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Abstract

Let (R, ∗) be a ring with involution. The main purpose of
this paper is to investigate generalized derivations satisfying
certain identities on Lie ideals of R. Furthermore, some well
known results for generalized derivations in ∗-prime rings as
well as in prime rings are extended to Lie ideals. Finally, ex-
amples are given to demonstrate that the restrictions imposed
on the hypothesis of the various theorems were not superflu-
ous.
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1 Introduction

Throughout R will denote an associative ring with center Z(R), not neces-
sarily with an identity element. For any x, y ∈ R, the symbol [x, y] stands
for the commutator xy − yx. We shall make extensive use of the following
basic commutator identities without any specific mention: [xy, z] = x[y, z] +
[x, z]y, [x, yz] = y[x, z]+[x, y]z. Recall that R is prime if aRb = 0 implies a = 0
or b = 0. If R admits an involution ∗, then R is ∗-prime if aRb = aRb∗ = 0
yields a = 0 or b = 0. Clearly, a prime ring admitting an involution ∗ is ∗-prime
but the converse is in general not true. Indeed, if Ro denotes the opposite ring
of a prime ring R, then R × Ro equipped with the exchange involution τex,
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defined by τex(x, y) = (y, x), is τex-prime but not prime. This example shows
that every prime ring can be injected in a ∗-prime ring and from this point of
view ∗-prime rings constitute a more general class of prime rings.
An additive subgroup U of R is said to be a Lie ideal of R if [u, r] ∈ U for all
u ∈ U and r ∈ R. We will say that a Lie ideal U is a 2-Lie ideal if 2uv ∈ U for
all u, v ∈ U. The fact that 2r[u, v] = 2[ru, v]−2[r, v]u implies that 2r[u, v] ∈ U
for all u, v ∈ U and r ∈ R. If U is a Lie (resp. 2-Lie) ideal such that U∗ = U
then U is called a ∗-Lie (resp. (∗, 2)-Lie) ideal.
An additive mapping d : R → R is called a derivation if d(xy) = d(x)y+xd(y)
holds for all x, y in R. An additive mapping F : R → R is called a gener-
alized derivation if there exists a derivation d : R → R such that F (xy) =
F (x)y + xd(y) holds for all x, y ∈ R. Hence generalized derivation covers both
the concepts of derivation and generalized inner derivation. Furthermore, gen-
eralized derivation with d = 0 covers the concept of left multipliers.
Many analysts have studied generalized derivations in the context of algebras
on certain normed spaces (see [6] for references). Moreover, there has been
considerable interest concerning the relationship between the commutativity
of a prime ring R and the behavior of generalized derivations of R. In [12], it
is proved that if R is a 2-torsion free ∗-prime ring and I is a nonzero ∗-ideal of
R and F is a generalized derivation of R, associated with a derivation d which
commutes with ∗, such that one of the following conditions holds, then R is
commutative:

(1) F (xy)− xy ∈ Z(R) (2) F (xy) + xy ∈ Z(R) (3) F (xy)− yx ∈ Z(R)

(4) F (xy)+yx ∈ Z(R) (5) F (x)F (y)−xy ∈ Z(R) (6) F (x)F (y)+xy ∈ Z(R)

for all x, y ∈ I. In this paper we extend some results of [1] and those of [12]
to Lie ideals. Moreover, examples are given to prove that the ∗-primeness
hypothesis in the various theorems were not superfluous.

2 The results

Throughout, (R, ∗) will be a 2-torsion free ring with involution and Sa∗(R) :=
{r ∈ R/ r∗ = ± r} the set of symmetric and skew symmetric elements of R.
We begin with the following lemmas which are essential for developing the
proof of our results.

Lemma 2.1 ([7], Lemma 4) If U 6⊆ Z(R) is a ∗-Lie ideal of a 2-torsion
free ∗-prime ring R and a, b ∈ R such that aUb = a∗Ub = 0, then a = 0 or
b = 0.

Lemma 2.2 ([8], Lemma 2.3) Let 0 6= U be a ∗-Lie ideal of a 2-torsion free
∗-prime ring R. If [U,U ] = 0, then U ⊆ Z(R).
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Lemma 2.3 ([9], Lemma 2.2) Let R be a 2-torsion free ∗-prime ring and
U a nonzero ∗-Lie ideal of R. If d is a derivation of R such that d(U) = 0,
then either d = 0 or U ⊆ Z(R).

Theorem 2.4 Let U be a (∗, 2)-Lie ideal of R and F a generalized deriva-
tion associated with a nonzero derivation d such that For each x, y ∈ U either
F (xy)− xy ∈ Z(R) or F (xy) + xy ∈ Z(R). If R is ∗-prime, then U ⊆ Z(R).

Proof. Assume that U 6⊆ Z(R). Let U1 and U2 be the subgroups of U defined
by U1 = {x ∈ U/F (xy)− xy ∈ Z(R) for all y ∈ U} and U2 = {x ∈ U/F (xy) +
xy ∈ Z(R) for all y ∈ U}. Since U = U1 ∪ U2, by hypothesis, and as a group
cannot be a union of two of its proper subgroups, then U = U1 or U = U2.
Thus F (xy)−xy ∈ Z(R) for all x, y ∈ U or F (xy)+xy ∈ Z(R) for all x, y ∈ U.
Suppose that F (xy)− xy ∈ Z(R) for all x, y ∈ U ; then we obtain

F (x)y + xd(y)− xy ∈ Z(R) for all x, y ∈ U. (1)

Writing 2xz instead of x in (1), we get

F (x)zy + xd(z)y + xzd(y)− xzy ∈ Z(R),

so that [(F (x)z + xd(z)− xz)y + xzd(y), y] = 0 for all x, y, z ∈ U. Therefore,

[xzd(y), y] = 0 for all x, y, z ∈ U,

whence it follows that

xz[d(y), y] + x[z, y]d(y) + [x, y]zd(y) = 0 for all x, y, z ∈ U. (2)

Replacing z by 2wz in (2) and using (2), we get [x, y]wzd(y) = 0 and thus

[x, y]Uzd(y) = 0 for all x, y, z ∈ U. (3)

Let y ∈ U ∩ Sa∗(R); using Lemma 1 together with (3) we get [x, y] = 0 for all
x ∈ U or zd(y) = 0 for all z ∈ U which leads to d(y) = 0. Hence

[y, U ] = 0 or d(y) = 0 for all y ∈ U ∩ Sa∗(R).

Let u ∈ U ; as u∗−u ∈ U ∩Sa∗(R), then either [u∗−u, U ] = 0 or d(u∗−u) = 0.
If [u∗ − u, U ] = 0, then [x, u] = [x, u∗] for all x ∈ U thereby (3) yields

[x, u]∗Rzd(u) = 0 and [x, u]Rzd(u) = 0 for all x, z ∈ U ;

whence it follows, because of Lemma 1, that [u, U ] = 0 or d(u) = 0.
Assume that d(u∗ − u) = 0; substituting u∗ for y in (3), we arrive at

[x, u]∗Uzd(u) = 0 for all x, z ∈ U.
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As [x, u]Uzd(u) = 0 by (3), applying Lemma 1, then we get [u, U ] = 0 or
d(u) = 0. In conclusion, we find that

[y, U ] = 0 or d(y) = 0 for all y ∈ U. (4)

Let W1 = {y ∈ U/[y, U ] = 0} and W2 = {y ∈ U/d(y) = 0}. Clearly, W1 and
W2 are additive subgroups of U such that U = W1 ∪W2, by (4). Accordingly,
either U = W1 or U = W2. If U = W1, then [U,U ] = 0 which when compared
with Lemma 2 contradicts U 6⊆ Z(R). Therefore, U = W2 so that d(U) = 0
which, because of d 6= 0, contradicts Lemma 3. Hence, necessarily U ⊆ Z(R).
Finally, to prove the case F (xy)+xy ∈ Z(R), it suffices to replace F by −F.

The following example shows that in Theorem 2.4 the ∗-primeness hypoth-
esis can not be omitted.

Example 1. Let S = IR[X]× IR[X]; if we define an addition on S by compo-
nentwise and multiplication by (P1, P2)(Q1, Q2) = (P1Q2 − P2Q1, 0). Clearly,
S is a noncommutative ring in which s2 = 0 and st = −ts for all s, t ∈ S.

Let us consider R =

{(
x y
0 x

)
: x, y ∈ S

}
and U =

{(
0 y
0 0

)
: y ∈ S

}
.

Define F : R −→ R by F

(
x y
0 x

)
=

(
−x 0
0 −x

)
. It is easy to see that F

is a generalized derivation associated to the nonzero derivation d defined on

R by d

(
x y
0 x

)
=

(
0 y
0 0

)
. Furthermore, the map ∗ : R −→ R defined by

(
u v
0 u

)∗
=

(
−u −v
0 −u

)
is an involution and if we set r =

(
s 0
0 s

)
, where

s 6= 0, then using sus = 0 for all u ∈ S we find that aRa = 0 = aRa∗ proving
that R is a non ∗-prime ring. Moreover, U is a (∗, 2)-Lie ideal of R such that
F (xy) − xy ∈ Z(R) and F (xy) + xy ∈ Z(R) for all x, y ∈ U ; but U 6⊆ Z(R).

Indeed, if r =

(
s 0
0 s

)
and u =

(
0 w
0 0

)
, with sw 6= 0, then [u, r] 6= 0.

Hence in Theorem 2.4 the hypothesis of ∗-primeness is crucial.

It is worthwhile to note that a ∗-prime ring admitting a nonzero central ∗-
ideal must be commutative. Using this fact together with Theorem 2.4, the
following result proves that Theorem 2.1 of [12] remains valid without suppos-
ing that d commutes with ∗.

Theorem 2.5 Let R be a 2-torsion free ∗-prime ring and I a nonzero ∗-
ideal of R. If R admits a generalized derivation F associated with a nonzero
derivation d such that for each x, y ∈ I either F (xy)− xy ∈ Z(R) or F (xy) +
xy ∈ Z(R), then R is commutative.
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As an application of Theorem 2.4, we extend Theorem 2.1 of [1] to Lie
ideals.

Theorem 2.6 Let R be a 2-torsion free prime ring and U a 2-Lie ideal of
R. If R admits a generalized derivation F associated with a nonzero derivation
d such that F (xy)− xy ∈ Z(R) for all x, y ∈ U, then U ⊆ Z(R).

Proof. Let F be the additive mapping defined on R = R × R0 by F(x, y) =
(F (x), y). Clearly, F is a generalized derivation associated with the nonzero
derivation D defined by D(x, y) = (d(x), 0). Let W = U × U ; it is easy to
verify that W is a (∗ex, 2)-Lie ideal of R. Moreover, F(xy)−xy ∈ Z(R) for all
x, y ∈ W. Since R is a ∗ex-prime ring, in view of Theorem 2.4 we deduce that
W ⊆ Z(R) and therefore U ⊆ Z(R).

As another application of Theorem 2.4, we extend Theorem 2.2 of [1] to Lie
ideals.

Theorem 2.7 Let R be a 2-torsion free prime ring and U a 2-Lie ideal of
R. If R admits a generalized derivation F associated with a nonzero derivation
d such that F (xy) + xy ∈ Z(R) for all x, y ∈ U, then U ⊆ Z(R).

Proof. LetR = R×R0 and W = U×U. If we define F : R −→ R by F(x, y) =
(F (x),−y), then F is a generalized derivation associated with the nonzero
derivation D defined by D(x, y) = (d(x), 0). Furthermore, F(xy) + xy ∈ Z(R)
for all x, y ∈ W. Since R is ∗ex-prime and W is a (∗ex, 2)-Lie ideal of R, then
Theorem 2.4 yields W ⊆ Z(R) which forces U ⊆ Z(R).

Theorem 2.8 Let U be a (∗, 2)-Lie ideal of R and F a generalized deriva-
tion associated with a nonzero derivation d such that for each x, y ∈ U either
F (xy)− yx ∈ Z(R) or F (xy) + yx ∈ Z(R). If R is ∗-prime, then U ⊆ Z(R).

Proof. Assume that U 6⊆ Z(R). Reasoning as in Theorem 2.4 we arrive at
F (xy)− yx ∈ Z(R) for all x, y ∈ U or F (xy) + yx ∈ Z(R) for all x, y ∈ U.
Suppose that F (xy)− yx ∈ Z(R) for all x, y ∈ U ; then we get

F (x)y + xd(y)− yx ∈ Z(R) for all x, y ∈ U.

Hence [F (x)y + xd(y)− yx, t] = 0 for all t ∈ U so that

[F (x), t]y + F (x)[y, t] + [x, t]d(y) + x[d(y), t] = y[x, t] + [y, t]x. (5)

Replacing y by 2yt in (5), we conclude that

[y, t]xt + y[x, t]t + [x, t]yd(t) + xy[d(t), t] + x[y, t]d(t)− [y, t]tx− yt[x, t] = 0
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and therefore

[y, t][x, t] + y[[x, t], t] + [x, t]yd(t) + xy[d(t), t] + x[y, t]d(t) = 0. (6)

Substituting 2xy for y in (6) and employing (6) we see that

[x, t]y[x, t] + [x, t]xyd(t) = 0 for all t, x, y ∈ U. (7)

Writing x + t instead of x in (7), because of (7), we find that

[x, t]tyd(t) = 0 for all t, x, y ∈ U. (8)

Replacing x by 2xz in (8), we are forced to [x, t]ztyd(t) = 0 and thereby

[x, t]Rtyd(t) = 0 for all t, x, y ∈ U. (9)

If t ∈ U∩ ∈ Sa∗(R); then (9) yields tyd(t) = 0 for all y ∈ U , in which case
tUd(t) = 0 and thus t = 0 or d(t) = 0, or [x, t] = 0 for all x ∈ U. Accordingly,

[U, t] = 0 or d(t) = 0 for all t ∈ U ∩ Sa∗(R).

Let u ∈ U, as u+u∗ ∈ U ∩Sa∗(R), then either [U, u+u∗] = 0 or d(u+u∗) = 0.
If [U, u + u∗] = 0, then [x, u] = −[x, u∗] for all x ∈ U and from (9) this yields

[x, u]∗Ruyd(u) = 0 for all x, y ∈ U. (10)

Using (9) together with (10), we arrive at [U, u] = 0 or uUd(u) = 0.
If [U, u] 6= 0 hence uUd(u) = 0 and as u−u∗ ∈ U ∩Sa∗(R), then d(u) = d(u∗).
Writing u∗ instead of t in (9) we find that

[x, u]∗Uu∗yd(u∗) = 0 for all x, y ∈ U. (11)

Since [x, u] = −[x, u∗] for all x ∈ U, from (11) it follows that

[x, u]Uu∗yd(u∗) = 0 for all x, y ∈ U. (12)

Combining (11) and (12) we obtain [x, u] = 0 for all x ∈ U or u∗yd(u∗) = 0 for
all y ∈ U. Since [U, u] 6= 0, then u∗Ud(u∗) = 0 and the fact that d(u) = d(u∗)
assures that

u∗Ud(u) = 0.

As uUd(u) = 0, then applying Lemma 1, we arrive at d(u) = 0.
Now suppose d(u + u∗) = 0. If d(u− u∗) = 0, then 2d(u) = 0 so that d(u) = 0.
If [U, u− u∗] = 0 then reasoning as above we obtain [U ; u] = 0 or d(u) = 0.
In conclusion we find that

[U, u] = 0 or d(u) = 0 for all u ∈ U. (13)
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Since equation (13) is the same as equation (4), arguing as in the proof of
Theorem 2.4, we get a contradiction. Thus, necessarily U ⊆ Z(R).
Finally, to prove the case F (xy)+ yx ∈ Z(R), it suffices to replace F by −F.

Example 2. In hypothesis of Theorem 2.8 the ∗-primeness condition is nec-
essary. Indeed, in example 1 it is easy to verify that F (xy)− yx ∈ Z(R) and
F (xy) + yx ∈ Z(R) for all x, y ∈ U, but U 6⊆ Z(R).

As an application of Theorem 2.8, the following theorem gives an improved
version of ([12], Theorem 2.2).

Theorem 2.9 Let R be a 2-torsion free ∗-prime ring and I a nonzero ∗-
ideal of R. If R admits a generalized derivation F associated with a nonzero
derivation d such that for each x, y ∈ I either F (xy)− yx ∈ Z(R) or F (xy) +
yx ∈ Z(R), then R is commutative.

Theorem 2.10 Let U be a (∗, 2)-Lie ideal of R and F a generalized deriva-
tion associated to a nonzero derivation d, commuting with ∗, such that for each
x, y ∈ U either F (x)F (y) − xy ∈ Z(R) or F (x)F (y) + xy ∈ Z(R). If R is ∗-
prime, then U ⊆ Z(R).

Proof. Assume that U 6⊆ Z(R). Similarly, as in Theorem 2.4, we have
F (x)F (y) − xy ∈ Z(R) for all x, y ∈ U or F (x)F (y) − xy ∈ Z(R) for all
x, y ∈ U.
Suppose that

F (x)F (y)− xy ∈ Z(R) for all x, y ∈ U. (14)

Replacing y by 2yt in (14), we obtain

(F (x)F (y)− xy)t + F (x)yd(t) ∈ Z(R) for all x, y, t ∈ U,

so that

[(F (x)F (y)− xy)t + F (x)yd(t), t] = 0 for all x, y, t ∈ U,

which reduces to

F (x)y[d(t), t] + F (x)[y, t]d(t) + [F (x), t]yd(t) = 0. (15)

Since U is a 2-Lie ideal, then 2r[u, v] ∈ U for all u, v ∈ U and r ∈ R.
Substituting 2F (y)r[u, v] for y in (15), where u, v ∈ U and r ∈ R, we get

F (x)(F (y)z[d(t), t] + F (y)[z, t]d(t) + [F (y), t]zd(t)) + [F (x), t]F (y)zd(t) = 0,

where z = 2r[u, v]. In view of (15), the least equation becomes [F (x), t]F (y)zd(t) =
0 and the fact that charR 6= 2 yields

[F (x), t]F (y)r[u, v]d(t) = 0 for all t, u, v, x, y ∈ U, r ∈ R. (16)
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Replacing v by 2vw in (16), where w ∈ U , and using (16) we find that
[F (x), t]F (y)r[u, v]wd(t) = 0 and thus

[F (x), t]F (y)r[u, v]Ud(t) = 0 for all t, u, v, x, y ∈ U, r ∈ R. (17)

Since d commutes with ∗, then Lemma 1 together with (17) assure that for all
t ∈ U ∩ Sa∗(R) either d(t) = 0 or [F (x), t]F (y)r[u, v] = 0.
Suppose that [F (x), t]F (y)r[u, v] = 0 for all u, v, x, y ∈ U, r ∈ R; then

[F (x), t]F (y)R[u, v] = 0 for all u, v, x, y ∈ U. (18)

As U is invariant under ∗, then (18) assures that [F (x), t]F (y)R[u, v]∗ = 0 and
the ∗-primeness of R, implies that either [F (x), t]F (y) = 0 or [u, v] = 0. Since
U 6⊆ Z(R), then Lemma 2 forces

[F (x), t]F (y) = 0 for all x, y ∈ U. (19)

Substituting 2yt for y in (19) we arrive at [F (x), t]yd(t) = 0 ant thus

[F (x), t]Ud(t) = 0 for all x ∈ U. (20)

Since t ∈ U∩Sa∗(R) and d commutes with ∗, in view of (20), Lemma 2 assures
that d(t) = 0 or [F (x), t] = 0 for all x ∈ U. Accordingly, for all t ∈ U ∩Sa∗(R)

d(t) = 0 or [F (x), t] = 0 for all x ∈ U. (21)

Let w ∈ U ; we have d(w − w∗) = 0 or [F (x), w − w∗] = 0 for all x ∈ U.
If d(w − w∗) = 0, then d(w) ∈ Sa∗(R) and (17) implies that d(w) = 0 or
[F (x), w]F (y)r[u, v] = 0 for all u, v, x, y ∈ U, r ∈ R in which case we arrive,
as above, at d(w) = 0 or [F (x), w] = 0 for all x ∈ U.
Suppose that [F (x), w − w∗] = 0 for all x ∈ U ; if [F (x), w + w∗] = 0, then
[F (x), w] = 0. If d(w + w∗) = 0, then d(w) ∈ Sa∗(R) and reasoning as above
we arrive at d(w) = 0 or [F (x), w] = 0 for all x ∈ U. In conclusion,

for all w ∈ U, either d(w) = 0 or [F (x), w] = 0 for all x ∈ U.

Consequently, U is a union of the additive subgroups G and H, where G =
{u ∈ U / d(u) = 0} and H = {u ∈ U / [F (x), u] = 0 for all x ∈ U} and thus
U = G or U = H. If U = G, then d(U) = 0 which when compared with Lemma
3 contradicts the fact that d 6= 0 and U 6⊆ Z(R). Accordingly, U = H so that

[F (x), u] = 0 for all u, x ∈ U. (22)

Replacing u by 2r[u, v] in (22), where r ∈ R and v ∈ U, and using (22) we
arrive at

[F (x), r][u, v] = 0 for all u, v, x ∈ U, r ∈ R. (23)
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Writing rs instead of r in (23) we obtain [F (x), r]s[u, v] = 0 and hence

[F (x), r]R[u, v] = 0 for all u, v, x ∈ U, r ∈ R. (24)

Since [F (x), r]R[u, v]∗ = 0, because of Lemma 1, (24) yields [F (x), r] = 0 or
[u, v] = 0. As U 6⊆ Z(R), hence Lemma 2 gives [F (x), r] = 0 which yields

F (x) ∈ Z(R) for all x ∈ U. (25)

In view of (25), the hypothesis F (x)F (y)− xy ∈ Z(R) implies that

xy ∈ Z(R) for all x, y ∈ U,

which when combined with (25) forces

F (xy)− xy ∈ Z(R) for all x, y ∈ U.

Therefore, the required result follows immediately from Theorem 2.4.
Finally, one can prove the case F (x)F (y)+xy ∈ Z(R), by a slight modification
in the proof of the first case.

Example 3. In hypothesis of Theorem 2.10 the ∗-primeness condition can-
not be omitted. Indeed, in example 1 we have F (x)F (y) − xy ∈ Z(R) and
F (x)F (y)+xy ∈ Z(R) for all x, y ∈ U and d commutes with ∗; but U 6⊆ Z(R).

In ([12], Theorem 2.3), author supposes that F as well as d commutes with ∗.
Using Theorem 2.10, we improve ([12], Theorem 2.3) as follows.

Theorem 2.11 Let R be a 2-torsion free ∗-prime ring and I a nonzero ∗-
ideal of R. If R admits a generalized derivation F associated with a nonzero
derivation d, commuting with ∗, such that for each x, y ∈ I either F (x)F (y)−
xy ∈ Z(R) or F (x)F (y) + xy ∈ Z(R), then R is commutative.

3 Open Problems

(i) Does Theorem 2.10 remain valid without the assumption that d commutes
with ∗?
(ii) Does the condition F (x)F (y) − yx ∈ Z(R) for all x, y ∈ U imply that
U ⊆ Z(R)?
(iii) Does the condition F (x)F (y) + yx ∈ Z(R) for all x, y ∈ U imply that
U ⊆ Z(R)?
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