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Abstract

This paper is motivated by an open problem posed by Senthil
Kumar and Arumuganathan in their paper published in June
2009 [10]. We study the steady state behavior of an M/G/1 re-
trial queue with non-persistent customers, two phases of het-
erogeneous service and different vacation policies. We con-
sider the case where the customer after obtaining the first
essential service may or may not opt for a second optional
service. In [10], the authors have taken the interretrial times
to be exponentially distributed. In this paper, we consider a
general retrial time distribution with a constant retrial policy.
We have obtained the steady state probability generating func-
tion of the system size and the orbit size. Also, we obtain
expressions for the performance measures of the system. We
discuss some particular cases.

Keywords: Retrial queue, constant retrial policy, non-persistent customers,
second phase of optional service, different vacation policies.

1 Introduction

This paper deals with a single server retrial queue in which the retrial time is
governed by a non exponential distribution. Retrial queueing systems permit
no waiting, in the normal sense. Instead, a customer who finds all servers
busy upon arrival, is obliged to leave the service area and to come back to the
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system after a random amount of time. Between retrials, a customer is said
to be in orbit. These queueing systems are appropriate for communication
networks, where, a customer upon getting a busy signal, tries his luck again at
a later time. Falin and Templeton [6] proposed the fundamental methods and
results of this topic. A comprehensive bibliography is provided by Artalejo [1]
and [2]

Fayolle [8] investigated an M/M/1 retrial queue with a constant retrial
policy, where, the customers in the retrial group form a queue and only the
customer at the head of the queue can request for service with a constant
rate. Further, he assumed that the retrial times are exponentially distributed
random variables. Farahmand [7] generalized this model for an M/G/1 queue-
ing system. Artalejo [3] introduced the concept of vacations under a constant
retrial policy. Gomez-Corral [9] generalized the results of Farahmand by con-
sidering the case where the retrial time is also governed by a generalized dis-
tribution.

Choudhury [4] investigated an M/G/1 retrial queue with an additional
phase of second service and general retrial times with a constant retrial policy.
The model with generalized retrial times arises naturally in problems where
the server is required to search for customers, that is, this policy is related to
many service systems where, after each service completion, the processor will
spend a random amount of time in order to find the next item to be processed.
The motivation for such types of models comes from Computer and Communi-
cation networks, where massages are processed in two stages by a single server.
Doshi [5] recognized its applications in a distributed system, where control of
two phase execution is required by a central server.

Senthilkumar and Arumuganthan [10] considered an M/G/1 retrial queue
with two essential phases of service, exponentially distributed interretrial times,
non-persistent customers and different vacation policies. They have mentioned
in their paper [10] that it would be an interesting problem to generalize their
results to the case where the interretrial times are non-exponential.

Motivated by their paper[10], we have considered an M/G/1 retrial queue
with non-persistent customers, two phases of heterogeneous service (the first
one being essential and the second one being optional), with different vacation
policies and a generalized retrial time distributions with a constant retrial pol-
icy. This paper is therefore a generalization of the paper [4].

The rest of the paper is organized as follows. In section 2, we describe
the mathematical model. In section 3, we examine the steady state behaviour
and derive the probability generating functions of the system size and orbit
size distributions. In section 4, we consider some useful performance measures
of the system. In section 5, we discuss some particular cases. In section 6,
we present some concluding remarks and in section 7, we propose a few open
problems.
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2 Mathematical Model

We consider a single server queue in which customers arrive according to a
Poisson stream of rate λ > 0. If, upon arrival, the server is free, the service
of the arriving customer commences immediately. Otherwise, with a probabil-
ity 1 − α, he leaves the system immediately and is lost to the system. With
a probability α, the customer may join a group of blocked customers called
the orbit, from where he repeats his request for service in accordance with an
FCFS discipline. We shall assume that only the customer at the head of the
orbit is allowed to access the server.

When a service is completed, the access from the orbit to the server is
governed by an arbitrary law with a common probability distribution function
R(x), Laplace-Stieltjes transform (LST) R∗(s) and the hazard rate function

η(x) = R′(x)
1−R(x)

.

Upon completion of the first essential service (FES), a customer may opt
for a second optional service (SOS) with probability r or he may decide to
leave the system with a probability 1 − r (0 ≤ r ≤ 1). The service time S1

of a customer in the first phase(FES) is assumed to be independent of the
service time S2 of the customer in the second phase(SOS). The random vari-
able Si is assumed to have a distribution function Bi(x) and a LST B∗i (s),
i = 1, 2. Let bi

1, bi
2 denote the ith moments of S1 and S2 respectively. Then

bi
1 = (−1)iB

∗(i)
1 (0) and bi

2 = (−1)iB
∗(i)
2 (0).

The total service time S of a customer in the system is given by

S =

{
S1 + S2, with probability r,
S1, with probability 1-r

Let B(x), B∗(s), ν(x) be the distribution function, LST and the hazard rate
function respectively of the random variable S. B∗(s) = {(1− r) + rB∗2(s)}B∗1(s).
If bi denotes the ith moment of the random variable S, then

b1 = b1
1 + rb1

2,

b2 = b2
1 + 2rb1

1b
1
2 + rb2

2.

Upon completion of a service, the server may remain in the system to serve
the next customer (if any), with probability β0 or he may proceed on the kth
vacation scheme with probability βk (1 ≤ k ≤ M) and

∑M
k=0 βk = 1.

Let Vk(x), V ∗k (s), ξk(x) denote the distribution function, LST and the haz-
ard function respectively of the random variable Xk, where Xk which denotes
the duration of the vacation when the server is on the kth vacation scheme.
Let vi

k denote the ith moment of the random variable Xk. Then

vi
k = (−1)iV

∗(i)
k (0), k = 1, 2, ...,M.

We assume that the retrial time begins at the end of each service completion
when the server becomes free or when the server returns from his vacation.
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The interarrival times, interretrial times, S1, S2, Xk are all assumed to be in-
dependent of each other.
Let C(t) denote the state of the server at time t. We define

C(t) =


0, if the server is idle,
1, if the server is busy,
2, if the server is on vacation.

Let N(t) be the orbit size at time t. We introduce the supplementary variable

Y (t) =


R0(t), if C(t) = 0, N(t) ≥ 1,
S0(t), if C(t) = 1,
V 0

k (t), if C(t) = 2,
where R0(t)= elapsed retrial time of the customer at the head of the orbit at
time t,
S0(t) = elapsed service time of the customer in service at time t,
V 0

k (t) = elapsed vacation time of the server when he is on the kth vacation
scheme, k=1,2,...,M.
The process {(C(t), N(t), Y (t)), t ≥ 0} is a continuous time Markov process.
We define the probabilities

P0,0(t) = Prob {C(t) = 0, N(t) = 0} ,

P0,n(x, t)dx = Prob
{
C(t) = 0, N(t) = n, x ≤ R0(t) < x + dx

}
, x ≥ 0, n ≥ 1,

P1,n(x, t)dx = Prob
{
C(t) = 1, N(t) = n, x ≤ S0(t) < x + dx

}
, x ≥ 0, n ≥ 0,

P k
2,n(x, t)dx = Prob

{
C(t) = 2, N(t) = n, x ≤ V 0

k (t) < x + dx
}

, x ≥ 0, n ≥ 0,

k = 1, 2, · · · , M.

3 Steady state analysis

Now, analysis of this queueing model can be performed with the help of the
following Kolmogorov forward equations.

d

dt
P0,0(t) = −λP0,0(t) + β0

∫ ∞

0
P1,0(x, t)ν(x)dx

+
M∑

k=1

∫ ∞

0
P k

2,0(x, t)ξk(x)dx. (1)

For x > 0,

∂

∂t
P0,n(x, t) +

∂

∂x
P0,n(x, t) = −{λ + η(x)}P0,n(x, t), n ≥ 1, (2)

∂

∂t
P1,n(x, t) +

∂

∂x
P1,n(x, t) = −{λα + ν(x)}P1,n(x, t)

+λα(1− δn,0)P1,n−1(x, t), n ≥ 0, (3)
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∂

∂t
P k

2,n(x, t) +
∂

∂x
P k

2,n(x, t) = −{λα + ξk(x)}P k
2,n(x, t)

+(1− δn,0)λαP k
2,n−1(x, t), (4)

where, n ≥ 0 and k = 1, 2, ...,M.

The boundary conditions are as follows, for n ≥ 1,

P0,n(0, t) = β0

∫ ∞

0
P1,n(x, t)ν(x)dx

+
M∑

k=1

∫ ∞

0
P k

2,n(x, t)ξk(x)dx, (5)

P1,n(0, t) =
∫ ∞

0
Po,n+1(x, t)η(x)dx + λ

∫ ∞

0
P0,n(x, t)dx, (6)

P k
2,n(0, t) = βk

∫ ∞

0
P1,n(x, t)ν(x)dx, n ≥ 0, (7)

P1,0(0, t) = λP0,0(t) +
∫ ∞

0
P0,1(x, t)η(x)dx. (8)

Assuming that the system reaches the steady state, the equations (1) to (8)
become

λP0,0 = β0

∫ ∞

0
P1,0(x)ν(x)dx

+
M∑

k=1

∫ ∞

0
P k

2,0(x)ξk(x)dx. (9)

For x > 0,

d

dx
P0,n(x) = −{λ + η(x)}P0,n(x), n ≥ 1, (10)

d

dx
P1,n(x) = −{λα + ν(x)}P1,n(x)

+λα(1− δn,0)P1,n−1(x), n ≥ 0, (11)

d

dx
P k

2,n(x) = −{λα + ξk(x)}P k
2,n(x)

+(1− δn,0)λαP k
2,n−1(x), (12)

where, n ≥ 0 and k = 1, 2, ...,M.

The boundary conditions are as follows, for n ≥ 1,

P0,n(0) = β0

∫ ∞

0
P1,n(x)ν(x)dx

+
M∑

k=1

∫ ∞

0
P k

2,n(x)ξk(x)dx, (13)

P1,n(0) =
∫ ∞

0
Po,n+1(x)η(x)dx + λ

∫ ∞

0
P0,n(x)dx, (14)



180 Kasturi Ramanath and K.Kalidass

P k
2,n(0) = βk

∫ ∞

0
P1,n(x)ν(x)dx, n ≥ 0, (15)

P1,0(0) = λP0,0 +
∫ ∞

0
P0,1(x)η(x)dx. (16)

Define the following partial probability generating functions, for |z| ≤ 1,

P1(x, z) =
∞∑

n=0

P1,n(x)zn, x > 0, (17)

P k
2 (x, z) =

∞∑
n=0

P k
2,n(x)zn, x > 0, (18)

P1(0, z) =
∞∑

n=0

P1,n(0)zn, (19)

P k
2 (0, z) =

∞∑
n=0

P k
2,n(0)zn, (20)

P0(x, z) =
∞∑

n=1

P0,n(x)zn, x > 0, (21)

P0(0, z) =
∞∑

n=1

P0,n(0)zn. (22)

From the above equations, (10), (11) and (12),

P0(x, z) = P0(0, z)e−λx(1−R(x)), (23)

P1(x, z) = P1(0, z)e−λα(1−z)x(1−B(x)), (24)

P k
2 (x, z) = P k

2 (0, z)e−λα(1−z)x(1− Vk(x). (25)

Also from (13), (14), (15) and (16),

P0(0, z) = β0P1(0, z)B∗(λα(1− z))

+
M∑

k=1

P k
2 (0, z)V ∗k (λα(1− z))− λP0,0, (26)

P1(0, z) = λP0,0 + P0(0, z)

{
z(1−R∗(λ)) + R∗(λ)

z

}
, (27)

P k
2 (0, z) = βkP1(0, z)B∗(λα(1− z)). (28)

Now,

P0(z) =
∫ ∞

0
P0(x, z)dx

=

{
1−R∗(λ)

λ

}
P0(0, z), (29)
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P1(z) =
∫ ∞

0
P1(x, z)dx

=

{
1−B∗(λα(1− z))

λα(1− z)

}
P1(0, z), (30)

P k
2 (z) =

∫ ∞

0
P k

2 (x, z)dx

=

{
1− V ∗k (λα(1− z))

λα(1− z)

}
P k

2 (0, z). (31)

From equation (26),

P0(0, z) =
λR∗(λ)(1− z)

γ(z)[R∗(λ) + z(1−R∗(λ))]− z
P0,0, (32)

where,γ(z) = B∗(λα(1− z))

{
β0 +

M∑
k=1

βkV
∗
k (λα(1− z))

}
. (33)

Hence,

P1(z) =
(1−B∗(λα(1− z)))R∗(λ)

α {γ(z)[R∗(λ) + z(1−R∗(λ))]− z}
P0,0, (34)

P2(z) =
M∑

k=1

P k
2 (z)

=
R∗(λ)B∗(λα(1− z))

∑M
k=1 βk(1− V ∗k (λα(1− z)))

α {γ(z)[R∗(λ) + z(1−R∗(λ))]− z}
P0,0. (35)

The PGF P (z) of the orbit size is given by

P (z) = P0,0 + P0(z) + P1(z) + P2(z)

=
α(γ(z)− z) + 1− γ(z)

α {γ(z)[R∗(λ) + z(1−R∗(λ))]− z}
R∗(λ)P0,0. (36)

From the normalizing condition P (1) = 1, we have

P0,0 =
R∗(λ)− ρα

R∗(λ)[1 + ρ(1− α)]
, (37)

where, ρ = λ

{
b1 +

M∑
k=1

βkv
1
k

}
. (38)

Hence,

P (z) =

{
α(γ(z)− z) + 1− γ(z)

α {γ(z)[R∗(λ) + z(1−R∗(λ))]− z}

}
R∗(λ)− ρα

1 + ρ(1− α)
. (39)
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Let K(z) be the PGF of the system size .

K(z) = P0,0 + P0(z) + zP1(z) + P2(z)

=

{
(α− 1)(γ(z)− z) + (1− z)B∗(λα(1− z))

α {γ(z)[R∗(λ) + z(1−R∗(λ))]− z}

}

× R∗(λ)− ρα

1 + ρ(1− α)
. (40)

Remark: It should be noted that the expressions for the PGFs P (z) and K(z)
are given in terms of P0,0. Therefore, a necessary condition for the steady state
to be attained is given by P0,0 > 0. Since R∗(λ)(1 + ρ(1−α)) > 0, R∗(λ)− ρα
should be greater than zero. Therefore a necessary condition for the steady
state to exist is given by R∗(λ) > λα

{
b1
1 + rb1

2 +
∑M

k=1 βkv
1
k

}
.

By an argument similar to that used by Gomez-Corral [9], it should not be
difficult to prove that the above condition is also sufficient for the existence of
the steady state.

4 Performance measures

a) The expected number of customers in the system is given by

E[L] = lim
z→1

d

dz
K(z)

=
λ2αγ∗ {(1− α)R∗(λ) + α}

2(1 + ρ(1− α))(R∗(λ)− ρα)
+

ρα(1−R∗(λ))

R∗(λ)− ρα

+
λb1

1 + ρ(1− α)
,

where, γ∗ = b2 + 2b1
M∑

k=1

βkv
1
k +

M∑
k=1

βkv
2
k.

b)

The blocking probability = 1− {P0,0 + P0(1)}

=
ρ

1 + ρ(1− α)
.

c) The expected waiting time in the system

E[W ] =
E[L]

λα
.

d) The expected number of customers in the orbit is given by

E[Lq] =
λ2αγ∗ {(1− α)R∗(λ) + α}

2(1 + ρ(1− α))(R∗(λ)− ρα)
+

ρα(1−R∗(λ))

R∗(λ)− ρα
.
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e) The expected waiting time in the orbit is

E[Wq] =
E[Lq]

λα
.

f) The steady state distribution of the server state is given by

Prob {server is idle} = P0,0 + P0(1) =
1− ρα

1 + ρ(1− α)
,

P rob {server is busy} = P1(1) =
λb1

1 + ρ(1− α)
,

P rob {server is on kth vacation} =
λβkv

1
k

1 + ρ(1− α)
,

P rob {server is on vacation} =
M∑

k=1

P k
2 (1) =

ρ− λb1

1 + ρ(1− α)
.

5 Particular cases

Case i: If all the customers are persistent (i.e. α = 1) and there is no vacation
scheme then PGF of the orbit size is given by

P (z) =
(R∗(λ)− ρ)(1− z)

R∗(λ)(1− z)γ(z)− z(1− γ(z))
,

where γ(z) = B∗(λ(1− z))

and B∗(λ(1− z)) = {(1− r) + rB∗2(λ(1− z))}B∗1(λ(1− z)).

The above result is the same as that given in Corollary 3.1 of [4]

Case ii: If there is no second phase of service (i.e r = 0), no vacation schemes
and α = 1, then the PGF of system size distribution is given by

K(z) =
(R∗(λ)− ρ)(1− z)B∗(λ− λz)

R∗(λ)(1− z)B∗(λ− λz)− z(1−B∗(λ− λz))
.

This is the same as the equation (16) of Gomez- Corral [9]

6 Conclusion

In this paper, we have taken the first step in solving the open problem men-
tioned in [10]. We have extented their results to the case where the interretrial
times are non-exponentially distributed. We have obtained expressions for the
PGFs of the system size and orbit size distributions in the steady state. We
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have derived expressions for the blocking probability, distribution of the sever
state, expected number of customer, in the orbit and the mean response time.
We have been able to obtain the results of [4] and [9] as special cases of our
model.

7 Open Problem

In this paper, we have taken the interretrial times to be non-exponentially
distributed. However, we have assumed that only the customer at the head of
the orbit is allowed to make a retrial. This restrictive assumption was neces-
sary because the inherent difficulty in non-exponential retrial times is caused
by the fact that the queueing model must keep track of the elapsed retrial
time for each of the customers (possibly, a large number) in orbit. However,
it remains an interesting problem to consider extensions of the model to the
case of generally distributed retrial times without a constant retrial policy.

Another interesting problem is obtained by including the concept of reneg-
ing customers. A customer, who makes a retrial attempt and fails to obtain
service may leave the system with some probability θ0 or he may join the orbit
with a probability 1 − θ0. Such a customer is said to renege. It would be an
interesting problem to add this feature to the model presented in this paper.

In the area of computer and communication networks, the concept of feed-
back is becoming increasingly important. A customer after obtaining service
may decide to join the orbit for obtaining service again. Such a customer is
called a feedback customer. It would be interesting to allow customer feed-
backs in the model presented in this paper.

The problem of having more than one optional service at the second phase
would also be an interesting problem to solve.

It would be also interesting to determine a control policy which gives the
best estimate for the probabilities βi and which minimizes the total cost of the
service system.
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