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Abstract

A stochastic cellular automata (CA) model of tumgrowth in a cubic
lattice was studied. The dynamics of tumor growthsnincorporated to describe
tumor cell invasion of normal tissue. Five input pameters controlling the
scenario of what may happen when tumor cells invademal tissue were used:
proliferation rate, tumor-immune binding and assation rate, cell lysis, and
decay. Monte Carlo simulations based on a CA modare performed. The
simulation results provided growth curves highly mendent on the controlled

parameters. Comparisons between experimental resdtom the computer
simulation and clinical results are discussed.
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1 Introduction

Combining a self-organizing complex dynamic syseamd computational model
has been a great challenge in interdisciplinargaes, especially in medical,
mathematics, and biophysics research. The develuproé tumor growth
modeling using theoretical models, a mathematiggir@ach, and computer
simulations has been done for more than two decaeesdetails in [1]. Here, an
automaton—based method was established to explaiseif-organizing dynamics
of cells in discrete nature; i.e., where a celldatomaton (CA) or individual-
based model is the main focus (see various CA rsade]2]). The CA models
carried out the simulation results by using computglementation as per the
evolutionary experimentgs-machina,which were introduced in 1987 by Agur [3].
The Agur model describes the immune system witlerdenistic rules for cells,
molecules, and their interaction by performing catep simulation experiments
on a two dimensional cellular automata.

Some of the CA models of tumor growth were cared by Duchting
and Vogelsaenger [4], who describe the cell-cydléumor cell dynamics on a
cubic lattice. Qi and coworker [5] established a @Adel which describes tumor
growth under the influence of immune response aedhanical pressure to tumor
on a two-dimensional cellular automata model orgqaase lattice. Their model
simulates the growth curves as a Gompertz-likeeeand compares them with the
experimental data. In general, the Gompertz cusveommonly used and is an
important feature noticed during vivo tumor growth. In 2006, Boondirek et al.
[6] added the detachment of immune binding, withdamaging cancer cells, to
the microscopic model of [5], yielding a trend @bgth curve that was shown to
qualitatively agree well with experimental animaimior growth. Boondirek and
Triampo (BT)[7] have recently used the kinetic mod#h five parameters, as in
[6], on a three dimensional cubic lattice that ogjarced Gompertz curves. In
addition, the simulation results showed that thalitative growth curve and the
experimental growth curvaa vivo for rat tumor W12a7 were in agreement, see
details in [7].

The microscopic model takes into account the fan@tion of tumor cells
and their interaction with the immune responseultiesy in either lysis of the
proliferating tumor cells or the detachment of immawinding without damaging
the tumor cells or removing the dead tumor cetisnfithe tissue. According to the
above description, we may revise the notation efgfoliferating tumor cells, the
dead tumor cells, the cytotoxic lymphocyte and Th€Ls-tumor cell complexes
as: P, D, TICLs and C, respectively. Where the five parameters

oroit . » Foinding + Tetach, » Tiysis» @N0 Ty, @re the non-negative kinetic constants, we

define the functiorr,; ,
rp’,rom.(t):rprom_(l—%), and P(t) as the number of proliferating tumor cells,

where K is the carrying capacity, see details in [6].

or the in vivo avascular tumor growth rate, as
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The aim of this research was to use the model/ptd create a three
dimensional lattice to predict tumor growth by istigating the effects of the
immune system, as done previously. This model ligved to be relatively more
realistic than those of the two dimensional modal. investigate the immune
influences on tumor growth, we varied the escapklanding parameters in the
microscopic model and studied the growth of the durfrom the simulated
growth curves. Additionally, comparisons betweer 8imulation results and
some biological effects from clinical studies hive=n discussed.

2 Method
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Fig. 1 The fundamental features of developmermtoter with immune response,
where P, TICLs, C and D denote proliferating oeflectors, cancer-TICLs cells
complex, and dead cancer cell.

The BT model being used to formulate the nutrientted growth of an
avascular tumor growth took into account the coitipat between the immune
system and tumor cells [7] as shown in Fig. 1, avas applied to a three
dimensional model. The Monte Carlo computer simuoet were performed to
investigate the effects of parameters at the miciois scale.r,; is the rate of

tumor proliferation. The binding parameters,;,, is the rate at which the TILCs

form lymphocyte tumor cell complexes; see more itseta [9]. The higher
binding rate indicates the ability of immune cetisind with the tumor or cancer
cells and become cell complexeg,.., is the rate of detachment of TICLs from

cancer cells without damaging the cellg; is the rate of detachment of TICLs

from dead tumor cells, due to the irreversible paagming of the tumor cells for
lysis. Zheng and coworker [10] produced experimetdita that led them to draw
the conclusion that induction of the apoptosis vimdr cells can enhance
antitumor efficacyr,,.,, describes the dissolution of the dead cancer.cgdme

key results are presented here and discussed.
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3 Simulation Results

We set the five input parameters and ran simulatido obtain a primary
understanding of the dynamic changes, a spatialalimation of the tumor
spreading on the cubic lattice is presented in BigFig.2a) shows the cross-
central section of the tumor at time step 10 andl'b@ boundary shows a roughly
circular shape in which the proliferating tumorlsglkee color details) are most
likely to locate at the rim of the tumor. The sphitilistribution of proliferated
cells in the simulated tumor can be measured bywWh a comparison to thie
vivo experiment by Bru et al. [12]. Additionally, theatal structure as seen in the
shapshot cross-section tumor can be characterizé@dtal dimension, as shown
in [6].

Since the parameter space is very big and requassrigorous analysis
to identify the parameter ranges, we consequesty parameter values that were
more or less the same as those studied in refTf¥]Jgain more insight into the
tumor dynamics quantitatively, the growth curvetloé tumor was numerically
obtained. It appears that the Gompertz-like cupeears a good fit for our data,
as shown in Fig.2(b).

Fig.2(a) Snapshots of a cross-central sectionmiisited tumor on 101x101x101
cubic lattices with time progression at time stéps 30 and 50. The parameter
settings arg = 0.8, Iinging =0-05, Iyereen= 0.05, 1 = 0.05, 1y, = 0.05, and

K =10. The color code im: proliferating tumor cellm: TICLs-tumor cell
complexes : dead tumor cell, ard: normal cell.

prolif .

To connect our computer model with the real wesststem, we compared
our results with the clinical data by Matzavinosl &haplain [8]. It appears that
they are at least in qualitative good agreemernt dtuld relate to the possibility
that cytokines in the immune system are the reémancreased binding and lysis
rate in the microscopic model. To understand mboaigthis issue, we therefore
changed the values of the binding, escape, ansl pggameters and investigated
the trend of the growth curves by comparative st&dyme of the results are
presented in Fig. 3 and 4.
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Fig. 2(b) Time evolutions of the total humber ofmir cells (solid line), the
number of proliferating cells (long dash), the nembf TICLs-tumor cells (dot),
and the number of dead tumor cells (dash dot),gudie same parameters as in
Fig. 2(a) with the same computer run-time.
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Fig. 3 The influences of, ., on the aggressive growth of the tumor. This figure

shows the plots of the time evolution of the pegliiting number of tumor cells by
varying the value of ., from 0.0 to 0.2 in steps of 0.1 while fixing theher

values atr = 0.8, Iyeraen= 0.35, 1, = 0.35,1,,,, = 0.2, andK = 10°.

prolif .
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We variedr;,, from 0.0 to 0.1 to 0.2 and fixed the other parareto

see how this changed the proliferating growth csirtewas found that the higher
binding rate decreases the aggressiveness of i@ .térig. 3, clearly shows that
the higher binding rate results in a lower satufagze of proliferating tumor.
Alternatively, we varied i, from 0.0 to 0.1 to 0.2 and fixed the other pariarse

to see the change of the proliferating growth cuawe found that the higher lysis
rate also results in a lower saturated size ofptiediferating tumor as shown in
Fig. 4. This seems to indicate that the comparisetwveen simulation results of
our model and some clinical trials agrees well.
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Fig. 4 The influences of . on the aggressive growth of the tumor. This figure

shows the plots of the time evolution of the peglting number of tumor cells by
varying the value of, . from 0.0 to 0.4 in steps of 0.2, while fixing tbénher

values atr ;¢ = 0.8, Ijging = 0.2, Fgaen™ 0.35, Fgecay = 0.2, andK = 10°.

prolif .

4  Conclusion

This article presented an extension of earlierkvay [7] to show the time
evolution visual configurations of a cross-sectwrsimulated tumors for tumor-
immune response dynamics on a 101x101x101 culiicdaflo gain insight into
how controlled parameters may affect the evolutibproliferating tumor growth,
Monte Carlo simulations were performed which focls®m the change of the
proliferation, binding, and lysis parameters whikliluence the proliferating
growth rate of a tumor. This was to see how the umensystem responds to the
growth of tumor. Specifically we investigated theolgerating growth curves
after varying ther,; .., and it was found that our simulation results agrell
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with those obtained from clinical studies of tunimmune response. Since the
microscopic model of tumor growth may exhibit otkemplex behaviors relating
to cell motility [11] or when mechanical pressure applied [5], further
exploration needs to be done.

5 Open Problem

The microscopic model of tumor growth mayhibit other complex
behaviors such as the mechanical pressure as jnal& the movement of
proliferating cell or cell motility, see Gerlee aAdderson[11].

The spatial distribution of proliferatealicin simulated tumor can be
measured by [6] with comparisonitovivo experiment by Bru et al. [12].

Additionally, the fractal structure asisée the snapshot cross-section tumor
can be characterized by fractal dimension sensskagn in [6].
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