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Abstract 
 
A stochastic cellular automata (CA) model of tumor growth in a cubic 

lattice was studied. The dynamics of tumor growth was incorporated to describe 
tumor cell invasion of normal tissue. Five input parameters controlling the 
scenario of what may happen when tumor cells invade normal tissue were used: 
proliferation rate, tumor-immune binding and association rate, cell lysis, and 
decay. Monte Carlo simulations based on a CA model were performed. The 
simulation results provided growth curves highly dependent on the controlled 
parameters. Comparisons between experimental results from the computer 
simulation and clinical results are discussed.  
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1      Introduction 

Combining a self-organizing complex dynamic system and computational model 
has been a great challenge in interdisciplinary research, especially in medical, 
mathematics, and biophysics research. The development of tumor growth 
modeling using theoretical models, a mathematical approach, and computer 
simulations has been done for more than two decades; see details in [1]. Here, an 
automaton–based method was established to explain the self-organizing dynamics 
of cells in discrete nature; i.e., where a cellular automaton (CA) or individual-
based model is the main focus (see various CA models in [2]). The CA models 
carried out the simulation results by using computer implementation as per the 
evolutionary experiments in-machina, which were introduced in 1987 by Agur [3]. 
The Agur model describes the immune system with deterministic rules for cells, 
molecules, and their interaction by performing computer simulation experiments 
on a two dimensional cellular automata. 
 Some of the CA models of tumor growth were carried out by Duchting 
and Vogelsaenger [4], who describe the cell-cycle of tumor cell dynamics on a 
cubic lattice. Qi and coworker [5] established a CA model which describes tumor 
growth under the influence of immune response and mechanical pressure to tumor 
on a two-dimensional cellular automata model on a square lattice. Their model 
simulates the growth curves as a Gompertz-like curve and compares them with the 
experimental data. In general, the Gompertz curve is commonly used and is an 
important feature noticed during in vivo tumor growth. In 2006, Boondirek et al. 
[6] added the detachment of immune binding, without damaging cancer cells, to 
the microscopic model of [5], yielding a trend of growth curve that was shown to 
qualitatively agree well with experimental animal tumor growth. Boondirek and 
Triampo (BT)[7] have recently used the kinetic model with five parameters, as in 
[6], on a three dimensional cubic lattice that reproduced Gompertz curves. In 
addition, the simulation results showed that the qualitative growth curve and the 
experimental growth curves in vivo for rat tumor W12a7 were in agreement, see 
details in [7].  
 The microscopic model takes into account the proliferation of tumor cells 
and their interaction with the immune response, resulting in either lysis of the 
proliferating tumor cells or the detachment of immune binding without damaging 
the tumor cells or removing the dead tumor cells from the tissue. According to the 
above description, we may revise the notation of the proliferating tumor cells, the 
dead tumor cells, the cytotoxic lymphocyte and the TICLs-tumor cell complexes 
as: P, D, TICLs, and C, respectively. Where the five parameters 

.prolifr , bindingr  , detach.r  , lysisr , and decayr  are the non-negative kinetic constants, we 

define the function .prolifr ′ , or the in vivo avascular tumor growth rate, as 

( )K
P

.prolif.prolif 1r)t(r −=′ , and )(tP as the number of proliferating tumor cells, 

where K is the carrying capacity, see details in [6].  
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 The aim of this research was to use the model of [7] to create a three 
dimensional lattice to predict tumor growth by investigating the effects of the 
immune system, as done previously. This model is believed to be relatively more 
realistic than those of the two dimensional model. To investigate the immune 
influences on tumor growth, we varied the escape and binding parameters in the 
microscopic model and studied the growth of the tumor from the simulated 
growth curves. Additionally, comparisons between the simulation results and 
some biological effects from clinical studies have been discussed.  
 

2      Method 
 
 
 
 
 

 
 
 
 
 
 
 
Fig. 1  The fundamental features of development of cancer with immune response, 
where P, TICLs, C and D denote proliferating cell, effectors, cancer-TICLs cells 
complex, and dead cancer cell. 

 
The BT model being used to formulate the nutrient-limited growth of an 

avascular tumor growth took into account the competition between the immune 
system and tumor cells [7] as shown in Fig. 1, and was applied to a three 
dimensional model. The Monte Carlo computer simulations were performed to 
investigate the effects of parameters at the microscopic scale.  .prolifr  is the rate of 

tumor proliferation. The binding parameters, bindingr  is the rate at which the TILCs 

form lymphocyte tumor cell complexes; see more details in [9]. The higher 
binding rate indicates the ability of immune cells to bind with the tumor or cancer 
cells and become cell complexes. detach.r  is the rate of detachment of TICLs from 

cancer cells without damaging the cells; lysisr  is the rate of detachment of TICLs 

from dead tumor cells, due to the irreversible programming of the tumor cells for 
lysis. Zheng and coworker [10] produced experimental data that led them to draw 
the conclusion that induction of the apoptosis of tumor cells can enhance 
antitumor efficacy. decayr  describes the dissolution of the dead cancer cells. Some 

key results are presented here and discussed.  
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3      Simulation Results 

 We set the five input parameters and ran simulations. To obtain a primary 
understanding of the dynamic changes, a spatial visualization of the tumor 
spreading on the cubic lattice is presented in Fig. 2. Fig.2a) shows the cross-
central section of the tumor at time step 10 and 50. The boundary shows a roughly 
circular shape in which the proliferating tumor cells (see color details) are most 
likely to locate at the rim of the tumor. The spatial distribution of proliferated 
cells in the simulated tumor can be measured by [6], with a comparison to the in 
vivo experiment by Bru et al. [12]. Additionally, the fractal structure as seen in the 
snapshot cross-section tumor can be characterized by fractal dimension, as shown 
in [6].  
 Since the parameter space is very big and requires very rigorous analysis 
to identify the parameter ranges, we consequently used parameter values that were 
more or less the same as those studied in ref [7]. To gain more insight into the 
tumor dynamics quantitatively, the growth curve of the tumor was numerically 
obtained. It appears that the Gompertz-like curve appears a good fit for our data, 
as shown in Fig.2(b).  
 

 
 
Fig.2(a) Snapshots of a cross-central section of simulated tumor on 101x101x101 
cubic lattices with time progression at time steps 10, 30 and 50. The parameter 
settings are .prolifr  = 0.8, bindingr =0.05, detach.r = 0.05, lysisr  = 0.05, decayr  = 0.05, and 

K  = 510 . The color code is : proliferating tumor cell, : TICLs-tumor cell 
complexes,  : dead tumor cell, and : normal cell. 
 
 To connect our computer model with the real world system, we compared 
our results with the clinical data by Matzavinos and Chaplain [8]. It appears that 
they are at least in qualitative good agreement. This could relate to the possibility 
that cytokines in the immune system are the reason for increased binding and lysis 
rate in the microscopic model. To understand more about this issue, we therefore 
changed the values of the binding, escape, and lysis parameters and investigated 
the trend of the growth curves by comparative study. Some of the results are 
presented in Fig. 3 and 4. 
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Fig. 2(b) Time evolutions of the total number of tumor cells (solid line), the 
number of proliferating cells (long dash), the number of TICLs-tumor cells (dot), 
and the number of dead tumor cells (dash dot), using the same parameters as in 
Fig. 2(a) with the same computer run-time. 

 
Fig. 3 The influences of bindingr  on the aggressive growth of the tumor. This figure 

shows the plots of the time evolution of the proliferating number of tumor cells by 
varying the value of bindingr  from 0.0 to 0.2 in steps of 0.1 while fixing the other 

values at .prolifr  = 0.8, detach.r = 0.35, lysisr  = 0.35, decayr  = 0.2, and K  = 510 . 
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 We varied bindingr  from 0.0 to 0.1 to 0.2 and fixed the other parameters to 

see how this changed the proliferating growth curves. It was found that the higher 
binding rate decreases the aggressiveness of the tumor. Fig. 3, clearly shows that 
the higher binding rate results in a lower saturated size of proliferating tumor. 
Alternatively, we varied lysisr  from 0.0 to 0.1 to 0.2  and fixed the other parameters 

to see the change of the proliferating growth curve and found that the higher lysis 
rate also results in a lower saturated size of the proliferating tumor as shown in 
Fig. 4. This seems to indicate that the comparison between simulation results of 
our model and some clinical trials agrees well. 
 

 
Fig. 4 The influences of lysisr  on the aggressive growth of the tumor. This figure 

shows the plots of the time evolution of the proliferating number of tumor cells by 
varying the value of lysisr  from 0.0 to 0.4 in steps of 0.2, while fixing the other 

values at .prolifr  = 0.8, bindingr = 0.2, detach.r = 0.35, decayr  = 0.2, and K  = 510 . 

4      Conclusion 

 This article presented an extension of earlier work by [7] to show the time 
evolution visual configurations of a cross-section of simulated tumors for tumor-
immune response dynamics on a 101x101x101 cubic lattice. To gain insight into 
how controlled parameters may affect the evolution of proliferating tumor growth, 
Monte Carlo simulations were performed which focused on the change of the 
proliferation, binding, and lysis parameters which influence the proliferating 
growth rate of a tumor. This was to see how the immune system responds to the 
growth of tumor. Specifically we investigated the proliferating growth curves 
after varying the bindingr , and it was found that our simulation results agree well 
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with those obtained from clinical studies of tumor-immune response. Since the 
microscopic model of tumor growth may exhibit other complex behaviors relating 
to cell motility [11] or when mechanical pressure is applied [5], further 
exploration needs to be done.  

5      Open Problem 

         The microscopic model of tumor growth may exhibit other complex 
behaviors such as the mechanical pressure as in [5], also the movement of 
proliferating cell or cell motility, see Gerlee and Anderson[11]. 
         The spatial distribution of proliferated cell in simulated tumor can be 
measured by [6] with comparison to in vivo experiment by Bru et al. [12].   
         Additionally, the fractal structure as seen in the snapshot cross-section tumor 
can be characterized by fractal dimension senses as shown in [6].  
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