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Abstract

This paper presents some common fixed point theorems for
occasionally weakly compatible mappings in fuzzy metric spaces.
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1 Introduction

Fuzzy set was defined by Zadeh [27]. Kramosil and Michalek [15] introduced
fuzzy metric space, George and Veermani [7] modified the notion of fuzzy
metric spaces with the help of continuous t-norms. Many researchers have
obtained common fixed point theorems for mappings satisfying different types
of commutativity conditions. Vasuki [26] proved fixed point theorems for R-
weakly commutating mappings. Pant [19, 20, 21] introduced the new concept
reciprocally continuous mappings and established some common fixed point
theorems. Balasubramaniam et al.[5], have shown that Rhoades [23] open
problem on the existence of contractive definition which generates a fixed point
but does not force the mappings to be continuous at the fixed point, posses an
affirmative answer. Pant and Jha [21] obtained some anologus results proved
by Balasubramaniam et al. Recent literature on fixed point in fuzzy metric
space can be viewed in [1, 2, 3, 10, 17, 25].

This paper presents some common fixed point theorems for more general
commutative condition i.e. occasionally weakly compatible mappings in fuzzy
metric space.
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2 Preliminary Notes

Definition 2.1 [27] A fuzzy set A in X is a function with domain X and
values in [0, 1].

Definition 2.2 [24] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a con-
tinuous t-norms if * is satisfying conditions:
(i) ∗ is an commutative and associative;
(ii) ∗ is continuous;
(iii) a ∗ 1 = a for all a ∈ [0, 1];
(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

Definition 2.3 [7] A 3-tuple (X,M, ∗) is said to be a fuzzy metric space
if X is an arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set on
X2 × (0,∞) satisfying the following conditions, for all x, y, z ∈ X, s, t > 0,
(f1) M(x, y, t) > 0;
(f2) M(x, y, t) = 1 if and only if x = y
(f3) M(x, y, t) = M(y, x, t);
(f4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s);
(f5) M(x, y, ·) : (0,∞) → (0, 1] is continuous.

Then M is called a fuzzy metric on X. Then M(x, y, t) denotes the degree of
nearness between x and y with respect to t.

Example 2.4 (Induced fuzzy metric [7]) Let (X, d) be a metric space. De-
note a ∗ b = ab for all a, b ∈ [0, 1] and let Md be fuzzy sets on X2 × (0,∞)
defined as follows:

Md(x, y, t) =
t

t + d(x, y)
.

Then (X, Md, ∗) is a fuzzy metric space. We call this fuzzy metric induced by
a metric d as the standard intuitionistic fuzzy metric.

Definition 2.5 [7]: Let (X, M, ∗) be a fuzzy metric space. Then
(a) a sequence {xn} in X is said to converges to x in X if for each ε > 0 and
each t > 0, there exists n0 ∈ N such that M(xn, x, t) > 1− ε for all n ≥ n0.
(b) a sequence {xn} in X is said to be Cauchy if for each ε > 0 and each t > 0,
there exists n0 ∈ N such that M(xn, xm, t) > 1− ε for all n, m ≥ n0.
(c) A fuzzy metric space in which every Cauchy sequence is convergent is said
to be complete.

Definition 2.6 [26] A pair of self-mappings (f, g) of a fuzzy metric space
(X, M, ∗) is said to be
(i) weakly commuting if M(fgx, gfx, t) ≥ M(fx, gx, t) for all x ∈ X and
t > 0.
(ii) R-weakly commuting if there exists some R > 0 such that M(fgx, gfx, t) ≥
M(fx, gx, t/R) for all x ∈ X and t > 0.
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Definition 2.7 [11] Two self mappings f and g of a fuzzy metric space
(X, M, ∗) are called compatible if limn→∞M(fgxn, gfxn, t) = 1 whenever {xn}
is a sequence in X such that limn→∞fxn = limn→∞ gxn = x for some x in X.

Definition 2.8 [5]: Two self maps f and g of a fuzzy metric space (X,M, ∗)
are called reciprocally continuous on X if limn→∞fgxn = fx and limn→∞ gfxn =
gx whenever {xn} is a sequence in X such that limn→∞ fxn = limn→∞ gxn = x
for some x in X.

Lemma 2.9 Let (X, M, ∗) be a fuzzy metric space. If there exists q ∈ (0, 1)
such that M(x, y, qt) ≥ M(x, y, t) for all x, y ∈ X and t > 0, then x = y.

Definition 2.10 Let X be a set, f, g selfmaps of X. A point x in X is
called a coincidence point of f and g iff fx = gx. We shall call w = fx = gx
a point of coincidence of f and g.

Definition 2.11 [12] A pair of maps S and T is called weakly compatible
pair if they commute at coincidence points.

The concept occasionally weakly compatible is introduced by M. Al-Thagafi
and Naseer Shahzad [4]. It is stated as follows.

Definition 2.12 Two self maps f and g of a set X are occasionally weakly
compatible (owc) iff there is a point x in X which is a coincidence point of f
and g at which f and g commute.

A. Al-Thagafi and Naseer Shahzad [4] shown that occasionally weakly is
weakly compatible but converse is not true.

Example 2.13 [4] Let R be the usual metric space. Define S, T : R → R
by Sx = 2x and Tx = x2 for all x ∈ R. Then Sx = Tx for x = 0, 2 but
ST0 = TS0, and ST2 6= TS2. S and T are occasionally weakly compatible
self maps but not weakly compatible

Lemma 2.14 [13] Let X be a set, f, g owc self maps of X. If f and g have
a unique point of coincidence, w = fx = gx, then w is the unique common
fixed point of f and g.

3 Main Results

Theorem 3.1 Let (X, M, ∗) be a complete fuzzy metric space and let A, B, S
and T be self-mappings of X. Let the pairs {A, S} and {B, T} be owc. If there
exists q ∈ (0, 1) such that

M(Ax, By, qt) ≥ min{M(Sx, Ty, t), M(Sx, Ax, t), M(By, Ty, t),

M(Ax, Ty, t), M(By, Sx, t)} (1)
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for all x, y ∈ X and for all t > 0, then there exists a unique point w ∈ X
such that Aw = Sw = w and a unique point z ∈ X such that Bz = Tz = z.
Moreover, z = w, so that there is a unique common fixed point of A, B, S and
T .

Proof: Let the pairs {A, S} and {B, T} be owc, so there are points x, y ∈ X
such that Ax = Sx and By = Ty. We claim that Ax = By. If not, by
inequality (1)

M(Ax, By, qt) ≥ min{M(Sx, Ty, t), M(Sx, Ax, t), M(By, Ty, t),

M(Ax, Ty, t), M(By, Sx, t)}
= min{M(Ax, By, t), M(Ax, Ax, t), M(By,By, t),

M(Ax, By, t), M(By,Ax, t)}
= M(Ax, By, t).

Therefore Ax = By, i.e. Ax = Sx = By = Ty. Suppose that there is a
another point z such that Az = Sz then by (1) we have Az = Sz = By = Ty,
so Ax = Az and w = Ax = Sx is the unique point of coincidence of A and S.
By Lemma 2.14 w is the only common fixed point of A and S. Similarly there
is a unique point z ∈ X such that z = Bz = Tz.

Assume that w 6= z. We have

M(w, z, qt) = M(Aw, Bz, qt)

≥ min{M(Sw, Tz, t), M(Sw, Az, t), M(Bz, Tz, t),

M(Aw, Tz, t), M(Bz, Sw, t)}
= min{M(w, z, t), M(w, z, t), M(z, z, t),

M(w, z, t), M(z, w, t)}
= M(w, z, t)

Therefore we have z = w by Lemma 2.14 and z is a common fixed point of
A, B, S and T . The uniqueness of the fixed point holds from (1).

Theorem 3.2 let (X, M, ∗) be a complete fuzzy metric space and let A, B, S
and T be self-mappings of X. Let the pairs {A, S} and {B, T} be owc. If there
exists q ∈ (0, 1) such that

M(Ax, By, qt) ≥ φ(min{M(Sx, Ty, t), M(Sx, Ax, t), M(By, Ty, t),

M(Ax, Ty, t), M(By, Sx, t)}) (2)

for all x, y ∈ X and φ : [0, 1] → [0, 1] such that φ(t) > t for all 0 < t < 1, then
there exists a unique common fixed point of A, B, S and T .

Proof: The proof follows from Theorem 3.1.
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Theorem 3.3 let (X, M, ∗) be a complete fuzzy metric space and let A, B, S
and T be self-mappings of X. Let the pairs {A, S} and {B, T} be owc. If If
there exists q ∈ (0, 1) such that

M(Ax, By, qt) ≥ φ(M(Sx, Ty, t), M(Sx,Ax, t), M(By, Ty, t),

M(Ax, Ty, t), M(By, Sx, t)) (3)

for all x, y ∈ X and φ : [0, 1]5 → [0, 1] such that φ(t, 1, 1, t, t) > t for all
0 < t < 1, then there exists a unique common fixed point of A, B, S and T .

Proof: Let the pairs {A, S} and {B, T} are owc, there are points point x, y ∈
X such that Ax = Sx and By = Ty. We claim that Ax = By. By inequality
(3) we have

M(Ax, By, qt) ≥ φ(M(Sx, Ty, t), M(Sx,Ax, t), M(By, Ty, t),

M(Ax, Ty, t), M(By, Sx, t))

= φ(M(Ax, By, t), M(Ax, Ax, t), M(By,By, t),

M(Ax, By, t), M(By,Ax, t))

= φ(M(Ax, By, t), 1, 1, M(Ax, By, t), M(By,Ax, t))

> M(Ax, By, t).

a contradiction, therefore Ax = By, i.e. Ax = Sx = By = Ty. Suppose that
there is a another point z such that Az = Sz then by (3) we have Az = Sz =
By = Ty, so Ax = Az and w = Ax = Tx is the unique point of coincidence
of A and T . By Lemma 2.14 w is a unique common fixed point of A and S.
Similarly there is a unique point z ∈ X such that z = Bz = Tz. Thus z is a
common fixed point of A, B, S and T . The uniqueness of the fixed point holds
from (3).

Theorem 3.4 let (X, M, ∗) be a complete fuzzy metric space and let A, B, S
and T be self-mappings of X. Let the pairs {A, S} and {B, T} are owc. If
there exists a point q ∈ (0, 1) for all x, y ∈ X and t > 0

M(Ax, By, qt) ≥ M(Sx, Ty, t) ∗M(Ax, Sx, t) ∗M(By, Ty, t)

∗M(Ax, Ty, t), (4)

then there exists a unique common fixed point of A, B, S and T .

Proof: Let the pairs {A, S} and {B, T} are owc, there are points x, y ∈ X
such that Ax = Sx and By = Ty. We claim that Ax = By. By inequality (4)
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we have

M(Ax, By, qt) ≥ M(Sx, Ty, t) ∗M(Ax, Sx, t) ∗M(By, Ty, t)

∗M(Ax, Ty, t)

= M(Ax, By, t) ∗M(Ax, Ax, t) ∗M(By,By, t)

∗M(Ax, By, t)

≥ M(Ax, By, t) ∗ 1 ∗ 1 ∗M(Ax, By, t)

≥ M(Ax, By, t)

Thus we have Ax = By, i.e. Ax = Sx = By = Ty. Suppose that there is a
another point z such that Az = Sz then by (4) we have Az = Sz = By = Ty,
so Ax = Az and w = Ax = Sx is the unique point of coincidence of A and S.
Similarly there is a unique point z ∈ X such that z = Bz = Tz. Thus w is a
common fixed point of A, B, S and T .

Corollary 3.5 let (X, M, ∗) be a complete fuzzy metric space and let A, B, S
and T be self-mappings of X. Let the pairs {A, S} and {B, T} are owc. If
there exists a point q ∈ (0, 1) for all x, y ∈ X and t > 0

M(Ax, By, qt) ≥ M(Sx, Ty, t) ∗M(Ax, Sx, t) ∗M(By, Ty, t)

∗M(By, Sx, 2t) ∗M(Ax, Ty, t), (5)

then there exists a unique common fixed point of A, B, S and T .

Proof: We have

M(Ax, By, qt) ≥ M(Sx, Ty, t) ∗M(Ax, Sx, t) ∗M(By, Ty, t)

∗M(By, Sx, 2t) ∗M(Ax, Ty, t)

≥ M(Sx, Ty, t) ∗M(Ax, Sx, t) ∗M(By, Ty, t)

∗M(Sx, Ty, t) ∗M(Ty, By, t) ∗M(Ax, Ty, t)

≥ M(Sx, Ty, t) ∗M(Ax, Sx, t) ∗M(By, Ty, t)

∗M(Ax, Ty, t)

and therefore from Theorem 3.4, A, B, S and T have a common fixed point.

Corollary 3.6 let (X, M, ∗) be a complete fuzzy metric space and let A, B, S
and T be self-mappings of X. Let the pairs {A, S} and {B, T} are owc. If
there exists a point q ∈ (0, 1) for all x, y ∈ X and t > 0

M(Ax, By, qt) ≥ M(Sx, Ty, t), (6)

then there exists a unique common fixed point of A, B, S and T .

Proof: The Proof follows from Corollary 3.5
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Theorem 3.7 let (X,M, ∗) be a complete fuzzy metric space. Then con-
tinuous self mappings S and T of X have a common fixed point in X if and
only if there exists a self mapping A of X such that the following conditions
are satisfied
(i) AX ⊂ TX ∩ SX
(ii) the pairs {A, S} and {A, T} are weakly compatible,
(iii) there exists a point q ∈ (0, 1) such that for every x, y ∈ X and t > 0

M(Ax, Ay, qt) ≥ M(Sx, Ty, t) ∗M(Ax, Sx, t) ∗M(Ay, Ty, t)

∗M(Ax, Ty, t) (7)

Then A, S and T have a unique common fixed point.

Proof: Since compatible implies owc, the result follows from 3.4

Theorem 3.8 let (X, M, ∗) be a complete fuzzy metric space and let A and
B be self-mappings of X. Let the A and B are owc. If there exists a point
q ∈ (0, 1) for all x, y ∈ X and t > 0

M(Sx, Sy, qt) ≥ αM(Ax, Ay, t) + β min{M(Ax, Ay, t),

M(Sx, Ax, t), M(Sy,Ay, t)} (8)

for all x, y ∈ X, where α, β, > 0, α + β > 1. Then A and S have a unique
common fixed point.

Proof: Let the pairs {A, S} be owc, so there is a point x ∈ X such that
Ax = Sx. Suppose that there exist another point y ∈ X for which Ay = Sy.
We claim that Sx = Sy. By inequality (8) we have

M(Sx, Sy, qt) ≥ αM(Ax, Ay, t) + β min{M(Ax, Ay, t),

M(Sx, Ax, t), M(Sy,Ay, t)}
= αM(Sx, Sy, t) + β min{M(Sx, Sy, t),

M(Sx, Sx, t), M(Sy, Sy, t)}
= (α + β)M(Sx, Sy, t)

a contradiction, since (α + β) > 1. Therefore Sx = Sy. Therefore Ax = Ay
and Ax is unique. From Lemma 2.14, A and S have a unique fixed point.

Question 1: Are the above mentioned theorems true in a generalized fuzzy
metric space?
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