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Abstract

In this paper, we consider the following singular Sturm-
Liouville integral boundary wvalue problems for second-order
ordinary differential equations

u(t) + h(t) f(t,u(t), ' (t)) =0, te(0,1),

au(0) — b (0) = /0 W(B)AE(L), cu(l) + du' (1) = /0 w(t)dn(t),

where h is allowed to be singular at t =0 and (or) t =1. By
using the Avery-Peterson fixed point theorem, we will establish
a result on the existence of positive solutions for the above
system. Finally, we give an example to illustrate our result.

Keywords: Integral boundary value problem; Positive solution; Avery-
Peterson fixed point theorem; A priori estimate.

1 Introduction

In this paper, we consider the existence of at least three positive solutions for
the following singular Sturm-Liouville integral boundary value problems for
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second-order ordinary differential equations

u”(t) + h() f (¢, u(t), u'(t)) = 0,

1 1 1.1
au(0) — b (0) = /0 w(®)dE(H), cu(l) + du'(1) = /0 adn), Y

where a,b,¢,d > 0 with ac + ad + bc > 0; h € C((0,1),[0,+00)) may be
singular at ¢ = 0 and (or) ¢t = 1, and fol h(s)ds < oo; f € C([0,1] x [0,400) X
(—00, +00), [0, +00)); £(t) and n(t) are increasing on [0, 1] and right continuous
on € [0,1), left continuous at ¢t = 1, with £(0) = n(0) = 0; fol u(t)d¢(t) and
fol u(t)dn(t) denote the Riemann-Stieltjes integrals of u with respect to £ and
7, respectively.

We are here interested in the case where f depends explicitly on u/. There
are many papers dealing with second order multi-point boundary value prob-
lems when f is independent of u/, see for example [4-12] and references cited
therein. For abstract spaces, Guo et al. [4], Liu [7], Zhao et al. [12], by using
fixed point theorems of strict-set-contractions, the authors obtained some suf-
ficient conditions for the existence of at least one or two positive solutions to
two, three, multi-point boundary value problems.

When f involves u’ explicitly, the existence of at least two or three solutions
for second order boundary value problems in scalar space has been studied in
a number of papers, see for example [2, 3] and references cited therein. In [3],
Chandra et al. discussed the existence of at least one solution for the following
boundary value problems in a Banach space

{m (ot (6) =0, 0<t <1, (12)

au(0) + bu'(0) = ug, cu(l) + du'(1) = uy.

In [2], Bernfeld et al. obtained some results on the existence of solution for
the problems (1.2) using the method of lower and upper solutions.

Motivated by the works mentioned above, in this paper, by using the Avery-
Peterson fixed point theorem, we will establish a result on the existence of at
least three positive solutions to the problem (1.1). It is interesting to note that,
unlike most of the authors who discuss multipoint or integral boundary value
problems, we do not endeavor to construct a new Green’s function associated
with (1.1).

This paper is organized as follows. Section 2 gives some preliminary results,
the focus being on deriving some a priori estimates, required in the proof of
our main result. The main results are stated and proved in Section 3, then
followed by an example to illustrate the usefulness of our main results.
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2 A priori estimates and lemmas

Let
p:=ac+ad+bc, p(t):=b+at, v(t):=c(l—1t)+d.

Now we list our hypotheses:
(H1) p>0,a>&(1) = [ d&(t), and ¢ > (1) = [, dn(t).

(H2) h € C((0,1),[0,+00)) and 0 < [ h(s)ds < .
(H3) f e C([0,1] x [0,400) X (=00, +0), [0, 400)).
(H4) k := Kiky — Koks > 0, k1 > 0, k4 > 0, where

1 [ 1 [t 1!
K1 :=1 —;/0 v(t)dE(t), ke = ;/0 pu(t)dE(t), kg == ;/o v(t)dn(t),

g = 1 — %/0 H(#)dn(e).

Lemma 2.1 Assume that f € L[0,1] is nonnegative, then the following
boundary value problem

—u"(t) = f(t),
1 1 2.1
{ au(0) — b (0) = /0 W), cu(l) + du'(1) = /0 ddn) Y

is equivalent to

_ ' I/_t) 1u @ 1u
)= [ bt s+ 22 [utaew + 552 [uman), 22)
where
_ L u(s)r(), 0<s<t<l,
Hte= p {V(S)M(t), 0<t<s<l1 (23)

Simple computations show the following result.

Lemma 2.2 Suppose that (H1) and (H4) hold. Let u uniquely solve Prob-
lem (2.1), then

/Olu(t)dé(t) = % {54 /01 d&(t)/olk(t,s)f(s)der@ /01 dn(t) /Olk(t, S)ﬂs)ds}’
(2.4)
and

Aﬂmmmw:%LﬁéhawAﬂﬁﬁﬁ@mywﬁlﬁmwlﬁﬁﬁvwm{.
(2.5)
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The following a priori estimates will be required in the proof of our main result.

Lemma 2.3 Suppose that (H1)-(H4) hold. Let u uniquely solve Problem
(2.1) and o € (0,1/2) be fixed. Then

u(t) > 0,vt € [0,1], and Ugrglgl{ligu(t) > 7 max lu(t)],

where 11 := min {”(:(6)” ), %} . Moreover, the following inequality holds:
< ! :
ma [u(t)] < 72 pasx /(1) (2.6)

where

To = max {1 + bt folltdf(t)7 1+ d + fol(ll_ t)d77<t>} ‘
a— f, d§(t) ¢ — [ dn(t)

Proof. We first prove the nonnegativity of u. By relation (2.2) and the
nonnegativity of f, it suffices to verify fol u(t)dé(t) > 0 and fol u(t)dn(t) > 0,
as are evident from (2.4) and (2.5).

By definition(see (2.3)), we have k(t,s) = k(s,t). Note p is increasing on
[0,1] and v is decreasing on [0, 1]. This implies

k(t,s) < k(s,s),Vt,s €[0,1].
Ift € [0,1—0] and s € [0, 1], then it follows from the definition of k(¢, s) that

v(t) v(l-o)
k(t,s) ()" 0<s<t<l1 - )
p(t) Oftgsgl_ w(o)

w(1)

27_17

so that k(t,s) > mk(s,s). Consequently, we have by Lemma 2.1

u(t) > m /0 (s, ) f(s)ds + L= /0 a(t)ae(t) + M) /O w(t)dn(®)

p p
> ([ s onronas + 22 [uaso + L8 [ yann)
for all o < ¢ < 1 — . From (2.2), we obtain
e w(t)
— (1 9) f(s)ds + A u(t)de(r) + e 1 ult)in(e))

§/0 k(s,s)f(s)ds%—@/o u(t)d{(t)+7/0 u(t)dn(t).
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Combining the preceding inequalities we conclude

. . |
i u(t) = i max |u(t)

From (2.1), we have u”(t) = —f(t) < 0, then u/(t) is decreasing, that is
o' (1) < u'(t) </(0),Vt € [0,1]. So we arrive at

mmax [u'(£)] = max{[u (0)], [u(1)[}-

Now we distinguish between two cases.

Case 1. maxycoq |/ (t)] = |v/(0)]. From the concavity of u(t), we get u'(0) >
M. Combining this with the first boundary condition of (1.1), we obtain

[ wonazo > [ st - [ uoaen) = au) - o) - [ uo)astn

and thus )
- b+ fo tdf(t)u,

0 0).
o) < b S O)
Therefore,
b+ [ tde(t)
(0 0 1+ —2—= | /(0).
u(t) < u'(0)t + u(0) < ( + a—foldﬁ(t)>u< )
That is,
b+ Jy tA&(t) :
mmax u(?)] < (1 +— I dg(t)) mnax |/ (t)]- (2.7)
Case 2. Let maxycp)|v/(t)] = [v/(1)]. By the concavity of u(t), we have
w'(1) < % The second boundary condition of (1.1) leads to
1 1 1
(=) [ @ =0an0 > [ unan) ~ [ unan
1
= cu(l) +du'(1) — u(l)/ dn(t)
0
and thus fl( \an(®)
d+ |, (1 —1t)dn(t
1 9 —u'(1)).
o) < S T i)
Consequently,

u(t) < (—d/ (1)1 —t) +u(l) < (1 +
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That is,
d t)d

max |u(t)] < | 1+ * fo Ddn(t) max |u'(t)|. (2.8)

0<t<1 c— fo dn(t) tel0,1]
Now (2.6) follows from (2.7) and (2.8) immediately. This completes the proof.
Let

G RO (D) o () ()
K K

then

/01 u(s)de(s) < Z/Olk:(s,s)f(s)ds, /01 u(s)dn(s) < F/Olk(s,s)f(S)ds'

Note we have proved that k(t,s) > mk(s,s), Vt € [0,1 — 0] and s € [0,1].
From Lemma 2.2, we have

/01 u(s)dé(s) > An /01 k(s, s)f(s)ds, /01 u(s)dn(s) > By /01 k(s,s)f(s)ds.
Let

E := C*0,1] with the norm |Ju|| = max{||u|lo, [|¢[[o}, Where |luo = max lu(t)].

Define our work cone K by

K :={u € E : u is nonnegative and concave on [0, 1], and
G;?Sl{ligu(t) > 7 ax \u( )|}

Suppose that u is a solution of (1.1), then for any t € [0, 1]

u(t):/O k(t, s)h(s)f(s,u(s),u'(s))ds—l—%/O u(t)df(t)vL@/0 u(t)dn(t).

Define the operator T by

(Tu)(t) ::/0 k(t, s)h(s)f(&u(s),u’(s))ds#—M/O u(t)dé(t)

p

1
+ @/ u(t)dn(t),0 <t < 1.
P Jo
Now T : K — K is a completely continuous operator. Clearly u € K is a
positive solution of (1.1) if and only if u € K \ {0} is a fixed point of T'.

Let v and 6 be nonnegative continuous convex functionals on a cone K,
«a be a nonnegative continuous concave functional on K, @ be a nonnegative
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continuous functional on K, and mi, msy, ms and my, be positive numbers.
Define the convex sets

P(y,my) :={u € K :vy(u) < my},

P(’y,oz,mg,m4) = {U € K: mg < O[(U),'Y(U) < m4}7
P(’Y,Q,Ol,mg,mg,m4) = {U € K: mo S Q(U),Q(U) S m3”}/(U) S m4}7

and a closed set
Q(v,Y,mi,my) :=={ue€ K :my <¢(u),y(u) < my}.
Now we state a fixed point theorem due to Avery and Peterson [1].

Lemma 2.4 Let K be a cone in a real Banach space E. Let vy and 6 be
nonnegative continuous convex functionals on K, o be a nonnegative contin-
uous concave functional on K, and 1 be a nonnegative continuous functional
on K satistying ¢ (Au) < Mp(u) for 0 < X\ < 1, such that for some positive
numbers € and my,

a(u) < ¢(u) and [uf] < ey(u),

for all u € P(y,my). Suppose T : P(~y,my) — P(,my) is completely continu-
ous and there exist positive numbers my, mo and ms with m, < msy such that
(C1) {u € P(v,0,a,ma, m3,my) : a(u) > ma} # 0 and a(Tu) > mqy for
u € P(v,0,a,mg, m3, my);

(C2) a(Tu) > my for u € P(7y, o, ma, my) with 6(Tu) > ms;

(C3) 0 & Q(v,%¥,m1,my) and Pp(Tu) < my for u € Q(v,1, my, my) with
Y(u) =my.

Then T has at least three fixed points uy, us, us € P(y,my4) such that vy(u;) <
my fori=1,2,3; my < a(ur);mi < ¥(uz) with a(ug) < ma;(us) < my.

3 Main result

Let
(o= ) Jy PAgW) + (a = €M) (e +2d = Jy ()
(a =€) (e+d = fy tdn(t) + (e —n(1)b+ [y tdé(t)
and
N oo 8t Sy tde(®)(c+2d — [ 2dn(t)) — (c+d — [ tdn(t)) [} de(t) |
(a =€) (e+d = [y tdn(t) + (c=n(1)(b+ [y tdé(t)
Let

up(t) = —mt® + A\ymt + mAs. (3.1)
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where m := — 2 7 Then wg(t) is concave. By direct computation we have

7 (A +4X2)
that ug satisfies boundary value conditions of (1.1).

Let the nonnegative continuous convex functionals v and 6, the nonnegative
continuous concave functional a;, and the nonnegative continuous functional v
be defined on the cone K by

a(u) = min u(t), y(u)=maxu'(t)], 6(u)=1(u)=maxu(t). (3.2)

For convenience, we set

N = [1 L o4, “(1)31 /Olk(s,s)h(s)ds,

P p
a
’ _

S::max{ p

! cA [* aB [*
/0 z/(s)h(s)ds\jt?/o k’(s,s)h(s)ds—i-?/o k(s,s)h(s)ds,

/01 pu(s)h(s)ds| + % /01 k(s,s)h(s)ds + % /01 k (s, s)h(s)dS},

M := min { /01 k(o, s)h(s)ds + ”(%?Tl /01 k(s, s)h(s)ds

p(o)Bri !
+T/o k(s,s)h(s)ds,

1 B v(l —o)Ar (! s $Vh(s)ds
/Okr(l a,s)h(s)ds+—p /Ok‘(, )h(s)d

+ /M_—U)Eﬁ /01 k(s,s)h(s)ds}.

| c
p

p
Theorem 3.1 Suppose that (H1)-(H4) hold, and there exist my, ms and

2(\2
T ()\14—4)\2)
my such that 0 < m; < mgy < Tmax{ g =3[}

my and

(B1) f(t,u,v) <7 for (t,u,v) € [0,1] x [0, Tomy] X [—1my, my].

(B2) f(t,u,v) > 22 for (t,u,v) € [0,1 — 0] X [ma, ma7y ] X [—1mg, my].

(B3) f(t,u,v) <3t for (t,u,v) € [0,1] x [0,m1] X [—my, my].

Then (1.1) has at least three positive solutions u, us, u3 such that

max lu,(t)| <my fori=1,2,3; my < ggr%i{lﬂ ur(t); my < max ug(t) with

min  wup(t) < mg; max uz(t) < my.
o<t<l—o 0<t<1

Proof. By (3.2), we know that «, 7, 6 and 1 are continuous nonnegative
functionals on K satisfying ¥ (Au) < Ap(u) for 0 < A < 1, so that for some
positive numbers € = 75 > 1 and my,

() < () and [Jul] < ev(u),
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for all u € P(y,my4). If u € P(y,my), then vy(u) = maxo<<; |t/(t)] < my. By
Lemma 2.3, we find

max |u(t)] < 7 max |u'(t)] < Tamy.
0<t<1 0<t<1

It follows from the assumption (B1) and Lemma 2.3 that

Y(Tw) = max |(Tw)'(£)] = max{|(Tw)'(0)], |(Tw)'(1)[}

0<t<1
1

~ max | /O (5. u(e). 0 (5)ds] + 1 /0 w(t)de(?)|

12 [ il 1S [ (sl oast+ 1 [ utoatn
a [! my a (! A 1
—H;/o u(t)dn(t)\} ngax{];/o u(s)h(s)dsy+7/0 k(s, $)h(s)ds

aB (! c ! cA [!

—1—7 i k(s,s)h(s)ds,|;/0 u(s)h(s)ds\—l—?/o k(s,s)h(s)ds
aB (!

+ ! k(s,s)h(s)ds} = my.

Therefore, T : P(vy,m4) — P(v,my4). Recall uy(t) is concave and satisfies the
boundary value conditions of (1.1), that is,

aio(0) — bl (0) = /0 o (£)E(#) and cu(1) + duiy(1) = /0 o (E)dn(t).
Thus ug € K, we have

— i > 2L 2
a(ug) ,Jnin up(t) > n 1 m

o) = o wo(t) = wo(5) =

7(up) = max |ug(t)] = max{|ug(0)], [ug(1)[} = mmax{|Adl, [\ = 2|} < my.
(3.5)
(3.3) and (3.4) lead to a(ug) > T10(u) and then ug € P(v, 0, a, ma, maty %, my)
and {u € P(v,0,a,my, mary 2, my) : au) > my} # 0. Consequently, if u €
P(v,0, a, ma, mary 2,my), then my < u(t) < mory 2, [u/(t)] < my for o <t <
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1 — 0. In view of (B2), we get
a(Tu) = min (Tu)(t) = min{(Tu)(o), (Tu)(1 — o)}

= min { /01 k(o,s)h(s)f(s,u(s),u'(s))ds + @ /01 u(t)dé(t)

po) [ 1 ,
+ 20 [ uante). [ 0= o b u).0/(9)ds

v(l—o (1—0o) [*
p

: )/Olu(t)dg(tw“
> %min{/o k(o,s)h(s)ds +
(o) B

PR /01 k(s, s)h(s)ds, /01 k(1 — o, s)h(s)ds

+ V“%f)zﬁ /01 k(s,s)h(s)ds + ,u(l——a)ﬁﬁ /01 k(s,s)h(s)ds}

= M.

That is, a(Tu) > my for u € P(v,0,a, my, mat; 2,my). So (C1) of Lemma
2.4 is satisfied. Next we prove that (C2) of Lemma 2.4 is satisfied. Indeed, if
u € P(v, o, mg,my) with 0(Tu) > myry %, then a(Tu) = ming<i<1_o(Tu)(t) >
71 maxo<s<1 (Tu)(t) = 10(Tu) > 7ymer; 2 > my. Finally, we assert (C3) of
Lemma 2.4 is satisfied. It is obvious that 0 ¢ Q(v, 1, my,my). Suppose that
u € Q(v, ¥, my, my) with ¥(u) = my. By (B3), we have

(Tu) = ggtaé(Tu)(t) < % 1+ V((;)Z n u(;)?

] / (s, $)h(s)ds = m.

Therefore, the (C1)-(C3) of Lemma 2.4 are satisfied, then (1.1) has at least
three positive solutions uy, us, uz such that

, . _ . . . .
max lu;(t)| < my fori=1,2,3; my < ,Jnin ur(t); my < max us(t) with

Ugrglgl{l_g us(t) < mo; onglfngl uz(t) < my.

An example Consider the problem

W'(8) + B F(E u(t), (1) = 0,t € (0,1),
1 1. 1 1 1 1. 1 1 (3.6)

u(0) = ZU(Z) + 5“(5% u(l) = §U(Z) + 5“(5)-

1072 + 2uz +107%, u < 16,
10724+ 22 +10%,  u>16.

where h(t) = t(ll—t)’ ft,u,v) = {
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We define £(t) and n(t) by

( 1 ( 1

0, |0,— 0, |0,-

Y [74)7 Y {74)7

1 11 1 11

H=4 = == H={¢ = [= =
f() 47 [472)’ 77() < 37 [4’2)7

3 .1 5 1
S 2 1)
K47 [27 }7 \67 [27 ]

Then the problem (3.6) is equivalent to the following system
u(t) + h(t) f(E,u(t), u'(t)) = 0,t € (0,1),

u(0) = / w(t)dE(t), u(1) = / u(t)dn(h).

It is easy to see that the problem (3.6) is equivalent to the following nonlinear
integral equation:

u(t) = /0 k(t, s)h(s)f(s,u(s),u'(s))ds+ (1 — t)/o w(t)dE(t) —i—t/o u(t)dn(t),

1—-1t 0<s<t<1
where k(t, s) := ( )5, Oss=st<l,
(I—9)t, 0<t<s<l1.
ses (H1)-(H4) hold. Let o := 1. By direct calculation, we obtain

It is easy to check that hypothe-

1 1 T 1 1 5n \/g
n=q m=d [ ke ohes = [ RGomEs = 3
/0 k(; s)h(s)ds = % — \/Tg, /0 (1 —s)h(s)ds = /0 sh(s)ds = g
- 73 = 81 91 133
21’ 21,)\1 31’ A2 163’ 3.2725, S 506, 0.4599

If we choose my = ¢, my = 1 and my = 10*, then m ~ 14.7456 and f(t,u,v)
satisfies

my

fltu0) < =5~ 2246.888,  (f,u,0) € [0,1] % [0,40000) x [~10000, 10000],

13
Ftu,v) > % ~ 2174, (tu,0) € [7, 7] % [1,16] x [~10000, 10000},

1
f(tuw) € <2 = 01528, (tu,v) € [0,1] x [0, ] x [~10000, 10000].

my
N
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Then all hypotheses of Theorem 3.1 hold. Hence, the problem (3.6) has at
least three positive solutions wuq, us, ug such that

1
max |uj(t)| < 10* fori=1,2,3; 1< min wu(t); - < max uy(t) with
0<t<1 o<t<l—o 8 0<t<1
1
1 1: —.
Ugrtnglgg us(t) < 1; gg%xl ug(t) < 3
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