Int. J. Open Problems Compt. Math., Vol. 3, No. 2, June 2010 ISSN 1998-6262; Copyright ©ICSRS Publication, 2010 www.i-csrs.org

On Fixed Point Theorems in Fuzzy Metric Spaces

C. T. Aage and J. N. Salunke

School of Mathematical Sciences, N. M. U., Jalgaon,India. e-mail:caage17@gmail.com School of Mathematical Sciences, N. M. U., Jalgaon, India. e-mail:drjnsalunke@gmail.com

Abstract

This paper presents some common fixed point theorems for occasionally weakly compatible mappings in fuzzy metric spaces.

Keywords: Occasionally weakly compatible mappings, fuzzy metric space.

1 Introduction

Fuzzy set was defined by Zadeh [27]. Kramosil and Michalek [15] introduced fuzzy metric space, George and Veermani [7] modified the notion of fuzzy metric spaces with the help of continuous t-norms. Many researchers have obtained common fixed point theorems for mappings satisfying different types of commutativity conditions. Vasuki [26] proved fixed point theorems for Rweakly commutating mappings. Pant [19, 20, 21] introduced the new concept reciprocally continuous mappings and established some common fixed point theorems. Balasubramaniam et al.[5], have shown that Rhoades [23] open problem on the existence of contractive definition which generates a fixed point but does not force the mappings to be continuous at the fixed point, posses an affirmative answer. Pant and Jha [21] obtained some anologus results proved by Balasubramaniam et al. Recent literature on fixed point in fuzzy metric space can be viewed in [1, 2, 3, 10, 17, 25].

This paper presents some common fixed point theorems for more general commutative condition i.e. occasionally weakly compatible mappings in fuzzy metric space.

2 Preliminary Notes

Definition 2.1 [27] A fuzzy set A in X is a function with domain X and values in [0, 1].

Definition 2.2 [24] A binary operation $* : [0,1] \times [0,1] \rightarrow [0,1]$ is a continuous t-norms if * is satisfying conditions:

- (i) * is an commutative and associative;
- (ii) * is continuous;
- (*iii*) a * 1 = a for all $a \in [0, 1]$;

(iv) $a * b \le c * d$ whenever $a \le c$ and $b \le d$, and $a, b, c, d \in [0, 1]$.

Definition 2.3 [7] A 3-tuple (X, M, *) is said to be a fuzzy metric space if X is an arbitrary set, * is a continuous t-norm and M is a fuzzy set on $X^2 \times (0, \infty)$ satisfying the following conditions, for all $x, y, z \in X, s, t > 0$, $(f1) \ M(x, y, t) > 0$; $(f2) \ M(x, y, t) = 1$ if and only if x = y $(f3) \ M(x, y, t) = M(y, x, t)$;

(f4) $M(x, y, t) * M(y, z, s) \le M(x, z, t+s);$

(f5) $M(x, y, \cdot) : (0, \infty) \to (0, 1]$ is continuous.

Then M is called a fuzzy metric on X. Then M(x, y, t) denotes the degree of nearness between x and y with respect to t.

Example 2.4 (Induced fuzzy metric [7]) Let (X, d) be a metric space. Denote a * b = ab for all $a, b \in [0, 1]$ and let M_d be fuzzy sets on $X^2 \times (0, \infty)$ defined as follows:

$$M_d(x, y, t) = \frac{t}{t + d(x, y)}.$$

Then $(X, M_d, *)$ is a fuzzy metric space. We call this fuzzy metric induced by a metric d as the standard intuitionistic fuzzy metric.

Definition 2.5 [7]: Let (X, M, *) be a fuzzy metric space. Then (a) a sequence $\{x_n\}$ in X is said to converges to x in X if for each $\epsilon > 0$ and each t > 0, there exists $n_0 \in N$ such that $M(x_n, x, t) > 1 - \epsilon$ for all $n \ge n_0$. (b) a sequence $\{x_n\}$ in X is said to be Cauchy if for each $\epsilon > 0$ and each t > 0, there exists $n_0 \in N$ such that $M(x_n, x_m, t) > 1 - \epsilon$ for all $n, m \ge n_0$.

(c) A fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

Definition 2.6 [26] A pair of self-mappings (f, g) of a fuzzy metric space (X, M, *) is said to be

(i) weakly commuting if $M(fgx, gfx, t) \ge M(fx, gx, t)$ for all $x \in X$ and t > 0.

(ii) R-weakly commuting if there exists some R > 0 such that $M(fgx, gfx, t) \ge M(fx, gx, t/R)$ for all $x \in X$ and t > 0.

Definition 2.7 [11] Two self mappings f and g of a fuzzy metric space (X, M, *) are called compatible if $\lim_{n\to\infty} M(fgx_n, gfx_n, t) = 1$ whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = x$ for some x in X.

Definition 2.8 [5]: Two self maps f and g of a fuzzy metric space (X, M, *)are called reciprocally continuous on X if $\lim_{n\to\infty} fgx_n = fx$ and $\lim_{n\to\infty} gfx_n = gx$ whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = x$ for some x in X.

Lemma 2.9 Let (X, M, *) be a fuzzy metric space. If there exists $q \in (0, 1)$ such that $M(x, y, qt) \ge M(x, y, t)$ for all $x, y \in X$ and t > 0, then x = y.

Definition 2.10 Let X be a set, f, g selfmaps of X. A point x in X is called a coincidence point of f and g iff fx = gx. We shall call w = fx = gx a point of coincidence of f and g.

Definition 2.11 [12] A pair of maps S and T is called weakly compatible pair if they commute at coincidence points.

The concept occasionally weakly compatible is introduced by M. Al-Thagafi and Naseer Shahzad [4]. It is stated as follows.

Definition 2.12 Two self maps f and g of a set X are occasionally weakly compatible (owc) iff there is a point x in X which is a coincidence point of f and g at which f and g commute.

A. Al-Thagafi and Naseer Shahzad [4] shown that occasionally weakly is weakly compatible but converse is not true.

Example 2.13 [4] Let R be the usual metric space. Define $S, T : R \to R$ by Sx = 2x and $Tx = x^2$ for all $x \in R$. Then Sx = Tx for x = 0, 2 but ST0 = TS0, and $ST2 \neq TS2$. S and T are occasionally weakly compatible self maps but not weakly compatible

Lemma 2.14 [13] Let X be a set, f, g owc self maps of X. If f and g have a unique point of coincidence, w = fx = gx, then w is the unique common fixed point of f and g.

3 Main Results

Theorem 3.1 Let (X, M, *) be a complete fuzzy metric space and let A, B, Sand T be self-mappings of X. Let the pairs $\{A, S\}$ and $\{B, T\}$ be owc. If there exists $q \in (0, 1)$ such that

$$M(Ax, By, qt) \ge \min\{M(Sx, Ty, t), M(Sx, Ax, t), M(By, Ty, t), M(Ax, Ty, t), M(By, Sx, t)\}$$
(1)

for all $x, y \in X$ and for all t > 0, then there exists a unique point $w \in X$ such that Aw = Sw = w and a unique point $z \in X$ such that Bz = Tz = z. Moreover, z = w, so that there is a unique common fixed point of A, B, S and T.

Proof: Let the pairs $\{A, S\}$ and $\{B, T\}$ be owe, so there are points $x, y \in X$ such that Ax = Sx and By = Ty. We claim that Ax = By. If not, by inequality (1)

$$\begin{split} M(Ax, By, qt) &\geq \min\{M(Sx, Ty, t), M(Sx, Ax, t), M(By, Ty, t), \\ M(Ax, Ty, t), M(By, Sx, t)\} \\ &= \min\{M(Ax, By, t), M(Ax, Ax, t), M(By, By, t), \\ M(Ax, By, t), M(By, Ax, t)\} \\ &= M(Ax, By, t). \end{split}$$

Therefore Ax = By, i.e. Ax = Sx = By = Ty. Suppose that there is a another point z such that Az = Sz then by (1) we have Az = Sz = By = Ty, so Ax = Az and w = Ax = Sx is the unique point of coincidence of A and S. By Lemma 2.14 w is the only common fixed point of A and S. Similarly there is a unique point $z \in X$ such that z = Bz = Tz.

Assume that $w \neq z$. We have

$$\begin{split} M(w, z, qt) &= M(Aw, Bz, qt) \\ &\geq \min\{M(Sw, Tz, t), M(Sw, Az, t), M(Bz, Tz, t), \\ &M(Aw, Tz, t), M(Bz, Sw, t)\} \\ &= \min\{M(w, z, t), M(w, z, t), M(z, z, t), \\ &M(w, z, t), M(z, w, t)\} \\ &= M(w, z, t) \end{split}$$

Therefore we have z = w by Lemma 2.14 and z is a common fixed point of A, B, S and T. The uniqueness of the fixed point holds from (1).

Theorem 3.2 let (X, M, *) be a complete fuzzy metric space and let A, B, Sand T be self-mappings of X. Let the pairs $\{A, S\}$ and $\{B, T\}$ be owc. If there exists $q \in (0, 1)$ such that

$$M(Ax, By, qt) \ge \phi(\min\{M(Sx, Ty, t), M(Sx, Ax, t), M(By, Ty, t), M(Ax, Ty, t), M(By, Sx, t)\})$$

$$(2)$$

for all $x, y \in X$ and $\phi : [0, 1] \rightarrow [0, 1]$ such that $\phi(t) > t$ for all 0 < t < 1, then there exists a unique common fixed point of A, B, S and T.

Proof: The proof follows from Theorem 3.1.

On Fixed Point Theorems for Occasionally Weakly Compatible Mappings 127

Theorem 3.3 let (X, M, *) be a complete fuzzy metric space and let A, B, Sand T be self-mappings of X. Let the pairs $\{A, S\}$ and $\{B, T\}$ be owc. If If there exists $q \in (0, 1)$ such that

$$M(Ax, By, qt) \ge \phi(M(Sx, Ty, t), M(Sx, Ax, t), M(By, Ty, t), M(Ax, Ty, t), M(By, Sx, t))$$
(3)

for all $x, y \in X$ and $\phi : [0,1]^5 \to [0,1]$ such that $\phi(t,1,1,t,t) > t$ for all 0 < t < 1, then there exists a unique common fixed point of A, B, S and T.

Proof: Let the pairs $\{A, S\}$ and $\{B, T\}$ are owe, there are points point $x, y \in X$ such that Ax = Sx and By = Ty. We claim that Ax = By. By inequality (3) we have

$$\begin{split} M(Ax, By, qt) &\geq \phi(M(Sx, Ty, t), M(Sx, Ax, t), M(By, Ty, t), \\ & M(Ax, Ty, t), M(By, Sx, t)) \\ &= \phi(M(Ax, By, t), M(Ax, Ax, t), M(By, By, t), \\ & M(Ax, By, t), M(By, Ax, t)) \\ &= \phi(M(Ax, By, t), 1, 1, M(Ax, By, t), M(By, Ax, t)) \\ &> M(Ax, By, t). \end{split}$$

a contradiction, therefore Ax = By, i.e. Ax = Sx = By = Ty. Suppose that there is a another point z such that Az = Sz then by (3) we have Az = Sz =By = Ty, so Ax = Az and w = Ax = Tx is the unique point of coincidence of A and T. By Lemma 2.14 w is a unique common fixed point of A and S. Similarly there is a unique point $z \in X$ such that z = Bz = Tz. Thus z is a common fixed point of A, B, S and T. The uniqueness of the fixed point holds from (3).

Theorem 3.4 let (X, M, *) be a complete fuzzy metric space and let A, B, Sand T be self-mappings of X. Let the pairs $\{A, S\}$ and $\{B, T\}$ are owc. If there exists a point $q \in (0, 1)$ for all $x, y \in X$ and t > 0

$$M(Ax, By, qt) \ge M(Sx, Ty, t) * M(Ax, Sx, t) * M(By, Ty, t)$$

* $M(Ax, Ty, t),$ (4)

then there exists a unique common fixed point of A, B, S and T.

Proof: Let the pairs $\{A, S\}$ and $\{B, T\}$ are owe, there are points $x, y \in X$ such that Ax = Sx and By = Ty. We claim that Ax = By. By inequality (4)

we have

$$M(Ax, By, qt) \ge M(Sx, Ty, t) * M(Ax, Sx, t) * M(By, Ty, t)$$

$$* M(Ax, Ty, t)$$

$$= M(Ax, By, t) * M(Ax, Ax, t) * M(By, By, t)$$

$$* M(Ax, By, t)$$

$$\ge M(Ax, By, t) * 1 * 1 * M(Ax, By, t)$$

$$\ge M(Ax, By, t)$$

Thus we have Ax = By, i.e. Ax = Sx = By = Ty. Suppose that there is a another point z such that Az = Sz then by (4) we have Az = Sz = By = Ty, so Ax = Az and w = Ax = Sx is the unique point of coincidence of A and S. Similarly there is a unique point $z \in X$ such that z = Bz = Tz. Thus w is a common fixed point of A, B, S and T.

Corollary 3.5 let (X, M, *) be a complete fuzzy metric space and let A, B, Sand T be self-mappings of X. Let the pairs $\{A, S\}$ and $\{B, T\}$ are owc. If there exists a point $q \in (0, 1)$ for all $x, y \in X$ and t > 0

$$M(Ax, By, qt) \ge M(Sx, Ty, t) * M(Ax, Sx, t) * M(By, Ty, t)$$

*
$$M(By, Sx, 2t) * M(Ax, Ty, t),$$
 (5)

then there exists a unique common fixed point of A, B, S and T.

Proof: We have

$$\begin{split} M(Ax, By, qt) &\geq M(Sx, Ty, t) * M(Ax, Sx, t) * M(By, Ty, t) \\ &\quad * M(By, Sx, 2t) * M(Ax, Ty, t) \\ &\geq M(Sx, Ty, t) * M(Ax, Sx, t) * M(By, Ty, t) \\ &\quad * M(Sx, Ty, t) * M(Ty, By, t) * M(Ax, Ty, t) \\ &\geq M(Sx, Ty, t) * M(Ax, Sx, t) * M(By, Ty, t) \\ &\quad * M(Ax, Ty, t) \end{split}$$

and therefore from Theorem 3.4, A, B, S and T have a common fixed point.

Corollary 3.6 let (X, M, *) be a complete fuzzy metric space and let A, B, Sand T be self-mappings of X. Let the pairs $\{A, S\}$ and $\{B, T\}$ are owc. If there exists a point $q \in (0, 1)$ for all $x, y \in X$ and t > 0

$$M(Ax, By, qt) \ge M(Sx, Ty, t), \tag{6}$$

then there exists a unique common fixed point of A, B, S and T.

Proof: The Proof follows from Corollary 3.5

On Fixed Point Theorems for Occasionally Weakly Compatible Mappings 129

Theorem 3.7 let (X, M, *) be a complete fuzzy metric space. Then continuous self mappings S and T of X have a common fixed point in X if and only if there exists a self mapping A of X such that the following conditions are satisfied

 $(i) AX \subset TX \cap SX$

(ii) the pairs $\{A, S\}$ and $\{A, T\}$ are weakly compatible,

(iii) there exists a point $q \in (0, 1)$ such that for every $x, y \in X$ and t > 0

$$M(Ax, Ay, qt) \ge M(Sx, Ty, t) * M(Ax, Sx, t) * M(Ay, Ty, t)$$

* M(Ax, Ty, t) (7)

Then A, S and T have a unique common fixed point.

Proof: Since compatible implies owc, the result follows from 3.4

Theorem 3.8 let (X, M, *) be a complete fuzzy metric space and let A and B be self-mappings of X. Let the A and B are owc. If there exists a point $q \in (0, 1)$ for all $x, y \in X$ and t > 0

$$M(Sx, Sy, qt) \ge \alpha M(Ax, Ay, t) + \beta \min\{M(Ax, Ay, t), M(Sx, Ax, t), M(Sy, Ay, t)\}$$
(8)

for all $x, y \in X$, where $\alpha, \beta, > 0, \alpha + \beta > 1$. Then A and S have a unique common fixed point.

Proof: Let the pairs $\{A, S\}$ be owe, so there is a point $x \in X$ such that Ax = Sx. Suppose that there exist another point $y \in X$ for which Ay = Sy. We claim that Sx = Sy. By inequality (8) we have

$$\begin{split} M(Sx,Sy,qt) &\geq \alpha M(Ax,Ay,t) + \beta \min\{M(Ax,Ay,t), \\ M(Sx,Ax,t), M(Sy,Ay,t)\} \\ &= \alpha M(Sx,Sy,t) + \beta \min\{M(Sx,Sy,t), \\ M(Sx,Sx,t), M(Sy,Sy,t)\} \\ &= (\alpha + \beta)M(Sx,Sy,t) \end{split}$$

a contradiction, since $(\alpha + \beta) > 1$. Therefore Sx = Sy. Therefore Ax = Ay and Ax is unique. From Lemma 2.14, A and S have a unique fixed point.

Question 1: Are the above mentioned theorems true in a generalized fuzzy metric space?

ACKNOWLEDGEMENTS. The authors would like to express their sincere appreciation to the referees for their very helpful suggestions and many kind comments.

References

- C. T. Aage, J. N. Salunke,"Common Fixed Point Theorems in Fuzzy Metric Spaces", International Journal of Pure and Applied Mathematics, 56(2), 2009, pp 155-164.
- [2] C. T. Aage, J. N. Salunke, "Some Fixed Point Theorems in Fuzzy Metric Spaces", International Journal of Pure and Applied Mathematics, 56(3) 2009, pp 311-320.
- [3] C. T. Aage, J. N. Salunke,"On Fixed Point Theorems in Fuzzy Metric Spaces Using A Control Function", Submitted.
- [4] A. Al-Thagafi and Naseer Shahzad, Generalized I-Nonexpansive Selfmaps and Invariant Approximations, Acta Mathematica Sinica, English Series May, 2008, Vol. 24, No. 5, pp. 867876.
- [5] P. Balasubramaniam, S. Muralisankar, R.P. Pant, "Common fixed points of four mappings in a fuzzy metric space", J. Fuzzy Math. 10(2) (2002), 379-384.
- [6] Y.J. Cho, H.K. Pathak, S.M. Kang, J.S. Jung, "Common fixed points of compatible maps of type (A) on fuzzy metric spaces", *Fuzzy Sets and* Systems 93 (1998), 99-111.
- [7] A. George, P. Veeramani, "On some results in fuzzy metric spaces", Fuzzy Sets and Systems, 64 (1994), 395-399.
- [8] M. Grabiec, "Fixed points in fuzzy metric spaces", Fuzzy Sets and Systems 27 (1988), 385-389.
- [9] O. Hadzic, "Common fixed point theorems for families of mapping in complete metric space", *Math. Japon.* 29 (1984), 127-134.
- [10] Mohd. Imdad and Javid Ali, "Some common fixed point theorems in fuzzy metric spaces", *Mathematical Communications* 11(2006), 153-163 153.
- [11] G. Jungck, "Compatible mappings and common fixed points (2)", Internat. J. Math. Math. Sci. (1988), 285-288.
- [12] G. Jungck and B. E. Rhoades, "Fixed Point for Set Valued functions without Continuity", Indian J. Pure Appl. Math., 29(3), (1998), pp.771-779.
- [13] G. Jungck and B. E. Rhoades, "Fixed Point Theorems for Occasionally Weakly compatible Mappings", *Fixed Point Theory*, Volume 7, No. 2, 2006, 287-296.

- [14] G. Jungck and B. E. Rhoades, "Fixed Point Theorems for Occasionally Weakly compatible Mappings", Erratum, *Fixed Point Theory*, Volume 9, No. 1, 2008, 383-384.
- [15] O. Kramosil and J. Michalek, "Fuzzy metric and statistical metric spaces", *Kybernetika*, 11 (1975), 326-334.
- [16] S. Kutukcu, "A fixed point theorem for contraction type mappings in Menger spaces", Am. J. Appl. Sci. 4(6) (2007), 371-373.
- [17] Servet Kutukcu, Sushil Sharma1 and Hanifi Tokgoz, "A Fixed Point Theorem in Fuzzy Metric Spaces", Int. Journal of Math. Analysis, Vol. 1, 2007, no. 18, 861 - 872.
- [18] S.N. Mishra, "Common fixed points of compatible mappings in PMspaces", Math. Japon. 36 (1991), 283-289.
- [19] R.P. Pant, "Common fixed points of four mappings", Bull. Cal. Math. Soc. 90 (1998), 281-286.
- [20] R.P. Pant, "Common fixed point theorems for contractive maps", J. Math. Anal. Appl. 226 (1998), 251-258.
- [21] R.P. Pant, K. Jha, "A remark on common fixed points of four mappings in a fuzzy metric space", J. Fuzzy Math. 12(2) (2004), 433-437.
- [22] H. K.Pathak and Prachi Singh, "Common Fixed Point Theorem for Weakly Compatible Mapping", *International Mathematical Forum*, 2, 2007, no. 57, 2831 - 2839.
- [23] B.E. Rhoades, "Contractive definitions and continuity", Contemporary Math. 72 (1988), 233-245.
- [24] B. Schweizer and A. Sklar, "Statistical metric spaces", Pacific J. Math. 10(1960), 313-334.
- [25] Seong Hoon Cho, "On common fixed point in fuzzy metric space", Int. Math. Forum, 1, 2006, 10, 471-479.
- [26] R. Vasuki, Common fixed points for R-weakly commuting maps in fuzzy metric spaces, Indian J. Pure Appl. Math. 30 (1999), 419-423.
- [27] L.A. Zadeh, Fuzzy sets, Inform and Control 8 (1965), 338-353.