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Abstract

In this paper we introduce some new generalized difference
sequence spaces using by an Orlicz function and examine some
properties of these sequence spaces.
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1 Introduction and Preliminaries

Throughout the paper w denotes the space of all sequences and let [, ¢
and ¢, be the linear spaces of bounded, convergent, and null spaces = = (zy,)
with complex terms, respectively, normed by ||z||_, = supy, |zx| where k € N,
the set of positive integers.

Kizmaz [5] introduced the notion of difference sequence spaces as follows

X(A)=A{x=(zx) ew: (Axy) € X}
for X =1, cand c,, where
Axy = ( Azg)ie, = (25 — Tht1)pey -
Later on, the notion was generalized by Et and Colak [9] as follows:

X(A™) ={x=(zp) ew: (A™zy) € X}



202 Yurdagiil Acar et al.

for X = I, ¢, ¢,, where A™x = (A™x;,)>® = (A™ 1z — A" oy y), A%z =
() and m > 0 is a fixed integer.

Recently, these sequence spaces were more generalized by Et and Esi [§]
to the following sequences spaces

X(AY) ={x=(z) ew: (Axy) € X}

for X = I, ¢, and ¢,, where A7 = (vixy), Aptr = (kT — Vg1 Txa1), Alxy =
(AT tzp — AT a4y such that ATay = 3 (1) (7) vkpiegs and v = (vg) be
any fixed sequence of non-zero complex mlmllbers.

The idea of Kizmaz [5] was applied for introducing different type of differ-
ence sequence spaces and for studying their different algebraic and topological
properties by Esi [1, 2|, Esi and Tripathy [3], Tripathy et.al [4] and many
others.

The following inequality will be used throughout the paper: Let p = (py)
be a positive sequence of real numbers with 0 < inf p, = h < pp < sup, pr =
H < 0o and K = max(1,2771). Then for ag, by € C, we have,

lai + b < K (Jag|?* + |by["), for all k € N.

An Orlicz function is a function M : [0, 00) — [0,00) which is continuous,
non-decreasing and convex with M(0) =0, M(z) > 0 for z > 0 and M(x) —
00 as T — 00.

An Orlicz function is a function M is said to satisfy the As— condition
for all values of ¢, if there exist a constant K > 0 such that M (2t) < KM(t),
(t>0).

Lindenstrauss and Tzafriri [7] used the Orlicz function and introduced the
sequence [, as follows:

Iy = {x:(xk)ZM (@) < 00, for somer>0}.
k

They proved that [y, is a Banach space normed by

||| :inf{r>0: zk:M (‘3;—”) < 1}.

Remark 1.1 An Orlicz function M satisfies the inequality M (A\x) < AM (z)
for all X with 0 < A < 1.

Let ¢; and ¢» be seminorms on a linear space X. Then ¢; is said to be
stronger than ¢ if whenever x = (x}) is a sequence such that ¢ (z) — 0,
than also ¢y (xx) — 0.If each is stronger than the others, ¢; and ¢, are said to
be equivalent, [10].
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Lemma 1.2 ([10]) Let ¢; and g2 be seminorms on a linear space X. Then
q1 18 said to be stronger than qo if and only if there exists a constant T such
that o (x) < T'qy (x), for all x € X.

Let p = (px) be a sequence of strictly positive real number and s > 0.
Let X be a seminormed spaces over the field C of complex numbers with the
seminorm ¢. The symbol w(X) denotes the spaces of all sequences defined
over X. Let v = (vy) be any fixed sequence of non-zero complex numbers. Let
M be an Orlicz function, we define the following sequence spaces as follows:

m o Pk
c[AY, M,p,q, 5] = {x = (z1) € w(X) : lim k™ {M (MH —0,

r

forsomel e X andr > 0¢,

=0,
T

Co [AT, M, p, q, 5] = {rv = (zr) € w(X) : im k™ lM (Mﬂm

for some r > 0} ,

o 870, ] = {2 = (o) € w0 ssup o (LEERDN T o

for some r > O} )

Some well-known spaces are obtained by specializing, M, p, ¢, s, v and m.

(a) f M(z) =2, m=1,v = (n) = (1,1,1,...), ¢(z) = |z|, s = 0 and
pr = 1 for all k € N, then we obtain the spaces ¢(A), ¢,(A) and [ (A) which
were defined and studied by Kizmaz [5].

(b) f M(z) =2, m=0,v= () =(1,1,1,...), s = 0 and ¢g(z) = |z|, then
we obtain the spaces ¢(p), ¢,(p) and l(p) which were defined and studied by
Maddox [6].

(c) If M(z) =z, q(x) = |z|, s = 0 and p, = 1 for all k£ € N, then we
obtain the spaces c¢(Al"), ¢,(A") and Il (Al") which were defined by Et and
Esi [7].

(d) U M@z)=z,m=s=0,v= ()= (1,1,1,...), ¢(z) = |z| and p,, = 1
for all £ € N, then we obtain classical sequence spaces ¢, ¢, and [.

2 Main Results

We prove the following theorems:
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Theorem 2.1 Let p = (px) be a bounded sequence. Then c, [A™ M, p,q,s]|,
c[AT, M, p,q,s| and lo [AT, M, p, q, s| are linear spaces over the complex field
C.

Proof. We give the proof only for ¢, [AT, M, p, q, ] the others can be treated
similarly. Let z,y € ¢, [A', M, p,q, s] for A\, u € C. Then there exist positive
numbers r; and 7 such that

SIC D) R
o o (o (O

Let r3 = max(2 |A| 1,2 |u|r2). Since M is non-decreasing convex function
and ¢ is a seminorm, we have

() o (D20, ()

T3 T3 T3
Am Pk Am Pk
< Kk™* {M (qw>} + KE™° {M (q(ﬂ)} — 0 as k — oc.
Tl T2

Therefore Az + pyr € co [A", M, p,q,s]. Hence ¢, [Al", M,p,q,s] is a linear
space. W

Theorem 2.2 The spaces ¢, [A", M,p,q,s|, c|Al, M,p,q,s] and
loo [AT', M, p,q, s] are paranormed space, paranormed by

Am
h(z) = inf {r”"/H >0:supk™® [M (M)} <1, s>0, for somer >0,
k T

n e N} ,
where H = max(1,sup,, px).

Proof. We prove the theorem for the space ¢, [A”, M, p,q, s|. The proof for
the other spaces can be proved by the same way. Clearly h(z) = h(—z) for
all z € ¢, [A", M, p,q,s], and h(0) = 0. Let z,y € ¢, [A}, M,p,q,s|. Then we
have r1,ry > 0 such that

oo (222)))
e oo (52)))

and
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Let r =1ry + ry. Then by the convexity of M, we have

o (5222
k T
o (2o ()« (52))
k T1+’f’2 1 T1—|—T2 T9
A™ A™
n sup k~ SM( ( ”mk>—|— "2 sup k™M <q< ”yk>)>
T+ Ty ok (1 rit+ Ty ok )

<1

IA

Hence from above inequality, we have

Am
h(z + y) = inf {TP"/H csupk™? {M (q (—” (z +yk)))] <1l,r>0,ne€ N}
k r

Am
<1nf{p"/ supk [M(q<”—xk)>}<1s 0,7 >0, neN}
1
Am
{p"/H supk {M(q(;—%)>}<ls 0, 7o > 0, nEN}
2

For the continuity of scalar multiplication let A # 0 be any complex number.
Then by the definition of h, we have

A"\
h()\x)—inf{ Pa/H supk [M(q(—xk))} gl,szo,r>0,nEN}
r
. P,/H —s Allwg
=inf ¢ (¢|\)™" supk™® | M | ¢ : <1,5s>0,t>0neN;,
k

where ¢ = . Since AP < max(1, |\, we have |A[P/H < (max(1, |\"))V2.
Then

h(z) +

Am
h(Az) < (max(1, (A" )V inf {tp"/H csup kM (q ( . xk)) <1,5>0,
k t
t>0,n¢€ N}
= (max(1, |\|")"".h(2),

and therefore h(Azx) converges to zero when h(z) converges to zero. Hence the
space ¢, [A"™ M, p,q, s] is paranormed by h. m

Theorem 2.3 Let (X,q) be complete seminormed space, then the spaces
Co [ATY, M, p,s] ,c[AT, M, p,q,s] and I [ALY, M, p, q, s| are complete with para-
norm h defined in Theorem 2.2.
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Proof. We prove it for the case ¢, [A”, M, p,q, s| and the other cases can be
establish similarly. Let (z') be a Cauchy sequence in ¢, [A™, M, p,q,s]. Then

h(z' —27) — 0 as i,j — oo.

Let x, > 0 be fixed and ¢ > 0 be such that for a given 0 < ¢ < 1, zLot > (0 and
z,t > 1. Then there exist a positive integer n, such that

h(z' —27) < %, i, = np.

Using definition of paranorm, we get

A™ i aJ
q(M)] §1,320,r>0,n€N}< <

inf {TP"/H csup kM
k r Tot

and

E—*M .
Sl,lp h(z? — x7)

Ar (2, — ]
q(M)]g,foram,jzno.

It follows that

M . .
h(x? — z7)

A (zh — ]
q<M>] <1, for all i,j > o,

For t > 0 with M (tm—o) > 1, we have

(SR | <un ()

Since M is continuous, then we obtain

M

) . T
gAYz, — AY'zy) < DT
Hence (A™x%) is a Cauchy sequence in (X, q). Since (X, q) is complete it is

convergent in X. Suppose that A"zt — z; as i — oo, for all £ € N. Now we
have for all i, 5 > n,.

A" (g — g
inf{rp"/H:supk_sM [q (M)] <1, 320,7’>0,n€N} <e
k r

This implies that

Am T J
lim inf{rp"/H:supk;_sM [q (M)] < 1,SZO,T>0,TLEN} <e
k

J—00 T
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for all ¢ > n,. Taking infimum of r’s we get
Am v
inf {rp"/H csup kM (q (M>> <1l,s>20,r>0,n¢€e N} <e
k T

for all i > ngy. It follows that (2 —1x) € ¢,[A™, M,p,q,s]. Since (z') €
Co [A™, M, p,q,s] and ¢, [A™, M,p,q,s| is linear space, so we have z = z' —
(x' — x) € ¢, [A™, M, p, q, s]. This completes the proof. =

Theorem 2.4 Let My and My be two Orlicz functions. Then
(a’) Z [A;n’ M17p7 q, 3] - Z [A;r)n’ M20M17p7 q, 3]7
(b) Z [AZI7 M17p7 q, S] nZ [A:}na M27p7 q, S] C A [Avma Ml + M27p7 q, 8] ) where

Z =c,, C ls.

Proof. (a): We prove this part for Z = ¢, and the rest of the cases will follow
similarly. Let x = (x3) € ¢, [A", My, p, q,s]. Then for given 0 < & < 1, there
exists 7 > 0 such that there exist a subset A of N, where

e () )
oo s ))
e = (k)P M, (q (Azxk>)

Then " < 5 < 1 implies y;, < 1. Hence we have by Remark,

(MzoM,) (q (N:xk» =M <(k—yﬁ>

1
S ykMZ <<k—5)1/Pk) .

If we take

Thus
yk Pk
k= [My(yr) ] < k7° [M2 ((ks)l/Pk)]
< k7*Byi* < By* <.
Then

k™5 (MaoM,) (q (Amf’“)) <e

Hence = = (xy) € ¢, [A", MyoMy, p, q, s].
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(b) It follows from the following inequality

s {(Ml ) (q (Azxk)ﬂpk
< [ (o (B2 )] v o (o (222D

[
Theorem 2.5 Let M be an Orlicz function, then c¢,[A", M, p,q,s] C
c[AT M, p,q,s] Cle [AT, M, p,q,s| and the inclusions are strict.

Proof. The first inclusions is obvious. We proof the second inclusion. Let
r = (zg) € c[A", M, p,q,s]. Since M is non-decreasing and convex function
and ¢ is a seminorm, we obtain

o (S o () o ()]

Then there exist an integer K; such that ¢(I) < K;. Hence we have

- Py
koo [ (2R | < g [ (U8 g (M (g (52))]™ Hence
r= (1) € loo [AT, M,p,q,5]. m

To show that the inclusions are strict, consider the following example.

Example 2.6 Let X = C, M(z) = z, q(z) = |z|, s = 0, v = () =
(1,1,...) and p, = 1 for all k € N. Then x = (k™) € I [AT, M,p,q,s]
but v = (k™) ¢ ¢, [AT, M,p,q,s|, since AT'K™ = (=1)™m!. Under these
restrictions on M, q, s, v and py’s consider the sequences x = (—1)%. Then
T € loo [AM, M, p,q,s], but x & c[A", M, p,q,s].

Theorem 2.7 ForZ = c,, c andl, Z [A™ 1 M, p,q,s] C Z[A™ M, p,q, s|
and also in general Z [A! M, p,q,s] C Z [A™, M,p,q,s] foralli=1,2,...m—
1. The inclusions are strict.

Proof. We give the proof for Z = [,,. The other cases can be prove using the
similar arguments. Let x = (1) € oo [A™, M, p, ¢, s]. Then we have

m—1 Pk
supk™* [M (M)} < 0.
k

Since M is non-decreasing and convex function, and ¢ is a seminorm and A"
is linear, we have

s {M<M>r - {M( g(Am- xk;Agllxk+l)>]pk
w52
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So, = = (xx) € Iu[A™ M,p,q s and thus I [A™ Y M, p,q,s] C
loo [A™ M, p, q, s]. Proceeding in this way one will have I, [AL, M,p,q,s] C
lo [AT, M,p,q,s] fori=1,2,..,m—1. =

To show that the inclusions are strict, consider the following example.

Example 2.8 Let X = C, M(z) = z, q(z) = |z|, s =0, pr = 1 for all
k and v = (v) = (1,1,...). Consider the sequence v = (k™™ 1), for example
belongs to Z [A™, M, p, q, s| but does not belong to Z [A™ M, p,q,s| for Z =
o since A™xy, = 0 and A"tz = (=1)""Y(m — 1)! for all k € N. Under the
above restrictions,consider the sequence x = (k™). Then x € Z [A", M, p, q, s]
but v = (K™ 1) ¢ Z[A™ 1 M,p,q,s| for Z=c and | .

Theorem 2.9 For any two sequences p = (pg) and u = (ug) of strictly
positive real numbers and for any two seminorms q, and gz on X, we have

Z[A™ M, p,qu,s] NZ[AD, M, u,q, s| # D, for Z = c,, ¢ and l.

Proof. Since the zero element belongs to each of the above sequence spaces,
the intersection is non-empty. =

Theorem 2.10 Let M be an Orlicz function. Then
(a) For two seminorms q; and g2, if qiis stronger than qo, then
Z [Avm7 M,p, q1, 8} cZz [Aznv M,p, q2, 8]7
(b) Let 0 < infpy < pr < 1. Then Z[A™ M,p,q,s] C Z[A™ M,q,s],
(c) Let 1 < pp <sup,pr < 00. Then Z[AT,M,q,s] C Z[A",M,p,q,s],
(d) Let s1 < sy. Then Z [A',M,p,q,s1] C Z A}, M,p,q,ss] for Z =c,,
c orls.

Proof. Proof the theorem is easy, so we omit it. m

3 Open Problem

In this paper, we introduce some new generalized difference sequence
spaces using by Orlicz function. We propose to study various some topo-
logical properties and establish some inclusion relations between these spaces.
The researchers can be characterize different paranorms on these spaces and
try to completeness of these spaces.

References

[1] A. Esi, Generalized difference sequence spaces defined by Orlicz functions,
General Mathematics, 17(2), (2009), 53-66.



210

2]

Yurdagiil Acar et al.

A. Esi, Strongly generalized difference [VA,Am,p] -summable sequence

spaces defined by a sequence of moduli, Nthonkar Mathematical Journal,
20(2), (2009), 99-108.

A. Esi and B. C. Tripathy, On some generalized new type difference se-
quence spaces defined by a modulus function in a seminormed space, Fas-
ciculi Mathematici, 40, (2008), 15-24.

B. C. Tripathy, A. Esi and B. K. Tripathy, On a new type of generalized
difference Cesaro sequence spaces, Soochow J. Math., 31(3), (2005), 333-
340.

H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24(2), (1981),
169-176.

I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math.,
2(18), (1967), 345-355.

J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel

J.Math., 10, (1971), 379-390.

M. Et and A. Esi, On Kothe-Toeplitz duals of generalized difference se-
quence spaces, Bull. Malays. Math. Sci. Soc., (2)23, No.1, (2000), 25-32.

M. Et and R. Colak, On generalized difference sequence spaces, Soochow
J. Math., 21(4), (1995), 377-386.

A. Wilansky, Functional Analysis, New York; Blaisdell Publishing Com-
pany, (1964).



