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1 Introduction

In the starting of this paper we should give some of the terminology to be used
in the sequel. Throughout the present paper, R will denote an associative ring
with center Z(R), not necessarily with an identity element. For any x, y ∈ R,
as usual [x, y] = xy − yx and x ◦ y = xy + yx will denote the well-known
Lie and Jordan products, respectively. We shall make extensive use of basic
commutator identities: [xy, z] = x[y, z] + [x, z]y, [x, yz] = y[x, z] + [x, y]z.
Recall that R is said to be 2-torsion free if whenever 2x = 0, with x ∈ R,
then x = 0. R is prime if aRb = 0 implies a = 0 or b = 0. If R is equipped
with an involution ∗, then R is ∗-prime if aRb = aRb∗ = 0 yields a = 0 or
b = 0. Note that every prime ring having an involution ∗ is ∗-prime but the
converse is in general not true. For example, if Ro denotes the opposite ring
of a prime ring R, then R × Ro equipped with the exchange involution ∗

ex
,
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defined by ∗
ex

(x, y) = (y, x), is ∗
ex

-prime but not prime. This example shows
that every prime ring can be injected in a ∗-prime ring and from this point of
view ∗-prime rings constitute a more general class of prime rings.
An additive subgroup U of R is said to be a Lie ideal of R if [u, r] ∈ U for
all u ∈ U and r ∈ R. A Lie ideal U which satisfies U∗ = U is called a ∗-
Lie ideal. An additive mapping H : R → R is called a left (resp. right)
multiplier if H(xy) = H(x)y (resp. H(xy) = xH(y)), holds for all x, y ∈
R. A multiplier is an additive mapping which is both right as well as left
multiplier. Considerable work has been done on left (right) multipliers in prime
and semiprime rings during the last couple of decades (see [11-13] for a partial
bibliography). An additive mapping d : R → R is said to be a derivation if
d(xy) = d(x)y +xd(y) holds for all x, y in R. An additive mapping F : R → R
is called a generalized derivation if there exists a derivation d : R → R such
that F (xy) = F (x)y + xd(y) holds for all x, y ∈ R. Obviously, generalized
derivation with d = 0 covers the concept of left multipliers.
There has been an ongoing interest concerning the relationship between the
commutativity of a prime ring R and the behavior of a generalized derivation
of R, with associated nonzero derivation. Many of obtained results extend
other ones proven previously just for the action of the generalized derivation
on the whole ring. In this direction, it seems natural to ask what we can say
about the commutativity of R if the generalized derivation is replaced by a left
multiplier. In the present paper, we have investigated this problem for certain
situations involving left multipliers acting on Lie ideals.
Throughout, (R, ∗) will be a non-prime ring with involution and Sa∗(R) :=
{r ∈ R/ r∗ = ± r} the set of symmetric and skew symmetric elements of R.

2 The conditions F ([x, y]) = ± [x, y]

We begin with the following lemmas which are essential for developing the
proof of our results.

Lemma 2.1 ([6], Lemma 4) If U 6⊆ Z(R) is a ∗-Lie ideal of a 2-torsion

free ∗-prime ring R and a, b ∈ R such that aUb = a∗Ub = 0, then a = 0 or

b = 0.

Lemma 2.2 ([7], Lemma 2.3) Let 0 6= U be a ∗-Lie ideal of a 2-torsion free

∗-prime ring R. If [U, U ] = 0, then U ⊆ Z(R).

The principal result of this section is the following theorem.

Theorem 2.3 Let U be a nonzero ∗-Lie ideal of a 2-torsion free ring R and

let F be a left multiplier such that F ([x, y]) = [x, y] for all x, y ∈ U. If R is

∗-prime, then F is trivial or U ⊆ Z(R).
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Proof. Assume that U 6⊆ Z(R). From F ([x, y]) = [x, y] it follows that

F ([[u, v], w]) = [[u, v], w] for all u, v, w ∈ U. (1)

On the other hand, the fact that F is a left multiplier yields

F ([[u, v], w]) = [u, v]w − F (w)[u, v] for all u, v, w ∈ U. (2)

Comparing (1) and (2) we conclude that

[[u, v], w] = [u, v]w − F (w)[u, v] for all u, v, w ∈ U, (3)

whence it follows that

(F (w) − w)[u, v] = 0 for all u, v, w ∈ U. (4)

Replacing u by [u, zr] in (4), where z ∈ U and r ∈ R, we obtain

(F (w) − w)[z[u, r], v] + (F (w) − w)[[u, z]r, v] = 0. (5)

Applying (4), equation (5) becomes

(F (w) − w)z[[u, r], v] = 0 for all u, v, w, z ∈ U, r ∈ R,

and therefore

(F (w) − w)U [[u, r], v] = 0 for all u, v, w ∈ U, r ∈ R. (6)

Since U is a ∗-ideal, then (6) assures that

(F (w) − w)U [[u, r], v]∗ = 0 for all u, v, w ∈ U, r ∈ R. (7)

(6) and (7) together with Lemma 2.1 assure that

F (w) − w = 0 for all w ∈ U or [[u, r], v] = 0 for all u, v ∈ U, r ∈ R.

Assume that

[[u, r], v] = 0 for all u, v ∈ U, r ∈ R. (8)

Substituting rv for r in (8) and employing (8) we find that

[r, v][u, v] = 0 for all u, v ∈ U, r ∈ R. (9)

Replacing r by rs in (9), where s ∈ R, we get [r, v]s[u, v] = 0 and thus

[r, v]R[u, v] = 0 for all u, v ∈ U, r ∈ R. (10)
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Let v ∈ U ∩ Sa∗(R); since U∗ = U, from (10) it follows that

[r, v]R[u, v]∗ = 0 for all u ∈ U, r ∈ R. (11)

Using the ∗-primeness of R, (10) together with (11) give [r, v] = 0 for all
r ∈ R or [u, v] = 0 for all u ∈ U. Accordingly, either [U, v] = 0 or v ∈ Z(R), in
which case [U, v] = 0. In conclusion we have

[U, v] = 0 for all v ∈ U ∩ Sa∗(R). (12)

Let w ∈ U ; as w∗ − w ∈ U ∩ Sa∗(R), then (12) yields [U, w∗ − w] = 0 so that

[y, w∗] = [y, w] for all y ∈ U. (13)

Replacing v by w∗ in (10) and using (13) we get

[r, w∗]R[u, w] = 0 for all u ∈ U, r ∈ R

which leads to
[r, w]∗R[u, w] = 0 for all u ∈ U, r ∈ R. (14)

Since [r, w]R[u, w] = 0 by (10), then (14) together with the ∗-primeness of R
assure that [u, w] = 0 for all u ∈ U or [r, w] = 0 for all r ∈ R. Hence, [U, w] = 0
or w ∈ Z(R), in which case [U, w] = 0. Consequently,

[U, w] = 0 for all w ∈ U,

proving that [U, U ] = 0 which, by view of Lemma 2.2, contradicts U 6⊆ Z(R).
Hence, necessarily

F (w) = w for all w ∈ U. (15)

Let s ∈ R, for all x ∈ U the fact that F ([x, s]) = [x, s] implies that

(F (s) − s)x = 0 for all x ∈ U. (16)

Replacing s by rs in (16), where r ∈ R, we get (F (r) − r)sx = 0 and thus

(F (r) − r)Rx = 0 for all x ∈ U, r ∈ R. (17)

Since U∗ = U, the relation (17) leads to

(F (r) − r)Rx∗ = 0 for all x ∈ U. (18)

Applying the ∗-primeness of R, because of 0 6= U, from (17) and (18) it follows
that F (r) = r for all r ∈ R, proving that F is trivial.

The following example proves necessity of ∗-primeness condition in Theorem
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2.3.

Example 1. Let S = IR[X] × IR[X]; if we define an addition on S by com-
ponentwise and multiplication by (P1, P2)(Q1, Q2) = (P1Q2 −P2Q1, 0), then S
is a ring such that s2 = 0 for all s ∈ S. Moreover, S is noncommutative and
st = −ts for all s, t ∈ S. Let F be the additive mapping defined on the ring

R =

{(

x 0
y x

)

/x, y ∈ S

}

by F

((

x 0
y x

))

=

(

x 0
y − x x

)

. Clearly, F is

a nontrivial left multiplier of R. Since st = −ts for all s, t ∈ S, it is easy to

check that the map ∗ : R −→ R defined by

(

x 0
y x

)

∗

=

(

−x 0
−y −x

)

is an

involution.

On the other hand, if we set a =

(

0 0
s 0

)

∈ R, where s 6= 0, then aRa = 0

and aRa∗ = 0; proving that R is a non ∗-prime ring. Let U =

{(

0 0
y 0

)

/y ∈ S

}

;

it is clear that U is a ∗-Lie ideal of R such that F ([u, v]) = [u, v] for all u, v ∈ U.

Moreover, if s, t ∈ S are such that st 6= 0, then u =

(

0 0
s 0

)

∈ U and

r =

(

t 0
s t

)

∈ R and [u, r] 6= 0, proving that U 6⊆ Z(R). Accordingly, in

Theorem 2.3 the hypothesis of ∗-primeness is crucial.

Remark 1. In Theorem 2.3, if we replace the Lie ideal by an ideal of R,
then 2-torsion freeness hypothesis can be omitted.

Using the fact that a ∗-prime ring having a nonzero central ∗-ideal must be
commutative, Theorem 2.3 together with Remark 1 yield a commutativity
criterium as follows:

Corollary 2.4 Let (R, ∗) be a ring with involution and let F be a nontrivial

left multiplier such that F ([x, y]) = [x, y] for all x, y in a nonzero ∗-ideal I of

R. If R is ∗-prime, then R is commutative.

As a first application of Theorem 2.3 we get an improved version of ([7], The-
orem 2.1) as follows:

Lemma 2.5 Let (R, ∗) be a ring with involution and let F be a generalized

derivation of R such that F ([x, y]) = [x, y] for all x, y in a nonzero ∗-ideal I
of R. If R is ∗-prime, then R is commutative.

Proof. Assume that F is a generalized derivation associated with a derivation
d. If F is trivial, then the condition F ([x, y]) = [x, y] for all x, y ∈ I, reduces
to [x, y] = [x, y] for all x, y ∈ I, is trivial in which case our theorem is without
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interest. Accordingly, one can assume that F is nontrivial. Now, when the
associated derivation d = 0, then F is a nontrivial left multiplier and using
Corollary 2.4 we get the required result. On the other hand if d 6= 0, then the
proof follows from Theorem 2.1 of [8]. Indeed, neither d commutes with ∗ nor
2-torsion freeness is necessary in ([8], Theorem 2.1).

In ([1], Theorem 2.1) it is proved that if a prime ring R admits a nonzero
left multiplier H , with H(x) 6= x for all x in a nonzero ideal I of R, such that
H([x, y]) = [x, y] for all x, y ∈ I, then R is commutative. However, one can
easily see that the condition H(x) 6= x for all x ∈ I can be replaced by there

exists x ∈ I such that H(x) 6= x, that is H is nontrivial. Using this fact, the
following Theorem extends Theorem 2.1 of [1] to Lie ideals.

Theorem 2.6 Let R be a 2-torsion free prime ring and let U be a nonzero

Lie ideal of R. If R admits a left multiplier F such that F ([x, y]) = [x, y] for

all x, y ∈ U, then F is trivial or U ⊆ Z(R).

Proof. Let F be the additive mapping defined on = R × R0 by (x, y) =
(F (x), y). Clearly, F is a left multiplier of . Moreover, if we set W = U × U,
then W is a ∗

ex
-Lie ideal of . As F ([x, y]) = [x, y] for all x, y ∈ U, it’s easy to

check that ([u, v]) = [u, v] for all u, v ∈ W. Since is a ∗
ex
-prime ring, in view

of Theorem 2.3 we deduce that W ⊆ Z() or F is trivial. Accordingly, either
U ⊆ Z(R) or F is trivial.

Now if F is a left multiplier such that F 6= −Id, then −F is a nontrivial
left multiplier. This fact together with Theorem 2.6 yield the following result:

Theorem 2.7 Let R be a 2-torsion free prime ring and let U be a nonzero

Lie ideal of R. If R admits a left multiplier F such that F ([x, y]) = −[x, y] for

all x, y ∈ U, then U ⊆ Z(R) or F (r) = −r for all r ∈ R.

The following theorem extends Theorem 2.5 of [1] to Lie ideals.

Theorem 2.8 Let R be a 2-torsion free prime ring and let U be a nonzero

Lie ideal of R. If R admits a left multiplier F such that neither F nor −F is

trivial, then the following conditions are equivalent:

(1) F ([x, y]) = [x, y] for all x, y ∈ U ;
(2) F ([x, y]) = −[x, y] for all x, y ∈ U ;
(3) for all x, y ∈ U, either F ([x, y]) = [x, y] or F ([x, y]) = −[x, y];
(4) U ⊆ Z(R).

Proof. Clearly, (4) =⇒ (1), (4) =⇒ (2) and (4) =⇒ (3). On the other
hand, Theorem 2.6 yields (1) =⇒ (4) and from Theorem 2.7 it follows that
(2) =⇒ (4). For (3) =⇒ (4), let us consider U1 = {x ∈ U / F ([x, y]) = [x, y]
for all y ∈ U} and U2 = {x ∈ U / F ([x, y]) = −[x, y] for all y ∈ U}. It is
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clear that U1 and U2 are additive subgroups of U such that U = U1 ∪ U2. But
a group cannot be a union of two of its proper subgroups and hence U = U1

or U = U2. Thus, we find that either F ([x, y]) = [x, y] for all x, y ∈ U and
U ⊆ Z(R) by Theorem 2.6 or F ([x, y]) = −[x, y] for all x, y ∈ U in which case
U ⊆ Z(R) by Theorem 2.7.

Using Theorem 2.6, even without the characteristic assumption on the ring,
we get an improved version of ([1], Theorem 2.1) as follows:

Corollary 2.9 Let R be a prime ring and let I be a nonzero ideal of R.
If R admits a nontrivial left multiplier F such that F ([x, y]) = [x, y] for all

x, y ∈ I, then R is commutative.

We conclude this section with the following theorem which improve the results
proved in [1], [3], [4], [10] and [11].

Theorem 2.10 Let R be a prime ring and let I be a nonzero ideal of R.
If R admits a generalized derivation F associated with a derivation d such

that F ([x, y]) = [x, y] (resp. F ([x, y]) = −[x, y]) for all x, y ∈ I, then R is

commutative.

Proof. We can assume that neither F nor −F is trivial. Indeed, if F (resp.
−F ) is trivial, then the condition F ([x, y]) = [x, y] (resp. F ([x, y]) = −[x, y])
for all x, y ∈ I reduces in both the cases to [x, y] = [x, y], in which case our
theorem is without interest.
When the associated derivation d = 0, then using Theorem 2.8, even without
2-torsion freeness condition, we get I ⊆ Z(R) and therefore R is commutative.
If d 6= 0, then the proof follows from ([10], Theorem 2.1).

3 The conditions F (x ◦ y) = ± x ◦ y

In this section, we replace the product [x, y] by x◦ y and obtain results similar
to those of the first section. The following theorem proves that the conclusion
of Theorems 1 still hold for the Jordan product.

Theorem 3.1 Let U be a nonzero ∗-Lie ideal of a 2-torsion free ring R and

let F be a left multiplier such that F (x ◦ y) = x ◦ y for all x, y ∈ U. If R is

∗-prime, then F is trivial or U ⊆ Z(R).

Proof. From F (x ◦ y) = x ◦ y for all x, y ∈ U it follows that

(F (x) − x)y = (y − F (y))x for all x, y ∈ U. (19)

Replacing y by [x, r] in (19), where r ∈ R, we get

(F (x) − x)xr = (F (r) − r)x2 for all x ∈ U, r ∈ R. (20)
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Since (F (x) − x)x = 0, by (19), then (20) becomes

(F (r) − r)x2 = 0 for all x ∈ U, r ∈ R. (21)

Replacing r by rs in (21), where s ∈ R, we obtain

(F (r) − r)sx2 = 0

and therefore
(F (r) − r)Rx2 = 0 for all x ∈ U, r ∈ R. (22)

Since U∗ = U , then (22) implies that

(F (r) − r)R(x2)∗ = 0 for all x ∈ U, r ∈ R. (23)

Using (22) together with (23), the ∗-primeness of R assures that

F (r) = r for all r ∈ R or x2 = 0 for all x ∈ U.

Hence either F is trivial or x2 = 0 for all x ∈ U.
If x2 = 0 for all x ∈ U , then uv + vu = 0 for all u, v ∈ U and thus

u[v, r] + [v, r]u = 0 for all u, v ∈ U, r ∈ R. (24)

Replacing r by rs in (24), where s ∈ R, and employing (24) we obtain

[v, r][s, u] + [u, r][v, s] = 0 for all u, v ∈ U, r, s ∈ R. (25)

Taking s = u in (25) we find that

[u, r][v, u] = 0 for all u, v ∈ U, r ∈ R. (26)

Since equation (26) is the same as equation (9), arguing as in the proof of
Theorem 2.3, we arrive at [U, U ] = 0 and Lemma 2.2 assures that U ⊆ Z(R).

Example 2. In hypothesis of Theorem 3.1 the ∗-primeness condition is nec-
essary. Indeed, in Example 1 it is clear that F (x ◦ y) = x ◦ y for all x, y ∈ U ,
but neither U 6⊆ Z(R) nor F is trivial.

Remark 2. In Theorem 3.1, if we replace the Lie ideal by an ideal of R,
then 2-torsion freeness hypothesis can be omitted.

Using Theorem 3.1 together with Remark 2, we obtain a commutativity cri-
terium as follows:

Corollary 3.2 Let (R, ∗) be a ring with involution and let F be a nontrivial

left multiplier such that F (x ◦ y) = x ◦ y for all x, y in a nonzero ∗-ideal I of

R. If R is ∗-prime, then R is commutative.
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From Theorem 3.1 we get an improved version of ([7], Theorem 2.2) as follows:

Theorem 3.3 Let (R, ∗) be a ring with involution and let F be a generalized

derivation of R such that F (x ◦ y) = x ◦ y for all x, y in a nonzero ∗-ideal I of

R. If R is ∗-prime, then R is commutative.

Proof. Assume that F is a generalized derivation associated with a derivation
d. If F is trivial, then the condition F (x ◦ y) = x ◦ y for all x, y ∈ I reduces
to x ◦ y = x ◦ y for all x, y ∈ I, in which case our theorem is without interest.
Accordingly, one can assume that F is nontrivial. Now, when the associated
derivation d = 0, then F is a nontrivial left multiplier and using Corollary 3.2
we get the required result. If d 6= 0, then the proof follows from Theorem 2.2
of [8]. Indeed, neither d commutes with ∗ nor 2-torsion freeness is necessary
in ([8], Theorem 2.2).

In ([1], Theorem 2.3) it is proved that if a prime ring R admits a nonzero
left multiplier H , with H(x) 6= x for all x in a nonzero ideal I of R, such that
H(x ◦ y) = x ◦ y for all x, y ∈ I, then R is commutative. However, it’s easy
to verify that the condition H(x) 6= x for all x ∈ I can be replaced by there

exists x ∈ I such that H(x) 6= x, that is H is nontrivial. Using this fact, the
following Theorem extends Theorem 2.3 of [1] to Lie ideals.

Theorem 3.4 Let R be a 2-torsion free prime ring and let U be a nonzero

Lie ideal of R. If R admits a left multiplier F such that F (x ◦ y) = x ◦ y for

all x, y ∈ U, then F is trivial or U ⊆ Z(R).

Proof. Extend F on a left multiplier F on the ∗
ex
-prime ring = R × R0 by

(x, y) = (F (x), y). If we set W = U × U, then W is a nonzero ∗
ex
-Lie ideal of

. Moreover, it’s easy to check that (x ◦ y) = x ◦ y for all x, y ∈ W. Applying
Theorem 3.1, we conclude that F is trivial or W ⊆ Z(R), whence it follows
that either F is trivial or U ⊆ Z(R).

From Theorem 3.4, we obtain the following result which extends Theorem
2.4 of [1] to Lie ideals.

Theorem 3.5 Let R be a 2-torsion free prime ring and let U be a nonzero

Lie ideal of R. If R admits a left multiplier F such that F (x ◦ y) = −x ◦ y for

all x, y ∈ U, then U ⊆ Z(R) or F (r) = −r for all r ∈ R.

Using Theorem 3.4, even without the characteristic assumption on the ring,
we get an improved version of ([1], Theorem 2.3) as follows:

Corollary 3.6 Let R be a prime ring and let I be a nonzero ideal of R.
If R admits a nontrivial left multiplier F such that F (x ◦ y) = x ◦ y for all

x, y ∈ I, then R is commutative.
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Arguing as in the proof of Theorem 2.10, Theorem 3.4 and Theorem 3.5 yield
the following result which improve Theorem 2.7 of [1] and Theorem 2.3 & 2.4
of [10].

Theorem 3.7 Let R be a prime ring and let I be a nonzero ideal of R. If

R admits a generalized derivation F associated with a derivation d such that

F (x◦y) = x◦y (resp. F (x◦y) = −x◦y) for all x, y ∈ I, then R is commutative.
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