
Int. J. Open Problems Compt. Math., Vol. 3, No. 4, December 2010
ISSN 1998-6262; Copyright c©ICSRS Publication, 2010
www.i-csrs.org

Learning-Based Document Image Super-Resolution

with Directional Total Variation

Osama A. Omer

Department of Electrical Engineering,
South Valley University, Aswan, Egypt.

e-mail:omer.osama@gmail.com

Abstract

We propose a super-resolution algorithm based on local adaptation. In
the proposed algorithm, the mapping function from the low-resolution im-
ages to high-resolution image is estimated by adaptation. Moreover, the
property of the high-resolution image is learned and incorporated in a reg-
ularization -based restoration. The proposed regularization function is used
as a general directional total variation with adaptive weights. The adaptive
weights of the directional total variation are estimated based on the prop-
erty of the partially reconstructed high-resolution image. The regularization
function can be thought as a linear combination of smoothness in different
directions. The convexity conditions as well as the convergence conditions
are studied for the proposed algorithm. The proposed algorithm is tested
for document images with various types of data, including plots, equations,
draws and texts, existing in real documents.

Keywords: Super-resolution, image fusion, restoration, directional total varia-
tion, regularization, document image.

1 Introduction
The problem of image super-resolution (SR), where one obtains high-resolution
(HR) image(s) from a set of low-resolution (LR) images, has many applications in
the fields of image processing and computer vision. In particular, document anal-
ysis systems are becoming increasingly visible in daily life applications [1]. For
instance, one may be interested in systems that process, store, understand document
images. Resolution enhancement of LR document images is becoming an impor-
tant pre-requisite for design and development of robust document analysis systems.
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Large scale camera-based book scanners employed in digital libraries require reso-
lution enhancement to obtain high optical character recognition (OCR) accuracies.
The task of resolution enhancement is typically to increase spatial resolution which
can assist the recognition in LR document images.

Methods of image SR can be divided into two classes. Namely, multi-images
SR and single image SR. In the former class, the HR image is obtained by fusing
information from multiple LR images to get a single image with higher resolution
while in the later class, one extracts HR image details from a single LR image,
which cannot be achieved by simple interpolation and sharpening.

Many approaches for image SR from multiple LR images have been presented
in the last two decades [2] including recursive least squares (RLS) [3], iterative
back-projection (IBP) [4, 5], maximum likelihood (ML) [6], maximum a posteriori
(MAP) [7, 8], projection onto convex sets (POCS) [9, 10], nonuniform interpola-
tion [11], FIR filter [12], machine learning [13, 14] and neural networks [15–17].
Among these algorithms, the two steps-based SR algorithms [18, 19] are reviewed
and extended in this paper for its simplicity.

In [18,19], the SR process has been performed by two steps, namely, the fusion
step and restoration step. In [18], the LR images are fused by shift-and-add, where
the up-sampled and warped images are averaged to get a blurred version of the HR
image which is restored in the restoration step. In this algorithm, it is assumed that
all the LR images contain HR information. In fact this assumption is not always
correct due to the registration error. On the other hand, the median-shift-and-add
(MSA) is used in [19] to fuse the LR images. Indeed, taking median of the up-
sampled and warped images is more robust against the registration error, however,
median is effective in case that less than 50% are error pixels which is not guar-
anteed in case of two sources of noise (the registration error and additive noise).
Least mean square (LMS) estimator has been used in weighted image gradient fu-
sion in [12]. However, this algorithm greatly depends on the desired response of the
LMS estimator. In this algorithm, median values are used as the desired solution
which can lead to local minima of the cost function.

In addition, the HR image is reconstructed by performing a restoration step to
the fused images. Because of the ill-posedness of the restoration problem, typically
the ill-posed problem is solved by adding constraint(s) to the solution by adding
a regularization term to the cost function. In [12, 18], the Tikhonov regularization
is used as a regularization function. In [19], the bilateral total variation (BTV) is
used as a regularization function. The use of Tikhonov regularization implicitly
assumes smoothness of the HR image in all directions which is not always correct.
On the other hand, BTV regularization can overcome smoothness cross sharp edges
by adjusting the bilateral filters’ parameters. However, the main problem of BTV
is the great dependency on the bilateral filters’ parameters. Moreover, the weight
for smoothness in each direction has a fixed value for constant bilateral parameters
regardless to the image’s property.
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Hence, the motivation of this work is to develop an unsupervised learning-based
SR algorithm that can overcome the problems of both fusion step and restoration
step. To do that, the mapping function between the LR and HR images is estimated
by learning in the fusion step which can overcome the problem of using fixed map-
ping function. Moreover, in the restoration step, rather than using Tikhonov or
BTV as a regularization function, a general directional total variation (DTV) func-
tion with adaptive weights is newly introduced in a regularization-based restoration.
The weights for different directions are adaptively estimated based on the partially
estimated HR image. This weight adaptation can sense the image’s local proper-
ties and then overcomes the problem of using fixed smoothness weight for different
direction.

The remaining sections of this paper are organized as follows. Section 2 de-
scribes the mathematical model for the super-resolution problem. Section 3 briefly
review a state-of-the-art two steps-based SR algorithm and the problems of this al-
gorithm are highlighted. The proposed two steps-based SR algorithm is introduced
in Section 5. Section 6 presents the simulation results on the fusion, restoration
and SR of document image sequences. The conclusions are presented in Section 7.
Finally, Section 8 suggests an extension to the proposed algorithm.

2 Problem Description
Assume that K LR images of the same scene in Lexicographical order denoted by
Yk(1 ≤ k ≤ K), each containing M2 pixels, are observed, and they are generated
from the HR image denoted by X , containing L2 pixels, where L ≥ M . The
observation of K LR images are modeled by the following degradation process:

Yk = DHFkX + Vk. (1)

where Fk, H and D are the motion operator of the kth image, the blurring operator
(due to camera), and the down-sampling operator respectively, X is the unknown
HR image, Yk is the kth observed LR image, and Vk is an additive random noise for
the kth image. Throughout the paper, we assume that D and H are known and the
additive noise is Gaussian with zero mean. Therefore the problem here in this paper
is to find the original image X .

3 Two Steps-Based Super-Resolution
Traditionally, the SR problem is solved by using regularization-based algorithm
[19] where BTV is used as the regularization term. The traditional cost function for
SR is described as

J(X) =
K∑

k=1

∥∥DHFkX − Y k
∥∥

1
+ λ

d∑

l=−d

d∑

m=−d

α|l|+|m|
∥∥X − Sl

xSm
y X

∥∥
1
, (2)
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where α is the bilateral filter’s parameter which is always pre-determined manually
and λ is the regularization parameter.

In the document images, motion can be approximated as pure translation or even
it can be adjusted in the system to be pure translation. Then both blur operator and
motion operator can commute (i.e. HFk = FkH). Therefore, the cost function,
described in (2), can be modified as

J(X) =
K∑

k=1

∥∥DFkHX − Y k
∥∥

1
+ λ

d∑

l=−d

d∑

m=−d

α|l|+|m|
∥∥X − Sl

xSm
y X

∥∥
1
. (3)

Assume that Z = HX is the blurred version of the HR image. The optimization
problem described in (3) can be separated into two sub-problems, that is, fusion and
restoration:

J1(Z) =
K∑

k=1

∥∥DFkZ − Y k
∥∥

1
, (4)

and

J2(X) =
∥∥∥A(HX − Ẑ)

∥∥∥
1
+ λ

d∑

l=−d

d∑

m=−d

α|l|+|m|
∥∥X − Sl

xSm
y X

∥∥
1
, (5)

where A is a diagonal matrix that contains the square root of the number of LR
pixels corresponding each pixel position, Sl

x and Sm
y are the shifting operators in x

and y by l and m respectively, and ((2d+1)× (2d+1)) is the support size on which
the smoothness is done. The optimum solution (Ẑ) that minimizes (4) is found to
be the median of the up-sampled and warped LR images [19], i.e.

Ẑ(i) = median
k

(FkT DT Y k)(i). (6)

This solution implies a fixed mapping function between the LR images and blurred
version of the HR image. Also, the reconstructed HR image by using (5) is highly
depending on the choice of α and d.

4 Learning-Based Fusion (LBF)
In this step, the LR images are fused to get a blurred version of the HR image, where
the mapping function between the LR images and blurred HR image is learned.
Assume that the required resolution enhancement factor is r, then, r2 sub-grids need
to be filled in the HR grid. Because of the assumption of pure translational motion,
all pixel positions on each sub-grid have the same number of LR pixels to be fused.
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Therefore, it is reasonable to update the weights of each sub-grid independently.
The mapping function is defined by the weighting parameters W as follows

Ẑ(i) =

Kj∑

k=1

Wj(k)(FkT DT Y k)(i), i ∈ Gj,

subject to

Kj∑

k=1

Wj(k) = 1,

(7)

where Wj is a (Kj × 1) vector that weights the contribution of the LR pixels that
aligned to the sub-grid Gj and Kj is the number of LR images aligned to that sub-
grid.

The mapping parameters are learned so as to minimize the L1-norm of the dif-
ference between the observed LR images and the simulated LR images, where the
simulated LR images are generated using the observation model in (1) as follows:

Wj = arg min
Wj





Kj∑

k=1

‖DFkẐ − Y k‖1



 . (8)

Therefore, the updating rule for parameters Wj are defined as:

W n+1
j (i) = W n

j (i)− µwj
Y i(n)

Kj∑

k=1

sign
(
(DFkẐ)(n)− Y k(n)

)
, (9)

where n is the sample’s index of the sub-grid. The mapping parameters are updated
at each pixel position of the HR grid. The updating process of the mapping pa-
rameters is described as follows; starting at position (0, 0) of the sub-grid Gj , the
mapping parameters are initialized as W 0

j = [ 1
Kj

1
Kj
· · · 1

Kj
]. Then the parameters

are updated progressively according to a sequential scanning pattern for each sub-
grid. For its stability and fast convergence, the adaptive step size of the generalized
NLMS algorithm [22] for L1-norm case is used to choose the step size of learning
parameters. The step size of the mapping function’s parameters is chosen as

µwj
=

γ

c + ‖Rwj
‖1

, (10)

where Rwj
= [(F1T DT Y 1)(n), . . . , (FKj

T DT Y Kj)(n)]T , c > 0.
Indeed, the updating rule described in (9) depends on the scanning pattern.

However, the scanning pattern has small effect on the fusion step. The reason for
this small effect can be explained as follows. Document images are pseudo-binary
images which implies that in case of noiseless images (registration error is the only
source of error), images’ pixels have one of two values (0 or 255). Then the effect
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of scanning pattern may happen at transition from 0 to 255 or from 255 to 0. In the
first case, pixels that have zero value are not affecting the weights (weights are not
updated as shown in (9)). Also in the second transition zero pixels are not affected
by the update at pixels that have values equal 255. In case of noisy images, the
noise affect the zero values and then affect the updating process, however this effect
depends on the amount of contaminating noise, as will be shown later by simulation.

5 Directional Total Variation (DTV) and Adaptation
Instead of assuming smoothness in all directions, by using Tikhonov regulariza-
tion, or using constant values for α and λ as in (5), we propose to use a general
regularization function consisting of a linear combination of the smoothness in dif-
ferent directions with adaptive weight (Γl,m(X)). To do that, we propose to replace
λα|l|+|m| by a generalized parameter, Γl,m(X) ≥ 0, which we call the DTV param-
eter in direction (l, m). We want to emphasis that Γl,m is not only a generalization
of the conventional non-directional parameter, but also is a function of X . We will
discuss how to define this function and how to adapt this parameter later. In fact
this regularization function can be viewed as a smoothness in different direction
with different regularization parameter.

5.1 Adaptive DTV-Based Restoration

The cost function of the proposed restoration algorithm with DR-based regulariza-
tion is described as

J3(Γ(X), X) =
∥∥∥HX − Ẑ

∥∥∥
1
+

d∑

l=−d

d∑

m=−d

Γl,m(X) ‖Cl,mX‖1 , (11)

where ‖ ·‖1 is the L1-norm, Γl,m(X) is the adaptive weight for direction (l, m) to be
learned based on the partially restored image and Cl,m is a high pass operator that
works in the direction (l,m).

5.2 Iterative Minimization

The cost function described in (11) is optimized by using steepest descent for re-
stored image estimation and iterative approximation for DTV parameters compu-
tation. The coefficients of the DTV function (Γl,m(X)) are computed for each di-
rection so as to preserve the convexity of the function J3(Γ(X), X). Assuming
Γl,m(X) as a linear function of Jl,m(Γl,m(X), X) as

Γl,m(X) = ζl,mJl,m(Γl,m(X), X), (12)
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where
Jl,m(Γl,m(X), X) = ‖HX − Z‖1 + Γl,m(X) ‖Cl,mX‖1 . (13)

Then

Γl,m(X) =
‖HX − Z‖1

1
ζl,m

− ‖Cl,mX‖1

. (14)

Therefore, the restored image is updated as

X(n+1) = X(n) − β∇xJ3(Γ(X(n)), X(n)), (15)

where ∇xJ3(Γ(X), X) is computed as follows:

∇xJ3(Γ(X), X) = HT sign (HX − Z) +
d∑

l=−d

d∑

m=−d

Γl,m(X)CT
l,msign (Cl,mX)

+
d∑

l=−d

d∑

m=−d

∇xΓl,m(X)‖Cl,mX‖1,

(16)

∇xΓl,m(X) =

(
1

ζl,m
− ‖Cl,mX‖1

)
HT sign (HX − Z) + ‖HX − Z‖1CT

l,msign (Cl,mX)
(

1
ζl,m

− ‖Cl,mX‖1

)2 ,

(17)

5.3 Convexity Condition
The sufficient condition for convexity of J3(Γ(X), X) is obtained as follows:

Proposition 1 The cost function, J3(Γ(X), X), is convex under condition

1

ζl,m

> ‖Cl,mX‖1. (18)

Proof is given in the appendix. As a consequence of this condition, Γl,m, defined
in (14), should be positive value. The first semi-equality can be justified by power
preservation of the system, while the second inequality holds when we choose Cl,m

as a normalized matrix (i.e. the maximum eigenvalue of CT
l,mCl,m equals 1). That is,

an appropriate selection of the high-pass operator can guarantee this requirement.

5.4 Convergence analysis
The next step of the analysis is the convergence of the iterative algorithm given in
(15). The cost functions consisting of L1-norm are always solved by utilizing linear
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programming [21], however, in this section, the behavior of the proposed iterative
minimization, is analysed with simple steepest descent optimization. Assuming that
the convexity condition in (18), is satisfied, we can choose ζl,m such that

1

ζl,m

= (1 + τ)‖Ẑ‖1 > ‖Cl,mX‖1, τ > 0, (19)

under assumption that
‖Ẑ‖1 ' ‖X‖1 ≥ ‖Cl,mX‖1.

Therefore, the behaviour of the cost function, J3(Γ(X), X), is given as follows:

Proposition 2 The maximum peak of the oscillation of the cost function defined in
(11), can be controlled by the step size β and the choice of τ ≥ 1, under assumption
that ‖HX − Ẑ‖1 = ‖V ‖1 ≤ ‖Ẑ‖1.

Proof rewriting the update equation in (15) for two successive iterations using the
gradient in (16), we obtain

X(n+1) −X(n) = X(n) −X(n−1) − β
{

HT
(
sign(HX(n) − Ẑ)− sign(HX(n−1) − Ẑ)

)

+
d∑

l=−d

d∑

m=−d

CT
l,m

(
Γl,m(X(n))sign(Cl,mX(n))− Γ

(n−1)
l,m sign(Cl,mX(n−1))

)

+
d∑

l=−d

d∑

m=−d

(∇XΓl,m(X(n))‖Cl,mX(n)‖1 −∇XΓ
(n−1)
l,m ‖Cl,mX(n−1)‖1

)}
.

(20)

Utilizing (17) and (19), the term ∇XΓl,m‖Cl,mX‖1 can be approximated as

∇XΓl,m‖Cl,mX‖1 ≤ 1

τ
HT sign(HX − Ẑ) +

1

τ 2
CT

l,msign(Cl,mX).

Then, (20) can be modified as

X(n+1) −X(n) ≤
X(n) −X(n−1) − β

{
(1 +

1

τ
)HT

(
sign(HX(n) − Ẑ)− sign(HX(n−1) − Ẑ)

)

+
d∑

l=−d

d∑

m=−d

(1 +
1

τ 2
)CT

l,m

(
Γl,m(X(n))sign(Cl,mX(n))− Γ

(n−1)
l,m sign(Cl,mX(n−1))

)}
.

(21)

In this inequality, there are four terms containing sign function which has only three
possible values, −1, 0 and 1. Therefore, (21) can be written as

X(n+1) −X(n) ≤ X(n) −X(n−1) + β
{

2(1 +
1

τ
)HT 11

+
d∑

l=−d

d∑

m=−d

(1 +
1

τ 2
)
(
Γl,m(X(n))Cl,m12 + Γl,m(X(n−1))Cl,m13

)}
,

(22)
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where 11, 12 and 13 are vectors that consist of any combination of −1, 0 and 1
which result from the corresponding sign functions, Considering the norm for the
both sides in (22) and checking the upper bound using triangular inequality, we
obtain

‖X(n+1) −X(n)‖ ≤ ‖X(n) −X(n−1)‖+ β
{
‖2(1 +

1

τ
)HT 11

+ (1 +
1

τ 2
)

d∑

l=−d

d∑

m=−d

(
Γl,m(X(n))Cl,m12 + Γl,m(X(n−1))Cl,m13

)‖
}

,

≤ ‖X(n) −X(n−1)‖+ β
{

2(1 +
1

τ
)‖HT 11‖

+ ‖(1 +
1

τ 2
)

d∑

l=−d

d∑

m=−d

Γl,m(X(n))Cl,m12 + Γl,m(X(n−1))Cl,m13‖
}

,

≤ ‖X(n) −X(n−1)‖+ β
{

2(1 +
1

τ
)‖HT‖‖11‖+ (1 +

1

τ 2
)

d∑

l=−d

d∑

m=−d

(
Γl,m(X(n))‖Cl,m‖‖12‖+ Γl,m(X(n−1))‖Cl,m‖‖13‖

)}
.

(23)

Since ζl,m is restricted by the convexity condition to be greater than ‖Cl,mX‖1, then
using (14) together with (19),

Γh,k(X
(n)) =

‖V ‖1

(1 + τ)‖Z‖1 − ‖Ch,kX(n)‖1

≤ ‖Z‖1

τ‖Z‖1

≤ 1

τ
, (24)

in a similar way as in (24) we get that Γl,m(X(n)) ≤ 1
τ

which means that as τ ≥ 1,
Γl,m(X(n)) ≤ 1. Then the last term in (23) is bounded by the maximum value
which obtained when the values of both 11, 12 and 13 are all ones. Therefore, the
parameters β and τ can control the maximum peak of the oscillation of the cost
function in (11) if it will happen.

6 Simulation Results and Discussion
Four document images including different types of data available in real documents
such as texts, equations, draws and plots, are tested. The evaluation are done as
follows. First, the fusion step is tested by fusing LR images. Second, the restoration
step is tested by restoring a degraded images. Finally, the complete SR algorithm
including fusion and restoration are tested by super-resolving LR images.

6.1 Experiment Setup
In the restoration experiments, the degraded images are generated from original
images as follows. The original images are blurred with a Gaussian operator with
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kernel size equals 5 × 5 and variance equals 1 and then a Gaussian noise with
variance equals 5 are added to the blurred images.

In the SR experiments, the LR images sequence of the document images are
generated from the available HR images as follows. At first, the HR image is blurred
with a Gaussian operator with kernel size equals 5× 5 and variance equals 1. Then
the blurred images are shifted with random values to generate K randomly shifted
versions of the HR image (K = 30). Finally, the shifted versions of the HR images
are down-sampled with factor equals 4 in each direction and an additive Gaussian
noise with SNR equals 30 dB is added.

In the evaluation, the restored images using DTV-based restoration is compared
with the best and worst results of BTV-based restoration. Also, for more fair com-
parison, λ in case of BTV-based restoration is adaptively estimated in a similar way
as in [23].

In all experiments, the blurring operator is assumed to be known. The parame-
ters used in the simulations are set as follows. Steepest descent is used for optimiza-
tion. The maximum number of iterations are 100, β = 5, and γ = 0.5. ζ(l, m, i)
is chosen as 1

2‖Pi(Ẑ)‖1 , for all l,m values. In the evaluation, the reconstructed HR
images using learning-based fusion + DTV-based restoration is compared with the
best and worst results of MSA + BTV-based restoration algorithm.

6.2 Fusion Results

An experiment is performed to demonstrate the efficiency of the learning-based
fusion step as follows. For Text image, register LR images using translation model
based on Lucas-Kanade algorithm [24], then determine the number of images that
lay on the same HR grid. In this experiment, we choose the positions (4 : 4 : L, 4 :
4 : L), where three LR images lay on these positions. So we have three LR pixels
in each position to be fused.

Three cases are tested in this experiment, the first is adding heavy Gaussian
noise with SNR equals 10 dB, to one of these three images. Simply, taking median
over these images, containing outliers, can overcome (reject) these outliers. Also,
using learning-based fusion can reject these outliers as indicated by small weights
corresponding image that contains outliers (W1(3)) as shown in Fig. 1a. The second
case is adding heavy noise to two images of these three images. Simply, taking
median over these images may lead to a noisy value. However, using learning-
based fusion can adjust the weight for each pixel as shown in Fig. 1b, where the
weights W1(1) and W1(3), corresponding to heavy noisy images, are small (may be
zero in some pixel positions) compared to the weight W1(2) corresponding to the
less noisy image. Finally, adding heavy noise to all the three images, increases the
probability to get noisy image by using MSA, however, using learning-based fusion
can adaptively adjust the weight for each pixel to get the optimal combination of
the noisy images as shown in Fig. 1c.
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Table 1: The effect of outliers on the PSNR of the fused images.
Sequence Fusion algorithm Case I Case II Case III Case IV

Text
LBF with Hilbert scan 17.5484 17.5447 17.3727 17.1706
LBF with raster scan 17.5049 17.5001 17.3389 17.1008

MSA 17.5049 17.5049 17.2935 17.0004

Equation
LBF with Hilbert scan 20.5590 20.5243 20.2359 20.7186
LBF with raster scan 20.3904 20.3652 20.0232 19.5624

MSA 20.3847 20.3762 19.8714 19.3180

Plot
LBF with Hilbert scan 17.7482 17.6978 17.4766 17.2164
LBF with raster scan 17.7461 17.7144 17.5718 17.2757

MSA 17.7403 17.7228 17.5263 17.1284

Draw
LBF with Hilbert scan 18.9604 18.9538 18.7244 18.4367
LBF with raster scan 18.9599 18.9555 18.7384 18.4517

MSA 18.9582 18.9531 18.6509 18.2766

To demonstrate the claim that learning fusing parameters is better than using
fixed median function to fuse images, we evaluate the peak-signal-to-noise ratio
(PSNR) of the fused images in case of using median function and using learning-
based fusion. The PSNR of the fused images for different image sequences are
reported in Table 1. Four cases are evaluated, namely, using the test sequences
without adding more outliers, where the registration error and additive noise in LR
images generation process are the only sources of errors (case I), adding heavy noise
(SNR= 10 dB) to one LR of three images that are aligned to the same positions
on HR grid (case II), adding heavy noise to two LR images of three LR images
(case III), and adding heavy noise for all the three LR images (IV). From this table,
we can see that learning fusion parameters enhance the fusion quality especially
in case of heavy noise (outliers) contaminating LR images. It worth to mention
that in this experiment, the additive heavy noise (outliers) are added to image(s)
which correspond to one position of 16 possible positions in the HR grid (resolution
enhancement factor is set to 4). Therefore adding more noise (outliers) to different
position can show more improvements of the learning-based fusion compared to
median-based fusion.

In addition, Table 1 shows a comparison between the PSNR of the fused images
using raster scan and Hilbert pattern scan. From this table, we can see that the
scanning pattern has small effect on the fusion step in most cases.

6.3 Restoration Results

The iterative restoration step is evaluated in this section. In this evaluation, the
restored images using DTV-based restoration is compared with the best and worst



Learning-Based Document Image Super-Resolution 603

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

Sample

W
ei

gh
t V

al
ue

 

 

W
1
(1)

W
1
(2)

W
1
(3)

(a)

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Sample

W
ei

gh
t V

al
ue

 

 

W
1
(1)

W
1
(2)

W
1
(3)

(b)

0 500 1000 1500 2000 2500 3000 3500
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Sample

W
ei

gh
t V

al
ue

 

 

W
1
(1)

W
1
(2)

W
1
(3)

(c)

Figure 1: Plot for the fusion parameters in case of: (a) One image of three LR
images includes outliers, (b) Two images of three LR images include outliers, (c)
All the three images include outliers.

results of BTV-based restoration.

6.3.1 Subjective Results

In Fig. 2, the results of the Text image are shown. A zoomed part for the original
image and the degraded image are shown in Figs. 2a and 2b, respectively. The
worst restored image, among different selections of α in range [0.1, 1], and the best
restored image by using BTV-based restoration are shown in Figs. 2c and 2d, re-
spectively. The restored images by using DTV-based restoration is shown in Fig.
2e. Similarly, the results of Draw image is shown in Fig. 3. From these figures,
we can recognize that; BTV-based restoration highly depends on the choice of the
bilateral parameter α, using DTV-based restoration can achieve even better quality
than BTV-based restoration algorithm with the best choice of α.

6.3.2 Objective Results

To demonstrate the visual results of the proposed restoration algorithm, we use the
objective results based on mean absolute error (MAE) evaluation. A comparison
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between the MAE values of the restored images by using BTV-based restoration
and DTV-based restoration for different document images is shown in Fig. 4. In
this figure, the effect of parameters α, and d are evaluated. Parameter α (bilateral
parameter) greatly affect the BTV-based algorithm. The parameter d (parameter of
the support size of the regularization function) affects both BTV-based and DTV-
based restoration algorithms, however, its effect on the BTV-based algorithm is
higher.

Finally, to check the convergence of the cost function J3(Γ(X), X) with the
simultaneous estimation of Γ(X) for each direction, the plot of the cost function
versus iteration is tested. Figure 8a shows the plot of J3(Γ(X), X) for four ex-
amples. In this figure, we can see that the cost function may oscillate around the
minimum value, however, the oscillating value is very small in most cases. This
oscillation is due to the update with sign function in the updating rule in (15).

6.4 SR Results

The overall SR algorithm including fusion and restoration steps is evaluated in this
section. To test the efficiency of the proposed algorithm, it is compared with MSA-
based fusion + BTV-based regularization [19].

6.4.1 Subjective Results

In Fig. 5, the results of the Text sequence are shown. A zoomed part for the original
HR and one of the LR images are shown in Figs. 5a and 5b, respectively. The HR
image by using MSA with BTV regularization for worst selection (corresponds to
the highest MAE value) and best selection of α are shown in Figs. 5c and 5d, re-
spectively. Using MSA can be a good choice in case of less outliers contaminating
LR images sequence. However, in case of heavy noisy sequences, MSA can fail to
remove all noisy pixels as shown in some noisy pixels in Fig. 5c. On the other hand,
the proposed learning-based algorithm can learn the weights of the LR pixels to be
included (or even completely excluded) in the HR image. Moreover, a general prior
property function is assumed in the regularization term, which is learned simultane-
ously to overcome the over-smoothness problem and remove contaminating noise,
as shown in Fig. 5e.

Another example for super-resolving images that contain draws with different
shapes is shown in Fig. 6. A zoomed part for the original HR and the one of the
LR images are shown in Figs. 6a and 6b respectively. The HR image by using
MSA with BTV regularization is shown in Figs. 6c and 6d. The HR image by using
learning-based fusion with DTV-based regularization is shown in Fig. 6e.
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6.4.2 Objective Results

To demonstrate the visual results of the SR algorithm, the MAE is used as a quan-
titative measure for the quality of the resulting HR images. The PSNR is measured
for the resulting HR image for different values of α and different values of d for
different document image sequences.

Figure 7 shows the MAE of the reconstructed HR image for different docu-
ment image sequences. In this figure, the MAE of the reconstructed HR image
using MSA with BTV regularization is highly depending on the bilateral coefficient
(α). On the other hand, learning-based algorithm with DTV adaptively estimate the
weight for each direction based on the partially reconstructed HR image.

To check the convergence of the cost function J3(Γ(X), X) with the simulta-
neous estimation of Γ(X) for each direction, the plot of the cost function versus
iteration is tested. Figure 8b shows the plot of J3(Γ(X), X) for four examples. In
this figure, we can see that the cost function always oscillating around the mini-
mum value. However, the oscillating value is very small in some cases such as Plot,
Equation and Draw sequences examples. In other case the oscillating value is rec-
ognizable as in Text sequence example. This oscillation is due to the update with
sign function in the updating rule in (15).

7 Conclusion

In this paper, we presented a novel learning-based image SR algorithm. The pro-
posed algorithm is divided into two main steps, the first is the non-iterative fusion
step, the second is the iterative restoration step. The fusion step is based on learning
the mapping function from the LR to HR images. The restoration step is based on
adapting the regularization parameter in each direction based on the partially recon-
structed image. The convexity condition as well as the convergence conditions are
introduced. The proposed algorithm is tested for document image super-resolution
application.

8 Open Problem

The work in this paper can be extended for different motion model rather than trans-
lational motion. In this case, all the neighboring pixels will be weighted, where both
spatial and temporal weights will be used and adapted.
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9 Appendix
A real valued functional f on a convex subset C of a linear vector space is said to
be convex if

f(az1 + (1− a)z2) ≤ af(z1) + (1− a)f(z2) (25)

for all z1, z2 ∈ C and 0 < a < 1. Let us rewrite the nonlinear functional J3(Γ(X), X)
with only two regularization terms in two different directions as follows

J3(z) = J3(s, q, r) = s + f1(J0,1(s, q))q + f2(J1,0(s, r))r, (26)

where

J0,1(s, q) = ‖HX − Z‖1 + Γ0,1 ‖C0,1X‖1 ,

J1,0(s, r) = ‖HX − Z‖1 + Γ1,0 ‖C1,0X‖1 ,

where s = ‖HX − Z‖1, q = ‖C0,1X‖1 and r = ‖C1,0X‖1. s, q and r are defined
within a convex region, i.e. s, q, r ∈ C. The condition for convexity of nonlinear
functional J3(Γ(X), X) translates into the condition

J3(az1 + (1− a)z2) ≤ aJ3(z1) + (1− a)J3(z2), (27)

or

J3(as1 + (1− a)s2, aq1 + (1− a)q2, ar1 + (1− a)r2)

≤ aJ3(s1, q1, r1) + (1− a)J3(s2, q2, r2),
(28)

where z1 = (s1, q1, r1)
T and z1 = (s2, q2, r2)

T , s1, s2, q1, q2, r1, r2 ∈ C and 0 < a <
1. Using (26), the left hand side of (28) can be written as

J3(as1 + (1− a)s2, aq1 + (1− a)q2, ar1 + (1− a)r2)

= as1 + (1− a)s2 + L,
(29)

where

L = (aq1 + (1− a)q2)f1(J0,1(as1 + (1− a)s2, aq1 + (1− a)q2))

+ (ar1 + (1− a)r2)f2(J1,0(as1 + (1− a)s2, ar1 + (1− a)r2)).
(30)

Similarly, the right hand side of (28) can be rewritten as

aJ3(s1, q1, r1) + (1− a)J3(s2, q2, r2) = as1 + (1− a)s2 +R, (31)

R = aq1f1(J0,1(s1, q1) + (1− a)q2J0,1(s2, q2))

+ ar1f2(J1,0(s1, r1) + (1− a)r2J1,0(s2, r2).
(32)

Therefore, showing the validity of the inequality in (28) requires showing that the
right hand side of (32) is greater or equals the right hand side of (30). With the



Learning-Based Document Image Super-Resolution 607

assumption that the functions f1 and f2 are linear and monotonically increasing of
J0,1 and J1,0 respectively, then ∂f1(J0,1)

∂J0,1
≥ 0 and ∂f2(J1,0)

∂J1,0
≥ 0. With this assumption

the prove of the inequality in (28) is simplified to showing that

(aq1 + (1− a)q2)J0,1(as1 + (1− a)s2, aq1 + (1− a)q2)

+ (ar1 + (1− a)r2)J1,0(as1 + (1− a)s2, ar1 + (1− a)r2)

≤ aq1J0,1(s1, q1) + (1− a)q2(J0,1(s2, q2) + ar1J1,0(s1, r1) + (1− a)r2(J1,0(s2, r2).

(33)

Both J0,1(s, q) and J1,0(s, r) are similar to the function presented in [23] (since one
regularization term is used in each of them) which has been proved to be convex
with conditions ∂f1(J0,1)

∂J0,1
< 1

q
and ∂f2(J1,0)

∂J1,0
< 1

r
, respectively. Therefore, the left

hand side in the inequality (33) follows the inequality (25), then

(aq1 + (1− a)q2)J0,1(as1 + (1− a)s2, aq1 + (1− a)q2)

+ (ar1 + (1− a)r2)J1,0(as1 + (1− a)s2, ar1 + (1− a)r2)

≤ (aq1 + (1− a)q2)[aJ0,1(s1, q1) + (1− a)J0,1(s2, q2)]

+ (ar1 + (1− a)r2)[aJ1,0(s1, r1) + (1− a)J1,0(s2, r2)].

(34)

Then the condition in (33) implies

aq1J0,1(s1, q1) + (1− a)q2J0,1(s2, q2)

− aq1[aJ0,1(s1, q1) + (1− a)J0,1(s2, q2)]

− (1− a)q2[aJ0,1(s1, q1) + (1− a)J0,1(s2, q2)]

+ ar1J1,0(s1, r1) + (1− a)r2J1,0(s2, r2)

− ar1[aJ1,0(s1, r1) + (1− a)J1,0(s2, r2)]−
(1− a)r2[aJ1,0(s1, r1) + (1− a)J1,0(s2, r2)]

= a(1− a)(q1 − q2)[J0,1(s1, q1)− J0,1(s2, q2)]

+ a(1− a)(r1 − r2)[J1,0(s1, r1)− J1,0(s2, r2)] ≥ 0.

(35)

Since a(1− a) is always positive, the condition in (35) becomes

(q1 − q2)[J0,1(s1, q1)− J0,1(s2, q2)] + (r1 − r2)[J1,0(s1, r1)− J1,0(s2, r2)] ≥ 0,
(36)

which is true if both terms (q1 − q2)[J0,1(s1, q1) − J0,1(s2, q2)] ≥ 0 and (r1 −
r2)[J1,0(s1, r1) − J1,0(s2, r2)] ≥ 0 which implies that (q1 − q2) and [J0,1(s1, q1) −
J0,1(s2, q2)] have the same sign and also (r1 − r2) and [J1,0(s1, r1) − J1,0(s2, r2)]
have the same sign. One case for J0,1(s, q) to convex is when both J0,1(·, q) and
J1,0(·, r) are monotonically increasing functions of q, r regardless of the other axes
s, i.e. ∂J0,1

∂q
≥ 0 and ∂J1,0

∂r
≥ 0. Since J0,1 = s + f1(J0,1)q and J1,0 = s + f2(J1,0)r

∂J0,1

∂q
=

∂f1

∂J0,1

∂J0,1

∂q
q + f1(J0,1), (37)
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or
∂J0,1

∂q
=

f1(J0,1)

1− q ∂f1

∂J0,1

≥ 0. (38)

Since f1(J0,1) ≥ 0, (38) results in

∂f1(J0,1)

∂J0,1

<
1

q
=

1

‖C0,1X‖1

. (39)

And similarly
∂f2(J1,0)

∂J1,0

<
1

r
=

1

‖C1,0X‖1

. (40)

Generalizing this result to multiple regularization terms rather than two terms, the
general condition for convexity for the regularization term in direction (l,m) can be
described as

∂fl,m(Jl,m)

∂Jl,m

<
1

ql,m

=
1

‖Cl,mX‖1

. (41)

It worth to mention that this condition includes the condition of convexity of both
J0,1(s, q) and J1,0(s, r).
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(a)

(b) (c)

(d) (e)

Figure 2: Restoration of Text image: (a) Original image, (b) Degraded image, re-
stored image using; (c) BTV-based restoration [20] corresponding maximum MAE
value, (d) BTV-based restoration [20] corresponding minimum MAE value, (e)
patch-based DR restoration algorithms using p = 1.
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(a)

(b) (c)

(d) (e)

Figure 3: Restoration of Draw image: (a) Original image, (b) Degraded image, re-
stored image using; (c) BTV-based restoration [20] corresponding maximum MAE
value, (d) BTV-based restoration [20] corresponding minimum MAE value, (e)
patch-based DR restoration algorithms using p = 1.
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Figure 4: Comparison between the MAE of the restored images by using BTV-
based restoration and DTV-based restoration for: (a) Text image, (b) Plot image, (c)
Equation image, and (d) Draw image.
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(a)

(b) (c)

(d) (e)

Figure 5: SR of Text image sequence: (a) Original HR image, (b) LR image, Super-
resolved image using; (c) MSA + BTV restoration [19] with worst selection of α,
(d) MSA + BTV restoration [19] with best selection of α, (e) Learning-based fusion
+ patch-based DTV restoration algorithms.
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(a)

(b) (c)

(d) (e)

Figure 6: SR of Draw image sequence: (a) Original HR image, (b) LR image,
Super-resolved image using; (c) MSA + BTV restoration [19] with worst selection
of α, (d) MSA + BTV restoration [19] with best selection of α, (e) Learning-based
fusion + patch-based DTV restoration algorithms.
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Figure 7: Comparison between the MAE of the reconstructed HR images by using
learning-based fusion + DTV-based restoration and MSA-based fusion + BTV-
based restoration for: (a) Text image sequence, (b) Plot image sequence, (c) Equa-
tion image sequence, and (d) Draw image sequence.
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Figure 8: Convergence of function J3(Γ(X), X) in case of: (a) restoration experi-
ment and (b) SR experiment.


