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Abstract
In this paper, we show that every spacelike biharmonic curve in

the Lorentzian Heisenberg group Heis3 is a helix (both of whose cur-
vature and torsion are constants). We give some characterizations
for spacelike biharmonic curve by using the positions vectors of the
curve.
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1 Introduction

Harmonic maps f : (M, g) −→ (N, h) between Riemannian manifolds are the
critical points of the energy

E (f) =
1

2

Z
M

|df |2 vg, (1.1)

and they are therefore the solutions of the corresponding Euler—Lagrange equa-
tion. This equation is given by the vanishing of the tension field

τ (f) = trace∇df. (1.2)

As suggested by Eells and Sampson in [4], we can define the bienergy of a
map f by

E2 (f) =
1

2

Z
M

|τ (f)|2 vg, (1.3)
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and say that is biharmonic if it is a critical point of the bienergy.
Jiang derived the first and the second variation formula for the bienergy in

[8], showing that the Euler—Lagrange equation associated to E2 is

τ 2 (f) = −J f (τ (f)) = −∆τ (f)− traceRN (df, τ (f)) df (1.4)

= 0,

where J f is the Jacobi operator of f . The equation τ 2 (f) = 0 is called the
biharmonic equation. Since J f is linear, any harmonic map is biharmonic.
Therefore, we are interested in proper biharmonic maps, that is non-harmonic
biharmonic maps.
In the last decade there have been a growing interest in the theory of bi-

harmonic functions which can be divided into two main research directions.
On the one side, the differential geometric aspect has driven attention to the
construction of examples and classification results. The other side is the ana-
lytic aspect from the point of view of PDE: biharmonic functions are solutions
of a fourth order strongly elliptic semilinear PDE.
In [1] the authors completely classified the biharmonic submanifolds of

the three-dimensional sphere, while in [2] there were given new methods to
construct biharmonic submanifolds of codimension greater than one in the n-
dimensional sphere. The biharmonic submanifolds into a space of nonconstant
sectional curvature were also investigated. The proper biharmonic curves on
Riemannian surfaces were studied in [3]. Inoguchi classified the biharmonic
Legendre curves and the Hopf cylinders in three-dimensional Sasakian space
forms [6]. Then, Sasahara gave in [17] the explicit representation of the proper
biharmonic Legendre surfaces in five-dimensional Sasakian space forms.
The second variation formula for biharmonic maps in spheres was deduced

[14] and the stability of certain classes of biharmonic maps in spheres was
discussed in [11]. Also, in [18] there were given some sufficient conditions for
the instability of Legendre proper biharmonic submanifolds in Sasakian space
forms and the author proved the instability of Legendre curves and surfaces in
Sasakian space forms.

In this paper, we show that every spacelike biharmonic curve in the
Lorentzian Heisenberg groupHeis3 is a helix (both of whose curvature and tor-
sion are constants). We give some characterizations for spacelike biharmonic
curve by using the positions vectors of the curve.

2 The Lorentzian Heisenberg Group Heis3

The Heisenberg group Heis3 is a Lie group which is diffeomorphic to R3 and
the group operation is defined as

(x, y, z) ∗ (x, y, z) = (x+ x, y + y, z + z − xy + xy).
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The identity of the group is (0, 0, 0) and the inverse of (x, y, z) is given by
(−x,−y,−z). The left-invariant Lorentz metric on Heis3 is

g = −dx2 + dy2 + (xdy + dz)2.

The following set of left-invariant vector fields forms an orthonormal basis
for the corresponding Lie algebra:½

e1 =
∂

∂z
, e2 =

∂

∂y
− x

∂

∂z
, e3 =

∂

∂x

¾
. (2.1)

The characterising properties of this algebra are the following commutation
relations:

[e2, e3] = 2e1, [e3, e1] = 0, [e2, e1] = 0,

with
g(e1, e1) = g(e2, e2) = 1, g(e3, e3) = −1. (2.2)

Lemma 2.1 For the covariant derivatives of the Levi-Civita connection of
the left-invariant metric g, defined above the following is true:

∇ =

⎛⎝ 0 e3 e2
e3 0 e1
e2 −e1 0

⎞⎠ , (2.3)

where the (i, j)-element in the table above equals ∇eiej for our basis

{ek, k = 1, 2, 3} = {e1, e2, e3}.

We adopt the following notation and sign convention for Riemannian cur-
vature operator:

R(X,Y )Z = −∇X∇YZ +∇Y∇XZ +∇[X,Y ]Z.

The Riemannian curvature tensor is given by

R(X,Y,Z,W ) = g(R(X,Y )Z,W ).

Moreover we put

Rijk = R(ei, ej)ek, Rijkl = R(ei, ej, ek, el),

where the indices i, j, k and l take the values 1, 2 and 3.

R121 = −e2, R131 = −e3, R232 = 3e3

and
R1212 = −1, R1313 = 1, R2323 = −3. (2.4)



416 Essin TURHAN and Talat KÖRPINAR

3 Spacelike Biharmonic Curves In The Lorentzian
Heisenberg Group Heis3

Let γ : I −→ Heis3 be a non geodesic spacelike curve on the Lorentzian
Heisenberg group Heis3 parametrized by arc length. Let {t,n,b} be the
Frenet frame fields tangent to the Lorentzian Heisenberg group Heis3 along γ
defined as follows:
t is the unit vector field γ0 tangent to γ, n is the unit vector field in the

direction of ∇tt (normal to γ), and b is chosen so that {t,n,b} is a positively
oriented orthonormal basis. Then, we have the following Frenet formulas:

∇tt = κ1n

∇tn = κ1t+ κ2b (3.1)

∇tb = κ2n,

where κ1 = |τ(γ)| = |∇tt| is the curvature of γ and κ2 is its torsion and

g (t, t) = 1, g (n,n) = −1, g (b,b) = 1,
g (t,n) = g (t,b) = g (n,b) = 0.

With respect to the orthonormal basis {e1, e2, e3} we can write

t = t1e1 + t2e2 + t3e3,

n = n1e1 + n2e2 + n3e3,

b = t× n = b1e1 + b2e2 + b3e3.

Theorem 3.1 γ : I −→ Heis3 is a spacelike biharmonic curve if and only
if

κ1 = constant 6= 0,
κ21 + κ22 = 1− 4b21, (3.2)

κ02 = 2n1b1.

Proof. Using Eq. (2.4) and Eq. (3.1), we have Eq. (3.2).

Theorem 3.2 Let γ : I −→ Heis3 be a spacelike curve with constant
curvature. If κ02 6= 0 , then γ is not biharmonic.
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Proof. We can use Eq. (2.3) to compute the covariant derivatives of the
vector fields t,n and b as:

∇tt = t01e1 + (t
0
2 + 2t1t3)e2 + (t

0
3 + 2t1t2)e3,

∇tn = (n01 + t2n3 − t3n2)e1 + (n
0
2 + t1n3 − t3n1)e2

+(n03 + t2n1 − t1n2)e3, (3.3)

∇tb = (b01 + t2b3 − t3b2)e1 + (b
0
2 + t1b3 − t3b1)e2

+(b03 + t2b1 − t1b2)e3.

On the other hand, using Frenet formulas Eq. (3.1) and Eq. (3.6), we have

t01 = κ1n1,

n01 + t2n3 − t3n2 = κ1t1 + κ2b1, (3.4)

b01 + t2b3 − t3b2 = κ2n1.

Assume now that κ02 = 2n1b1 6= 0. Then using γ is biharmonic and Eq.
(3.2), we obtained

−2κ02κ2 = 8b1b01,
and

κ2n1b1 = −2b1b01 .
Then

κ2 =
−2b01
n1

. (3.5)

Using Eq. (3.4) and Eq. (3.5), we get

κ2 = −
2

3
= constant.

Therefore also κ2 is constant and we have a contradiction that is κ02 =
n1b1 6= 0.

Corollary 3.3 γ : I −→ Heis3 is a spacelike biharmonic if and only if

κ1 = constant 6= 0,
κ2 = constant, (3.6)

n1b1 = 0,

κ21 + κ22 = 1− 4b21.

Corollary 3.4 If γ : I −→ Heis3 is a spacelike biharmonic, then
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n1 = 0.

Corollary 3.5 If n1 = 0, then

t(s) = coshμ0e1 + sinhμ0 coshΩ(s)e2 + sinhμ0 sinhΩ(s)e3, (3.7)

where μ0 ∈ R.

4 Position Vectors of a Spacelike Biharmonic

Horizontal Curve in Heis3

Consider a nonintegrable 2-dimensional distribution (x, y) −→ H(x,y) in R3 =
R2(x,y) ×Rz defined as H = kerω, where ω is a 1-form on R3. The distribution
H is called the horizontal distribution.
A curve γ : I −→ Heis3 is called horizontal curve if γ0(s) ∈ Hγ(s), for every

s.

Lemma 4.1 Let γ : I −→ Heis3 is a spacelike horizontal curve. Then

z0(s) + x(s)y0(s) = 0. (4.1)

Proof. Using the orthonormal left-invariant frame (2.1) we have

γ0(s) = x0(s)∂x + y0(s)∂y + z0(s)∂z

= x0(s)e3 + y0(s)e2 + ω(γ0(s))e1.

Then, γ(s) is a spacelike horizontal curve iff

γ0(s) = x0(s)e3 + y0(s)e2, ω(γ0(s)) = z0(s) + x(s)y0(s). (4.2)

We obtain Eq. (4.1) and lemma is proved.

Lemma 4.2 If γ : I −→ Heis3 is a spacelike horizontal curve, then

x0(s)e3 + y0(s)e2 = x0(s)
∂

∂x
+ y0(s)

∂

∂y
− x(s)y0(s)

∂

∂z
. (4.3)
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Theorem 4.3 Let γ : I −→ Heis3 is a spacelike horizontal biharmonic
curve. Then, the position vector of γ

γ(s) = (
1

κ1
cosh(κ1s+ σ) + c1,

1

κ1
sinh(κ1s+ σ) + c2,

− s

2κ1
− 1

4κ1
cosh 2(ζs+ σ) +

c1
κ1
sinh(κ1s+ σ) + c3),

where c1, c2, c3 are constants of integration.

Proof. If γ : I −→ Heis3 is a spacelike horizontal biharmonic curve, then
we can write its position vector as follows:

γ(s) = x(s)∂x + y(s)∂y + z(s)∂z. (4.4)

Differentiating Eq. (4.1) with respect to s and by using the corresponding
orthonormal left-invariant frame (2.1), we find

γ0(s) = x0(s)e3 + y0(s)e2 + ω(γ0(s))e1.

Since |∇tt| = κ1, we obtain

Ω(s) = (
κ1 − sinh 2μ0

sinμ0
)s+ σ, (4.5)

where σ ∈ R.
Using Eq. (3.7) and Lemma 4.1, we get

coshμ0 = 0 and sinhμ0 = −1. (4.6)

Then from Eq. (4.4) and Eq. (4.5) , we get

x0(s) = sinh(κ1s+ σ),

y0(s) = cosh(κ1s+ σ), (4.7)

z0(s) + x(s)y0(s) = coshμ0 = 0.

If the system Eq. (4.7) is integrated, we obtain

x(s) =
1

κ1
cosh(κ1s+ σ) + c1,

y(s) =
1

κ1
sinh(κ1s+ σ) + c2, (4.8)

z(s) = − s

2κ1
− 1

4κ1
sinh 2(ζs+ σ) +

c1
κ1
sinh(κ1s+ σ) + c3,

where c1, c2, c3 are constants of integration.

The picture of γ (s) at c1 = c2 = c3 = c4 = κ1 = −σ = 1 as following:
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Figure 1:

5 Open Problems

In recent years, by the coming of the theory of relativity, researchers treated
some of classical differential geometry topics to extend analogous problems to
Lorentzian manifolds. In a similar way, we study a classical topic in Lorentzian
Heisenberg group Heis3. In this work, we have investigated spacelike hori-
zontal biharmonic curves in Minkowski space. We have given some explicit
characterizations of these curves in terms of Frenet’s equations. Addition-
ally, problems such as; investigation of null horizontal biharmonic curves or
extending such kind curves to Lorentzian Heisenberg group Heis3.
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