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Abstract

In this paper we introduce some new generalized difference
sequence spaces using by an Orlicz function and examine some
properties of these sequence spaces.
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1 Introduction and Preliminaries

Throughout the paper w denotes the space of all sequences and let l∞, c
and co be the linear spaces of bounded, convergent, and null spaces x = (xk)
with complex terms, respectively, normed by ‖x‖∞ = supk |xk| where k ∈ N,
the set of positive integers.

Kızmaz [5] introduced the notion of difference sequence spaces as follows

X(∆) = {x = (xk) ∈ w : (∆xk) ∈ X}

for X = l∞, c and co, where

∆xk = ( ∆xk)
∞
k=1 = (xk − xk+1)

∞
k=1.

Later on, the notion was generalized by Et and Çolak [9] as follows:

X(∆m) = {x = (xk) ∈ w : (∆mxk) ∈ X}
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for X = l∞, c, co, where ∆mx = (∆mxk)
∞ = (∆m−1xk − ∆m−1xk+1), ∆ox =

(xk) and m ≥ 0 is a fixed integer.
Recently, these sequence spaces were more generalized by Et and Esi [8]

to the following sequences spaces

X(∆m
v ) = {x = (xk) ∈ w : (∆m

v xk) ∈ X}
for X = l∞, c, and co, where ∆m

v = (vkxk), ∆vxk = (vkxk−vk+1xk+1), ∆m
v xk =

(∆m−1
v xk−∆m−1

v xk+1) such that ∆m
v xk =

m∑
i=1

(−1)i
(

m
i

)
vk+ixk+i and v = (vk) be

any fixed sequence of non-zero complex numbers.
The idea of Kızmaz [5] was applied for introducing different type of differ-

ence sequence spaces and for studying their different algebraic and topological
properties by Esi [1, 2], Esi and Tripathy [3], Tripathy et.al [4] and many
others.

The following inequality will be used throughout the paper: Let p = (pk)
be a positive sequence of real numbers with 0 < inf pk = h ≤ pk ≤ supk pk =
H < ∞ and K = max(1, 2H−1). Then for ak, bk ∈ C, we have,

|ak + bk|pk ≤ K(|ak|pk + |bk|pk), for all k ∈ N.

An Orlicz function is a function M : [0,∞) → [0,∞) which is continuous,
non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and M(x) →
∞ as x →∞.

An Orlicz function is a function M is said to satisfy the ∆2− condition
for all values of t, if there exist a constant K > 0 such that M(2t) ≤ KM(t),
(t ≥ 0).

Lindenstrauss and Tzafriri [7] used the Orlicz function and introduced the
sequence lM as follows:

lM =

{
x = (xk) :

∑

k

M

( |xk|
r

)
< ∞, for some r > 0

}
.

They proved that lM is a Banach space normed by

‖x‖ = inf

{
r > 0 :

∑

k

M

( |xk|
r

)
≤ 1

}
.

Remark 1.1 An Orlicz function M satisfies the inequality M(λx) ≤ λM(x)
for all λ with 0 < λ < 1.

Let q1 and q2 be seminorms on a linear space X. Then q1 is said to be
stronger than q2 if whenever x = (xk) is a sequence such that q1 (xk) → 0,
than also q2 (xk) → 0.If each is stronger than the others, q1 and q2 are said to
be equivalent, [10].
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Lemma 1.2 ([10]) Let q1 and q2 be seminorms on a linear space X. Then
q1 is said to be stronger than q2 if and only if there exists a constant T such
that q2 (x) ≤ Tq1 (x), for all x ∈ X.

Let p = (pk) be a sequence of strictly positive real number and s ≥ 0.
Let X be a seminormed spaces over the field C of complex numbers with the
seminorm q. The symbol w(X) denotes the spaces of all sequences defined
over X. Let v = (vk) be any fixed sequence of non-zero complex numbers. Let
M be an Orlicz function, we define the following sequence spaces as follows:

c [∆m
v , M, p, q, s] =

{
x = (xk) ∈ w(X) : lim

k
k−s

[
M

(
q(∆m

v xk − l

r

)]pk

= 0,

for some l ∈ X and r > 0
}

,

co [∆m
v ,M, p, q, s] =

{
x = (xk) ∈ w(X) : lim

k
k−s

[
M

(
q(∆m

v Xk)

r

)]pk

= 0,

for some r > 0
}

,

l∞ [∆m
v ,M, p, q, s] =

{
x = (xk) ∈ w(X) : sup

k
k−s

[
M

(
q(∆m

v Xk)

r

)]pk

< ∞,

for some r > 0
}

.

Some well-known spaces are obtained by specializing, M , p, q, s, v and m.
(a) If M(x) = x, m = 1, v = (vk) = (1, 1, 1, ...), q(x) = |x|, s = 0 and

pk = 1 for all k ∈ N, then we obtain the spaces c(∆), co(∆) and l∞(∆) which
were defined and studied by Kızmaz [5].

(b) If M(x) = x, m = 0, v = (vk) = (1, 1, 1, ...), s = 0 and q(x) = |x|, then
we obtain the spaces c(p), co(p) and l∞(p) which were defined and studied by
Maddox [6].

(c) If M(x) = x, q(x) = |x|, s = 0 and pk = 1 for all k ∈ N, then we
obtain the spaces c(∆m

v ), co(∆
m
v ) and l∞(∆m

v ) which were defined by Et and
Esi [7].

(d) If M(x) = x, m = s = 0, v = (vk) = (1, 1, 1, ...), q(x) = |x| and pk = 1
for all k ∈ N, then we obtain classical sequence spaces c, co and l∞.

2 Main Results

We prove the following theorems:
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Theorem 2.1 Let p = (pk) be a bounded sequence. Then co [∆m
v ,M, p, q, s] ,

c [∆m
v ,M, p, q, s] and l∞ [∆m

v ,M, p, q, s] are linear spaces over the complex field
C.

Proof. We give the proof only for co [∆m
v ,M, p, q, s] the others can be treated

similarly. Let x, y ∈ co [∆m
v ,M, p, q, s] for λ, µ ∈ C. Then there exist positive

numbers r1 and r2 such that

k−s

[
M

(
q

(
∆m

v (xk)

r1

))]pk

→ 0 as k →∞

and

k−s

[
M

(
q

(
∆m

v (yk)

r2

))]pk

→ 0 as k →∞.

Let r3 = max(2 |λ| r1, 2 |µ| r2). Since M is non-decreasing convex function
and q is a seminorm, we have

k−s

[
M

(
q(

∆m
v (λxk + µyk)

r3

)

)]pk

≤ k−s

[
M

(
q
(λ∆m

v xk)

r3

)
+ q

(
µ∆m

v yk

r3

)]pk

≤ Kk−s

[
M

(
q
(∆m

v xk)

r1

)]pk

+ Kk−s

[
M

(
q
(∆m

v yk

r2

)]pk

→ 0 as k →∞.

Therefore λxk + µyk ∈ co [∆m
v ,M, p, q, s]. Hence co [∆m

v ,M, p, q, s] is a linear
space.

Theorem 2.2 The spaces co [∆m
v ,M, p, q, s], c [∆m

v ,M, p, q, s] and
l∞ [∆m

v ,M, p, q, s] are paranormed space, paranormed by

h(x) = inf

{
rpn/H > 0 : sup

k
k−s

[
M

(
q(∆m

v xk)

r

)]
≤ 1, s ≥ 0, for some r > 0,

n ∈ N
}

,

where H = max(1, supk pk).

Proof. We prove the theorem for the space co [∆m
v , M, p, q, s]. The proof for

the other spaces can be proved by the same way. Clearly h(x) = h(−x) for
all x ∈ co [∆m

v ,M, p, q, s], and h(θ) = 0. Let x, y ∈ co [∆m
v ,M, p, q, s] . Then we

have r1, r2 > 0 such that

sup
k

k−s

[
M

(
q

(
∆m

v xk

r1

))]
≤ 1

and

sup
k

k−s

[
M

(
q

(
∆m

v xk

r2

))]
≤ 1.
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Let r = r1 + r2. Then by the convexity of M , we have

sup
k

k−s

[
M

(
q

(
∆m

v (xk + yk)

r

))]

≤ sup
k

k−s

[
M

(
r1

r1 + r2

q

(
∆m

v xk

r1

)
+

r2

r1 + r2

q

(
∆m

v yk

r2

))]

≤ r1

r1 + r2

sup
k

k−sM

(
q

(
∆m

v xk

r1

)
+

r2

r1 + r2

sup
k

k−sM

(
q

(
∆m

v yk

r2

)))

≤ 1.

Hence from above inequality, we have

h(x + y) = inf

{
rpn/H : sup

k
k−s

[
M

(
q

(
∆m

v (xk + yk)

r

))]
≤ 1, r > 0, n ∈ N

}

≤ inf

{
r

pn/H
1 : sup

k
k−s

[
M

(
q

(
∆m

v xk

r1

))]
≤ 1, s > 0, r1 > 0, n ∈ N

}

+ inf

{
r

pn/H
2 : sup

k
k−s

[
M

(
q

(
∆m

v yk

r2

))]
≤ 1, s > 0, r2 > 0, n ∈ N

}

= h(x) + h(y).

For the continuity of scalar multiplication let λ 6= 0 be any complex number.
Then by the definition of h, we have

h(λx) = inf

{
rPn/H : sup

k
k−s

[
M

(
q

(
∆m

v λxk

r

))]
≤ 1, s ≥ 0, r > 0, n ∈ N

}

= inf

{
(t |λ|)Pn/H : sup

k
k−s

[
M

(
q

(
∆m

v xk

t

))]
≤ 1, s ≥ 0, t > 0,n ∈ N

}
,

where t = r
|λ| . Since |λ|pn ≤ max(1, |λ|H), we have |λ|pn/H ≤ (max(1, |λ|H))1/H .

Then

h(λx) ≤ (max(1, |λ|H))1/H . inf

{
tPn/H : sup

k
k−sM

(
q

(
∆m

v xk

t

))
≤ 1, s ≥ 0,

t > 0, n ∈ N
}

= (max(1, |λ|H))1/H .h(x),

and therefore h(λx) converges to zero when h(x) converges to zero. Hence the
space co [∆m

v ,M, p, q, s] is paranormed by h.

Theorem 2.3 Let (X, q) be complete seminormed space, then the spaces
co [∆m

v ,M, p, s] ,c [∆m
v ,M, p, q, s] and l∞ [∆m

v ,M, p, q, s] are complete with para-
norm h defined in Theorem 2.2.
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Proof. We prove it for the case co [∆m
v ,M, p, q, s] and the other cases can be

establish similarly. Let (xi) be a Cauchy sequence in co [∆m
v , M, p, q, s] . Then

h(xi − xj) → 0 as i, j →∞.

Let xo > 0 be fixed and t > 0 be such that for a given 0 < ε < 1, ε
xot

> 0 and
xot ≥ 1. Then there exist a positive integer no such that

h(xi − xj) <
ε

tδ
, i, j > n0.

Using definition of paranorm, we get

inf

{
rPn/H : sup

k
k−sM

[
q

(
∆m

v

(
xi

k − xj
k

)

r

)]
≤ 1, s ≥ 0, r > 0, n ∈ N

}
<

ε

xot

and

sup
k

k−sM

[
q

(
∆m

v

(
xi

k − xj
k

)

h(xi − xj)

)]
≤ 1, for all i, j ≥ n0.

It follows that

M

[
q

(
∆m

v

(
xi

k − xj
k

)

h(xi − xj)

)]
≤ 1, for all i, j ≥ n0.

For t > 0 with M
(

tx0

2

)
> 1, we have

M

[
q

(
∆m

v

(
xi

k − xj
k

)

h(xi − xj)

)]
≤ M

(
tx0

2

)
.

Since M is continuous, then we obtain

q(∆m
v xi

k −∆m
v xj

k) <
tx0

2
.

ε

tx0

=
ε

2
.

Hence (∆m
v xi) is a Cauchy sequence in (X, q). Since (X, q) is complete it is

convergent in X. Suppose that ∆m
v xi

k → xk as i →∞, for all k ∈ N. Now we
have for all i, j > no.

inf

{
rPn/H : sup

k
k−sM

[
q

(
∆m

v

(
xi

k − xj
k

)

r

)]
≤ 1, s ≥ 0, r > 0, n ∈ N

}
< ε

This implies that

lim
j→∞

inf

{
rPn/H : sup

k
k−sM

[
q

(
∆m

v

(
xi

k − xj
k

)

r

)]
≤ 1, s ≥ 0, r > 0, n ∈ N

}
< ε
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for all i ≥ no. Taking infimum of r′s we get

inf

{
rpn/H : sup

k
k−sM

(
q

(
∆m

v (xi
k − xk)

r

))
≤ 1, s > 0, r > 0, n ∈ N

}
< ε

for all i > n0. It follows that (xi − x) ∈ co [∆m
v , M, p, q, s]. Since (xi) ∈

co [∆m
v ,M, p, q, s] and co [∆m

v , M, p, q, s] is linear space, so we have x = xi −
(xi − x) ∈ co [∆m

v , M, p, q, s]. This completes the proof.

Theorem 2.4 Let M1 and M2 be two Orlicz functions. Then
(a) Z [∆m

v , M1, p, q, s] ⊂ Z [∆m
v ,M2oM1, p, q, s],

(b) Z [∆m
v ,M1, p, q, s]

⋂
Z [∆m

v ,M2, p, q, s] ⊂ Z [∆m
v ,M1 + M2, p, q, s] , where

Z = co, c, l∞.

Proof. (a): We prove this part for Z = co and the rest of the cases will follow
similarly. Let x = (xk) ∈ co [∆m

v ,M1, p, q, s]. Then for given 0 < ε < 1, there
exists r > 0 such that there exist a subset A of N, where

A =

{
k ∈ N : k−s

[
M1

(
q

(
∆m

v xk

r

))]pk

<
ε

B

}
,

B = max

(
1, sup

k

[
M2

(
1

(k−s)1/Pk

)]pk
)

.

If we take

yk = (k−s)1/pkM1

(
q

(
∆m

v xk

r

))

Then ypk

k < ε
B

< 1 implies yk < 1. Hence we have by Remark,

(M2oM1)

(
q

(
∆m

v xk

r

))
= M2

(
yk

(k−s)1/pk

)

≤ ykM2

(
1

(k−s)1/pk

)
.

Thus

k−s [M2(yk)]
pk ≤ k−s

[
M2

(
yk

(k−s)1/Pk

)]pk

≤ k−sBypk

k ≤ Bypk

k < ε.

Then

k−s(M2oM1)

(
q

(
∆m

v xk

r

))
< ε.

Hence x = (xk) ∈ co [∆m
v ,M2oM1, p, q, s].
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(b) It follows from the following inequality

k−s

[
(M1 + M2)

(
q

(
∆m

v xk

ρ

))]pk

≤ Kk−s

[
M1

(
q

(
∆m

v xk

r

))]pk

+ Kk−s

[
M2

(
q

(
∆m

v xk

r

))]pk

.

Theorem 2.5 Let M be an Orlicz function, then co [∆m
v ,M, p, q, s] ⊂

c [∆m
v ,M, p, q, s] ⊂ l∞ [∆m

v ,M, p, q, s] and the inclusions are strict.

Proof. The first inclusions is obvious. We proof the second inclusion. Let
x = (xk) ∈ c [∆m

v ,M, p, q, s]. Since M is non-decreasing and convex function
and q is a seminorm, we obtain

k−s

[
M

(
q(∆m

v xk)

r

)]pk

≤ Kk−s

[
M

(
q(∆m

v xk − l)

r

)]pk

+Kk−s

[
M

(
q

(
l

r

))]pk

.

Then there exist an integer Kl such that q(l) ≤ Kl. Hence we have

k−s
[
M

(
q(∆m

v xk)
r

)]Pk ≤ Kk−s
[
M

(
q(∆m

v xk−l)
r

)]pk

+Kk−s
[
M

(
q
(

Kl

r

))]pk
. Hence

x = (xk) ∈ l∞ [∆m
v ,M, p, q, s].

To show that the inclusions are strict, consider the following example.

Example 2.6 Let X = C, M(x) = x, q(x) = |x|, s = 0, v = (vk) =
(1, 1, ...) and pk = 1 for all k ∈ N. Then x = (km) ∈ l∞ [∆m

v ,M, p, q, s]
but x = (km) /∈ co [∆m

v ,M, p, q, s], since ∆m
v km = (−1)mm!. Under these

restrictions on M , q, s, v and pk’s consider the sequences x = (−1)k. Then
x ∈ l∞ [∆m

v ,M, p, q, s], but x /∈ c [∆m
v ,M, p, q, s].

Theorem 2.7 For Z = co, c and l∞, Z [∆m−1
v , M, p, q, s] ⊂ Z [∆m

v ,M, p, q, s]
and also in general Z [∆i

v,M, p, q, s] ⊂ Z [∆m
v ,M, p, q, s] for all i = 1, 2, ..., m−

1. The inclusions are strict.

Proof. We give the proof for Z = l∞. The other cases can be prove using the
similar arguments. Let x = (xk) ∈ l∞ [∆m−1

v ,M, p, q, s]. Then we have

sup
k

k−s

[
M

(
q(∆m−1

v xk)

r

)]pk

< ∞.

Since M is non-decreasing and convex function, and q is a seminorm and ∆m
v

is linear, we have

k−s

[
M

(
q(∆m

v xk)

r

)]pk

= k−s

[
M

(
q(∆m−1

v xk −∆m−1
v xk+1)

r

)]pk

≤ Kk−s

[
M

(
q(∆m−1

v xk)

r

)]pk

+ Kk−s

[
M

(
q(∆m−1

v xk+1)

r

)]pk

< ∞.
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So, x = (xk) ∈ l∞ [∆m
v ,M, p, q, s] and thus l∞ [∆m−1

v , M, p, q, s] ⊂
l∞ [∆m

v ,M, p, q, s]. Proceeding in this way one will have l∞ [∆i
v,M, p, q, s] ⊂

l∞ [∆m
v ,M, p, q, s] for i = 1, 2, ...,m− 1.

To show that the inclusions are strict, consider the following example.

Example 2.8 Let X = C, M(x) = x, q(x) = |x|, s = 0, pk = 1 for all
k and v = (vk) = (1, 1, ...). Consider the sequence x = (km−1), for example
belongs to Z [∆m

v ,M, p, q, s] but does not belong to Z [∆m−1
v ,M, p, q, s] for Z =

co since ∆mxk = 0 and ∆m−1xk = (−1)m−1(m− 1)! for all k ∈ N. Under the
above restrictions,consider the sequence x = (km). Then x ∈ Z [∆m

v ,M, p, q, s]
but x = (km−1) /∈ Z [∆m−1

v ,M, p, q, s] for Z = c and l∞.

Theorem 2.9 For any two sequences p = (pk) and u = (uk) of strictly
positive real numbers and for any two seminorms q1 and q2 on X, we have
Z [∆m

v ,M, p, q1, s] ∩Z [∆m
v ,M, u, q2, s] 6= ∅, for Z = co, c and l∞.

Proof. Since the zero element belongs to each of the above sequence spaces,
the intersection is non-empty.

Theorem 2.10 Let M be an Orlicz function. Then
(a) For two seminorms q1 and q2, if q1 is stronger than q2, then

Z [∆m
v ,M, p, q1, s] ⊂ Z [∆m

v ,M, p, q2, s],
(b) Let 0 < inf pk ≤ pk ≤ 1. Then Z [∆m

v ,M, p, q, s] ⊂ Z [∆m
v ,M, q, s],

(c) Let 1 ≤ pk ≤ supk pk ≤ ∞. Then Z [∆m
v ,M, q, s] ⊂ Z [∆m

v ,M, p, q, s],
(d) Let s1 ≤ s2. Then Z [∆m

v ,M, p, q, s1] ⊂ Z [∆m
v ,M, p, q, s2] for Z = co,

c or l∞.

Proof. Proof the theorem is easy, so we omit it.

3 Open Problem

In this paper, we introduce some new generalized difference sequence
spaces using by Orlicz function. We propose to study various some topo-
logical properties and establish some inclusion relations between these spaces.
The researchers can be characterize different paranorms on these spaces and
try to completeness of these spaces.
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