous
t-co-norm if �satisfies the following conditions:
(i) � is commutative and associative
(ii) � is continuous
(iii) a � 0 = a, for all a ∈ [0, 1]
(iv) a � b ≤ c � d whenever a ≤ c and b ≤ d and a, b, c, d ∈ [0, 1].

Definition 2.3 [8,9]. Let X be a non-empty set. A real valued function d on
X ×X ×X is said to be a 2-metric on X if
(i) given distinct elements x, y of X, there exists an element z of X such

that d(x, y, z) 6= 0
(ii) d(x, y, z) = 0 when at least two of x, y, z are equal
(iii) d(x, y, z) = d(x, z, y) = d(y, z, x) for all x, y, z ∈ X
(iv) d(x, y, z) ≤ d(x, y, w) + d(x, w, z) + d(w, y, z) for all x, y, z in X.
The pair (X, d) is called a 2-metric space.

Definition 2.4 [14]. An 5-tuple (X, N,M, ∗, �) is called intuitionistic fuzzy
2-metric space if X is any non-empty set, ∗ is a continuous t-norm, � is a
continuous t-co-norm and N, M are fuzzy sets on X3 × (0,∞); N denotes
the degree of membership and M denotes the degree of non-membership of
(x, y, z, t) ∈ X3 × (0,∞) satisfying the following conditions:
For all x, y, z, w ∈ X; s, t, r > 0,
(1) N(x, y, z, t) + M(x, y, z, t) ≤1
(2) N(x, y, z, t) > 0
(3) N(x, y, z, t) = 1 if at least two of x, y, z are equal
(4) N(x, y, z, t) = N(x, z, y, t) = N(y, z, x, t)
(5) N(x, y, w, t) ∗N(x, w, z, s) ∗N(w, y, z, r) ≤ N(x, y, z, t + s + r)
(6) N(x, y, z, ·) : (0,∞) → (0, 1] is continuous
(7) M(x, y, z, t) < 1
(8) M(x, y, z, t) = 0 if at least two of x, y, z are equal
(9) M(x, y, z, t) = M(x, z, y, t) = M(y, z, x, t)
(10) M(x, y, w, t) �M(x, w, z, s) �M(w, y, z, r) ≥ M(x, y, z, t + s + r)
(11) M(x, y, z, ·) : (0,∞) → (0, 1] is continuous.
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Then (N, M) is called intuitionistic fuzzy 2-metric on X denoted by (N, M)2.

Example 2.5 [14]. Let (X, d) be a metric space. Denote a ∗ b = ab and
a � b = min{1, a + b} for all a, b ∈ [0, 1] and let Nd and Md be fuzzy sets on
X3 × (0,∞) defined by

Nd(x, y, z, t) = htn

htn+md(x,y,z)
, Md(x, y, z, t) = d(x,y,z)

ktn+md(x,y,z)

for all h, k, n, m ∈ R+. Then (X, Nd, Md, ∗, �) is an intuitionistic fuzzy 2-metric
space.

Remark 2.6. For convenience we denote the intuitionistic fuzzy 2-metric
space as X, wherever there is no risk of confusion.

Definition 2.7 [14]. Let (X, N,M, ∗, �) be an intuitionistic fuzzy 2-metric
space and let r ∈ (0, 1), t > 0 and x ∈ X. The set B(x, r, t) = {y ∈ X :
N(x, y, z, t) > r and M(x, y, z, t) < 1− r for all z ∈ X} is called the open ball
with center x and radius r with respect to t.

Definition 2.8 [14]. Let (X, N,M, ∗, �) be an intuitionistic fuzzy 2-metric
space. Then a set U ⊂ X is said to be an open set if each of its points is the
center of some open ball contained in U .

Definition 2.9 [12,16]. A topological semigroup is a semigroup with a Haus-
dorff topology in which multiplication is continuous in both the variables.

Definition 2.10 [17]. A dynamical system in X is a triple (S, X, π) (denoted
by (S, X) in short), where S is a topological semigroup, X is at least Hausdorff
and π : S ×X → X, (s, x) → sx is a continuous action on X. Thus
s1(s2x) = (s1s2)x holds for each (s1, s2, x) in S × S ×X.

Definition 2.11 [17]. The orbit of x is the set Sx = {sx : s ∈ S}.

Definition 2.12 [17]. If S = {fn : n = 1, 2, ...} and f : X → X is continuous,
then (S, X) is a classical dynamical system in X denoted by (X, f).

Definition 2.13 [17]. For U ⊂ X and s ∈ S, s−1U = {x ∈ X : sx ∈ U}.

Definition 2.14 [17]. Let S be a topological semigroup. We say that S is a
(1) F -semigroup if for every s0 ∈ S the subset S\Ss0 is finite.
(2) C-semigroup if for every s0 ∈ S the closure of the subset S\Ss0 is

compact in S. (i.e., S\Ss0 is relatively compact).

Example 2.15 [13].
(1) Standard one-parameter semigroup S = ([0,∞), +) is a C-semigroup.
(2) Every cyclic positive semigroup P = {sn : n ∈ N} is a F -semigroup.
(3) Every compact semigroup is a C-semigroup.

Definition 2.16 [17]. The dynamical system (S, X) is called:
(1) topologically transitive (in short: TT) if for every pair of non-empty
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subsets U and V in X, there exists s ∈ S such that sU ∩ V 6= φ.
(2) point transitive (PT) if S has a dense orbit, i.e., there is a point x0 ∈ X

whose orbit is dense in X. Such a point is called transitive point.
Notation: x0 ∈ Trans (X).

(3) densely point transitive (DPT) if there exists a dense set of transitive
points, that is, Trans(X) is dense in X.

Remark 2.17 [17].
(1) Since s−1(sU ∩ V ) = U ∩ s−1V , it is equivalent to saying that

U ∩ s−1V 6= φ.
(2)Always DPT implies PT. In general, TT and PT are independent

properties.

Definition 2.18 [17]. X is perfect means that X is a space without isolated
points.

Theorem 2.19 [17]. Let (S, X) be a dynamical system.
(1) Let X be perfect and S a F -semigroup. Then PT implies TT.

Furthermore, if X is separable and second category, then TT implies
DPT and hence also PT.

(2) Every DPT system (S, X) is TT.

Definition 2.20 [17]. A (not necessarily compact) dynamical system (S, X)
is called minimal if every point of X is transitive.

3 Semigroup actions on intuitionistic fuzzy

2-metric spaces

Definition 3.1. Let (S, X) be a dynamical system.
(1) A subset A of S acts equicontinuously at x0 ∈ X if for every ε ∈ (0, 1)

and t > 0, there exists δ ∈ (0, 1) such that N(x0, x, y, t) > δ and
M(x0, x, y, t) < 1− δ imply N(ax0, ax, y, t) > ε and
M(ax0, ax, y, t) < 1− ε for every a ∈ A and x, y ∈ X.

(2) A point x0 ∈ X is a point of equicontinuity (notation: x0 ∈ Eq(X)) if
S acts equicontinuously at x0. (S, X) is equicontinuous if Eq(X) = X.

(3) (S, X) is almost equicontinuous if Eq(X) is dense in X.
Observe that every equicontinuous system is almost equicontinuous.

Theorem 3.2. Let (S, X) be a dynamical system. If A is a relatively compact
subset of S, then A acts equicontinuously on X.

Proof. Let x ∈ X and s1 ∈ S. Suppose that s2 ∈ S is in the neighbourhood
of s1 defined by N(s1x, s2x, z, t) > r and M(s1x, s2x, z, t) < 1 − r for some
r ∈ (0, 1) and t > 0. Now π(s, x) = sx. By continuity of π given ε > 0, for
each s ∈ S there is an open neighbourhood Us of s and a δs > 0 such that if
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s′ ∈ Us and y ∈ B(x, δs, t), then
N(s′y, sx, z, t) > ε and M(s′y, sx, z, t) < 1− ε
N(sx, s′x, z, t) > ε and M(sx, s′x, z, t) < 1− ε.
Therefore,
N(s′x, s′y, z, 3t) ≥ N(s′x, sx, z, t) ∗N(sx, s′y, z, t) ∗N(s′x, s′y, sx, t)

≥ ε ∗ ε ∗ ε > ε1 for some 0 < ε1 < 1,
M(s′x, s′y, z, 3t) ≤ M(s′x, sx, z, t) �M(sx, s′y, z, t) �M(s′x, s′y, sx, t)

≤ (1− ε) � (1− ε) � (1− ε) < ε2 for some 0 < ε2 < 1.
Taking ε′ = max{ε1, ε2} and t′ = 3t we have N(s′x, s′y, z, t′) > ε′ and
M(s′x, s′y, z, t′) < 1 − ε′. From the compactness of A it follows that there is
a δ > 0 such that if s′ ∈ S, N(x, y, z, t) > δ and M(x, y, z, t) < 1 − δ then
N(s′x, s′y, z, t′) > ε′ and M(s′x, s′y, z, t′) < 1− ε′. Hence x ∈ Eq(X). 2

Theorem 3.3. If a dynamical system (S, X) is TT, then Eq(X) ⊂ Trans(X).

Proof. Let x0 ∈ Eq(X) and y ∈ X. For the orbit Sx0 of x0 and the
r-neighbourhood B(y, r, t) = {z ∈ X : N(y, z, sx, t) > r, M(y, z, sx, t) < 1−r}
of y we have to show that Sx0 ∩B(y, r, t) 6= φ for r ∈ (0, 1) and t > 0.
Since x0 ∈ Eq(X), there exists a neighbourhood U of x0 such that
N(sx0, sx, z, t) > r and M(sx0, sx, z, t) < 1− r for some x, z ∈ U .
Since X is TT we can choose s0 ∈ S 3 s0U ∩ B(y, r, t) 6= φ. This means that
N(s0x, y, z, t) > r and M(s0x, y, z, t) < 1− r for some x, z ∈ U . Therefore,
N(s0x0, y, z, 3t) ≥ N(s0x0, s0x, z, t) ∗N(s0x, y, z, t) ∗N(s0x0, y, s0x, t)

≥ r ∗ r ∗ r > r1 for some 0 < r1 < 1,
M(s0x0, y, z, 3t) ≤ M(s0x0, s0x, z, t) �M(s0x, y, z, t) �M(s0x0, y, s0x, t)

≤ (1− r) � (1− r) � (1− r) < r2 for some 0 < r2 < 1.
Taking r′ = max{r1, r2} and t′ = 3t, we then have N(s0x0, y, z, t′) > r′ and
M(s0x0, y, z, t′) < 1− r′. Hence x0 ∈ Trans(X). 2

Theorem 3.4. Let S be a C-semigroup. If (S, X) is PT and Eq(X) 6= φ,
then Trans(X) ⊂ Eq(X), that is, every transitive point is an equicontinuous
point.

Proof. Let y ∈ Trans(X) and x ∈ Eq (X) be an equicontinuity point. We have
to show that y ∈Eq(X). Since x ∈ Eq (X) for given ε > 0 there is a neigh-
bourhood U(x) of x such that N(sx′′, sx′, z, t) > ε and M(sx′′, sx′, z, t) < 1− ε
for all (s, x′, x′′, z) ∈ S×U(x)×U(x)×U(x). Since y ∈ Trans(X) there exists
s0 ∈ S such that s0y ∈ U(x). Thus U(y) = s−1

0 U(x) is a neighbourhood of y.
Hence for each (s, y′, y′′, z) ∈ S ×U(y)×U(y)×U(y), N(ss0y

′, ss0y
′′, z, t) > ε

and M(ss0y
′, ss0y

′′, z, t) < 1− ε.
Since S is a C-semigroup the subset S = S\Ss0 is compact. By Theorem 3.2,
S acts equicontinuously on X. Hence we can choose a neighbourhood V (y) of
y such that for all (s, y′, y′′, z) ∈ S× V (y)× V (y)× V (y), N(sy′, sy′′, z, t) > ε
and M(sy′, sy′′, z, t) < 1 − ε. Then W = U(y) ∩ V (y) is a neighbourhood
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of y. Since S = Ss0 ∪ S, we have for each (s, y′, y′′, z) ∈ S × W × W × W ,
N(sy′, sy′′, z, t) > ε and M(sy′, sy′′, z, t) < 1− ε. This proves that y ∈ Eq(X)
and hence Trans(X) ⊂ Eq(X). 2

Theorem 3.5. Let S be a C-semigroup. If (S, X) is minimal and Eq(X) 6= φ,
then X is equicontinuous.

Proof. By definition of minimal, we have Trans(X) = X. Using Theorem 3.4,
if Eq(X) 6= φ then every transitive point is an equicontinuity point. Thus
Eq(X) = X. 2

Definition 3.6. (Sensitive dependence on initial conditions). A dynamical
system (S, X) has sensitive dependence on initial conditions or more briefly,
is sensitive, if ∃ ε ∈ (0, 1) and t > 0 such that for every x ∈ X and every
neighbourhood U of x, ∃ (s, y, z) ∈ S × U × U with N(sx, sy, z, t) < ε and
M(sx, sy, z, t) > 1 − ε. When (S, X) is not sensitive, we say that (S, X) is
nonsensitive.

Remark 3.7.
(1) The definition of sensitive dependence on initial conditions plays an

important role in classical chaotic systems. Note that the above form is
just a generalization of existing definition for (X, f) when
S = {fn : n = 1, 2, ...}.

(2) Spelling out the property of nonsensitive we have: for every ε ∈ (0, 1) and
t > 0 ∃ x ∈ X and a neighbourhood U of x, such that for each
(s, y, z) ∈ S × U × U , N(sx, sy, z, t) ≥ ε and M(sx, sy, z, t) ≤ 1− ε.
We observe that trivially (S, X) is nonsensitive whenever X has no
isolated points.

(3) Without loss of generality, we sometimes use the open ball B(x, r, t)
instead of the neighbourhood U of x in Definition 3.6.

Theorem 3.8. For a PT dynamical system (S, X) with no isolated points,
being nonsensitive is equivalent to the following property: for every ε ∈ (0, 1)
and t > 0, there exists a transitive point x0 ∈ X and a neighbourhood U
of x0 such that for every y ∈ U and every s ∈ S, N(sx0, sy, z, t) ≥ ε and
M(sx0, sy, z, t) ≤ 1− ε.

Proof. Let ε′ be given and let x and U be as in the definition of nonsensitive.
Since (S, X) is PT, there is a point x0 ∈ X whose orbit is dense, i.e., there exists
a s0 ∈ S such that s0x0 ∈ U . Denote x1 = s0x0. Then N(sx, sx1, z, t) ≥ ε′

and M(sx, sx1, z, t) ≤ 1− ε′.
On the other hand, ∃ r ∈ (0, 1) and t > 0 such that B(x, r, t) ⊂ U . Let
V = B(x, r, t). Then ∀ y ∈ V ⊂ U and s ∈ S, N(sx, sy, z, t) ≥ ε′ and
M(sx, sy, z, t) ≤ 1− ε′. Therefore,
N(sx1, sy, z, 3t) ≥ N(sx1, sx, z, t) ∗N(sx, sy, z, t) ∗N(sx1, sy, , sx, t)

≥ ε′ ∗ ε′ ∗ ε′ ≥ ε1 for some ε1 ∈ (0, 1) and
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M(sx1, sy, z, 3t) ≤ M(sx1, sx, z, t) �M(sx, sy, z, t) �M(sx1, sy, , sx, t)
≤ (1− ε′) � (1− ε′) � (1− ε′) ≤ ε2 for some ε2 ∈ (0, 1).

Taking ε = max{ε1, ε2} and t′ = 3t, N(sx1, sy, z, t′) ≥ ε and
M(sx1, sy, z, t′) ≤ 1 − ε. Since X has no isolated points, the point x1 is also
transitive and the proof is complete. 2

Theorem 3.9. Let S be a C-semigroup. Assume that a TT dynamical system
(S, X) is separable and second category. Then (S, X) is almost equicontinuous
if and only if it is nonsensitive.

Proof. Clearly an almost equicontinuous system is always nonsensitive. Con-
versely suppose that (S, X) is nonsensitive, for any ε ∈ (0, 1) ∃ x ∈ X and
a neighbourhood U of x such that for all (s, y, z) ∈ S × U × U and t > 0
N(sx, sy, z, t) ≥ ε and M(sx, sy, z, t) ≤ 1− ε.
Suppose that {Un}∞n=1 is a countable base, ∃ n0 ∈ N such that y ∈ Un0 ⊂ U .
Without loss of generality, we can assume that sUn ⊂ B(sx, 1/n, t), for all
(s, n) ∈ S × N. Let Vn = S−1Un and V =

⋂
n∈N

Vn.

Clearly every Vn is open and meets every open subset of X since (S, X) is TT.
This means that each Vn is dense in X. Since X is second category, by Baire
Theorem [14], V =

⋂
n∈N

Vn is also dense. Now it remains to show that

V ⊂ Eq (X). Given x ∈ V ∃ s0 ∈ S such that s0x ∈ Un. Let V = s−1
0 Un.

Hence for y ∈ V and each s = s′s0 ∈ Ss0 we have
N(sx, sy, z, t) = N(s′s0x, s′s0y, z, t) ≥ 1

n
≥ r1 for some r1 ∈ (0, 1) and

M(sx, sy, z, t) = M(s′s0x, s′s0y, z, t) ≤ 1− 1
n
≤ r2 for some r2 ∈ (0, 1).

Taking r = max{r1, r2}, N(sx, sy, z, t) ≥ r and M(sx, sy, z, t) ≤ 1 − r. But
S\Ss0 is compact because S is a C-semigroup. Then by Theorem 3.2 the set
S\Ss0 acts equicontinuously on X. This means that if W is an open neigh-
bourhood of x, for all y ∈ W and for each s ∈ S\Ss0, N(sx, sy, z, t) ≥ r and
M(sx, sy, z, t) ≤ 1 − r holds. Let O = W ∩ V be an open neighbourhood of
x. Then N(sx, sy, z, t) ≥ r and M(sx, sy, z, t) ≤ 1 − r for all s ∈ S and all
y ∈ O. Hence x ∈ Eq (X). This completes the proof. 2

4 Open Problems

1. Efforts can be made to apply this theory to fuzzy n-normed linear space in
particular to fuzzy 2-normed linear space.
2. We have discussed some types of transitivity in a dynamical system for intu-
itionistic fuzzy 2-metric space. One can work in this direction by generalizing
the concept of transitivity to include more cases and the same can be done for
F-Semigroup and C-Semigroup.
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