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Abstract

In this paper, we investigate some properties of p-adic lin-
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1 Introduction

Kummer, in 1850, first introduced to p-adic numbers. Then the German Math-
ematician, Kurt Hensel (1861-1941) developed the p-adic numbers in a paper
which was concerned with the development of algebraic numbers in power se-
ries, around the end of the nineteenth century, in 1897. Then p-adic numbers
were generalized to ordinals (or valuation) by Kürschak in 1913, and Minkowski
(1884), Tate (1960), Kubota-Leopoldt (1964), Iwasawa, Serre, Mazur, Manin,
Katz, and the others. There are numbers of all kinds such as rational, real,
complex, p-adic numbers. Hensel’s p-adic’s numbers are now widely used in
many fields such as analysis, physics and computer science. The p-adic num-
bers are less well known than the others, but they play a fundamental role in
number theory in other parts of mathematics. Although, they have penatrated
several mathematical fields, among them, number theory, algebraic geometry,
algebraic topology and analysis. These numbers are now well-established in
mathematical world and used more and more by physicists as well. Over the
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last century p-adic numbers and p-adic analysis have come to play an impor-
tant role in number theory. They have many applications in mathematics,
for example: Representation theory, algebraic geometry, and modern number
theory and many applications in mathematical physics since 1897, for exam-
ple; String theory, QFT, quantum mechanics, dynamical systems, complex
systems, etc. Recently, Branko Dragovich in his study ([5]) he constructed
p-adic approach to the genetic code and the genome and gave a new approach
between p-adic fields and biology with chemistry, especially organic chemistry.
The other researchers gave the different approach with p-adic on various dis-
ciplines of mathematics and its allied subjects.

The concept of linear 2-normed spaces has been investigated by Gähler in
1965 ([9]) and has been developed extensively in different subjects by others.
Lewandowska published a series of papers on 2-normed sets and generalized 2-
normed spaces in 1999-2003 ([15]-[17]). In this paper we will not give a detailed
information about p-adic number fields but we shall start with a review of p-
adic numbers ( see ([1], [2], [3], [7], [8], [10], [11], [12], [13], [14], [20]) for
more details) and 2-normed spaces and related concepts such as generalized
2-normed spaces, convergent sequences, 2-Banach spaces, etc., (see ([4], [6],
[9], [15], [16], [17], [21]) for more details).

Mehmet Acikgoz ([18]) introduced a very understandable and readable con-
nection between the concepts in p-adic numbers, p-adic analysis and linear
2-normed spaces.

The main aim of this paper is to investigate some properties of p-adic linear
2-normed spaces and obtain necessary and sufficient conditions for p-adic 2-
norms to be equivalent on p-adic linear 2-normed spaces.

2 Preliminaries

In this paper, we will use the notations; p for a prime number, Z - the ring of
rational integers, Z+ - the positive integers, Q - the field of rational numbers,
R - the field of real numbers, R+ - the positive real numbers, Zp - the ring of
p-adic rational integers, Qp - the field of p-adic rational numbers, C - the field
of complex numbers and Cp - the p-adic completion of the algebraic closure of
Qp. For each x ∈ R, the absolute value of x is denoted by |x| and defined as
|x|=x if x ≥ 0 and |x|=−x if x ≤ 0. Thus |0| = 0 and |x| > 0 if x 6= 0. It is
not difficult to check that |x+y| ≤ |x|+ |y| and |xy| = |x||y| for every x, y ∈ R
as usual.

A valuation vp : F −→ R ∪ {∞} is a function from any field F to
the extended real line such that (i) vp(ab) = vp(a) + vp(b) (ii) vp(a + b) ≥
min{vp(a), vp(b)} (iii) vp(0) = ∞. A consequence of the first property is
vp(

a
b
) = vp(a)− vp(b).
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An absolute value is a function | • |p : F −→ R+ (where F is any field) such
that (i) |x|p = 0 iff x = 0 (ii) |xy|p = |x|p|y|p (iii) and one of the following
(a) |x + y|p ≤ |x|p + |y|p or (b) |x + y|p ≤ max{|x|p, |y|p}.

If an absolute value satisfies the triangle inequality ((iii)(a)) then it is said
to be Archimedean and non-Archimedean if it satisfies ultrametric inequality
((iii)(b)).

If x = pn u
v
∈ Q and uv is not divisible by p then vp(x) = n. The p-adic

absolute value of x is defined by |x|p = p−vp(x).
A completion of with respect to | • |p is a new field denoted Qp such that

every Cauchy sequence with respect to | • |p converges.
In ([22]), some inequalities are defined as follows:
Suppose that N(x), a non-negative real valued function defined on Q such

that N(0) = 0, N(x) is positive if x 6= 0 and N(xy) = N(x)N(y) for all
x, y ∈ Q and

N(x + y) ≤ K(N(x) + N(y)) (1)

for K ≥ 1 and x, y ∈ Q. The well-known triangle inequality satisfies for K = 1.
The other version of the triangle inequality, is the ultrametric which is stronger
and is shown by

N(x + y) ≤ max{N(x), N(y)} (2)

for all x, y ∈ Q. By using the equation (1), we have

N

(
2n∑

k=1

xk

)
≤ Kn

2n∑

k=1

N(xk) (3)

where n ∈ Z+ and xk’s are in Q. The proof can be easily made by induction
over n. The usual absolute value function |x| satisfies these conditions with
the well-known triangle inequality. For x = 0 and x 6= 0, if we have N(x) = 0
and N(x) = 1 respectively. In this case, N(x) satisfies these conditions with
the ultrametric type of the triangle inequality.

If q ∈ C we assume that |q| < 1. If q ∈ Cp, it will be assumed that N(1−
q)p < p−

1
p−1 with N(p)p < p−ordp(p) = p−1, where ordp(p) be the normalized

exponential valuation of Cp. We use the function

[x] = [x : q] =
1− qx

1− q
and lim

q→1

1− qx

1− q
= x

for any x in the complex case and any x with N(x)p ≤ 1 in the p-adic case.
Every x ∈ Q with |x|p ≤ 1 is the limit of a sequence of integers in the

p-adic metric. That is; {x ∈ Q : |x|p ≤ 1} is the same as the closure of Z in Q
with respect to the p-adic metric. Set Zp = {x ∈ Qp : |x|p ≤ 1}. Every x ∈ Qp

is the limit of a sequence of rational numbers in the p-adic metric. Because
Q = Qp. (Q is the closure of Q). It is also that for x ∈ Zp in the p-adic metric.
So we have Z = Zp in Qp.
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Now let us give a brief knowledge about linear 2-normed spaces by starting
their definitions and related facts.

Definition 2.1 Let X be a linear space of dimension greater than 1 over
K, where K is the real or complex numbers field. Suppose N(•, •) be a non-
negative real valued function on X ×X satisfying the following conditions:
(2N1) : N(x, y) > 0 and N(x, y) = 0 if and only if x and y are linearly
dependent vectors,
(2N2) : N(x, y) = N(y, x) for all x, y ∈ X,
(2N3) : N(λx, y) = |λ|N(x, y) for all λ ∈ K and x, y ∈ X,
(2N4) : N(x + y, z) ≤ N(x, z) + N(y, z) for all x, y, z ∈ X.
Then N(•, •) is called a 2-norm on X and the pair (X,N(•, •)) is called a
linear 2-normed space.

In addition, for all scalars α and all x, y, z ∈ X, we have the following three
properties of 2-norms:
(P1) They are non-negative,
(P2) N(x, y) = N(x, y + αx),
(P3) N(x− z, y − z) = N(x− y, x− z).

Every 2-normed space is a locally convex topological vector space. In fact
for a fixed b ∈ X, pb(x) = N(x, b) for all x ∈ X, is a seminorm and the family
P = {pb : b ∈ X} generates a locally convex topology on X. Such a topology
is called the natural topology induced by 2-norm N(•, •).

Definition 2.2 A sequence {xn}n≥1 in a linear 2-normed space (X, N(•, •))
is called Cauchy sequence if there exists two linearly independent elements y
and z in X such that {N(xn, y)} and {N(xn, z)} are real Cauchy sequences.

Definition 2.3 A sequence {xn}n≥1 in a linear 2-normed space (X, N(•, •))
is called convergent if there exists x ∈ X such that {N(xn− x, y)}n≥1 tends to
zero for all y ∈ X.

Definition 2.4 A linear 2-normed space (X, N(•, •)) is called 2-Banach
space if every Cauchy sequence is convergent.

Lemma 2.5 (i) Every linear 2-normed space of dimension 2 is a 2-Banach
space, when the underlying field is complete.
(ii) If {xn}n≥1 is a sequence in 2-normed space (X,N(•, •)) and lim

n→∞N(xn − x, y) =

0 then lim
n→∞N(xn, y) = N(x, y).
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3 p-adic ordinal, p-adic norm, p-adic metric

and p-adic expansion

In this section, we introduce the notions of p-adic ordinal, p-adic norm, p-adic
metric (distatnce), p-adic expansion and some related concepts. Let Q be the
field of rational numbers, 0 6= x ∈ Q and p is a fixed prime number. Every
rational number can be represented in the form x = pn a

b
with gcd(a, b) = 1,

a, n ∈ Z, b ∈ Z+ and neither a nor b is divisible by p ( i.e., (p, a) = 1,
(p, b) = 1). The integer n and the rational number a

b
are well defined by

Fundamental Theorem of Arithmetic.
Now, let us give the definition of p-adic ordinal as follows:

Definition 3.1 The p-adic ordinal (or valuation) is the function ordp :
Q −→ Z ∪ {∞} with ordp(x) = n for 0 6= x ∈ Q and ordp(0) = ∞.

For all x, y ∈ Q, we have the following some basic facts :
(i) ordp(xy) = ordp(x) + ordp(y),
(ii) ordp(x + y) ≥ min{ordp(x), ordp(y)} and with equality when ordp(x) 6=
ordp(y),
(iii) ordp(0) = ∞,
(iv) A clear consequence of the first property is that ordp(

x
y
) = ordp(x) −

ordp(y)
By using the ordinal (valuation) function, we can define p-adic norm func-

tion on Q as follows:

Definition 3.2 For x ∈ Q, let the p-adic norm of x be given by
N(x)p = p−ordp(x), if x 6= 0

= p−∞ = 0, if x = 0.

The p-adic norm satisfies the following relations :
(i) N(x)p ≥ 0 for all x,
(ii) N(x)p = 0 if and only if x = 0,
(iii) N(xy)p = N(x)p N(y)p for all x and y,
(iv) N(x + y)p ≤ N(x)p + N(y)p for all x and y,
(v) N(x + y)p ≤ max{N(x)p, N(y)p} for all x and y,
(vi) If N(x)p 6= N(y)p then N(x− y)p = max{N(x)p, N(y)p},
(vii) If N(x)p = N(y)p then N(x− y)p = N(x)p.

In the above, the properties (iv) and (v) are called the triangle inequality
and the strong triangle inequality (ultrametric version of the triangle inequal-
ity) respectively. We observe that the relation (iv) follows from the relation
(v).

By dp(x, y) = N(x− y)p , we define the p-adic metric (distance) on Q, for
fixed a prime number p and x, y ∈ Q, as follows:
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Definition 3.3 For all x, y, z ∈ Q,
D1) dp(x, y) = N(x− y)p > 0 for x 6= y and dp(x, x) = 0,
D2) dp(x, y) = dp(y, x),
D3) dp(x, z) ≤ dp(x, y) + dp(y, z), (the triangle inequality)
D4) dp(x, z) ≤ max{dp(x, y), dp(y, z)}, (the ultrametric inequality)

The properties given above from (D1) to (D3), they are called the axioms of
p-adic metric and the pair (X, dp) is called a p-adic metric space. If the metric
also satisfies the (D4) property then this metric is called a p-adic ultrametric
space. Two points are p-adically closer as long as r is higher, such that pr

divides N(x− y)p.

Definition 3.4 A sequence {xn}∞n=1 of rational numbers converges to x ∈ Q
in p-adic metric if for every ε > 0, there is an ` ≥ 1 such that dp(xn, x) =
|xn − x|p < ε for every n ≥ `.

For the given two sequences of rational numbers which are {xn}∞n=1 and {yn}∞n=1

converges to x, y ∈ Q in the p-adic metric respectively, then the sequence of
sums xn + yn and the product xnyn converges to the sum x + y and to the
product xy of the limits of initial sequences.

Definition 3.5 A sequence {xn}∞n=1 of rational numbers is a Cauchy se-
quence with respect to the p-adic metric if for each ε > 0, there is an ` ≥ 1
such that dp(xn, xm) = |xn − xm|p < ε, for every n,m ≥ `.

Every convergent sequence in Q is a Cauchy sequence. If {xn}∞n=1 is a Cauchy
sequence in Q with respect to the p-adic metric, then the limit lim

n→∞(xn −
xn+1) = 0 in p-adic metric. We know that the analogous statement also works
for the standard metric |x − y|. For the p-adic metric, the converse holds
because of the ultrametric version of the triangle inequality.

Definition 3.6 A p-adic number α can be uniquely written in the canonical

series form α =
∞∑

j=n
ajp

j, where each of 0 ≤ aj ≤ p− 1 and the p-adic norm of

the number α is defined as N(α)p = p−n. Note that the series 1+p+p2+p3+. . .
converges to 1

1−p
in the p-adic norm.

Definition 3.7 (i) The p-adic ordinal (valuation) of x and y, for 0 6= x, y ∈
Z is

ordp(x, y) = max{r : pr/x and pr/y} ≥ 0

(ii) For a
b
, c

d
∈ Q, the p-adic value of a

b
and c

d
is

ordp

(
a

b
,
c

d

)
= ordp(a, c)− ordp(a, d)− ordp(b, c) + ordp(b, d)
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(iii) For a
b
, c ∈ Q, with d = 1, the p-adic value of a

b
and c is

ordp

(
a

b
, c

)
= ordp(a, c)− ordp(b, c)

Notice that in all cases, ordp in 2-norm, gives an integer and that for rational

number a
b

and c
d

the value of ordp

(
a
b
, c

d

)
is well defined. i.e., if a

b
= a′

b′ and
c
d

= c′
d′ then

ordp

(
a

b
,
c

d

)
= ordp

(
a′

b′
,
c′

d′

)
.

We also introduce the convention that ordp(0, y) = ordp(x, 0) = ∞.

The p-adic valuation has the following properties:

Proposition 3.8 For all x, y ∈ Q, we have for ordp;
(i) ordp(x, y) = ∞ iff x = 0 or y = 0,
(ii) ordp(xz, y) = ordp(x, y) + ordp(z, y),
(iii) ordp(x + z, y) ≥ min{ordp(x, y), ordp(z, y)} and with equality when ordp(x, y) 6=
ordp(z, y).

Definition 3.9 For all x, y ∈ Q, let the p-adic norm of x, y be given by
N(x, y)p = p−ordp(x,y), if x 6= 0 and y 6= 0

= p−∞ = 0, if x = 0 or y = 0
where ordp(x, y) = max{r : pr/x and pr/y}.

Proposition 3.10 Let the function N(•, •)p be a non-negative real valued
function on Q×Q satisfying the following conditions:

N(•, •)p : Q×Q −→ R+ ∪ {0} = {r : r ≥ 0}
(i) N(x, z)p = 0 if and only if x = 0 or z = 0,
(ii) N(xy, z)p = N(x, z)p N(y, z)p for all x, y and z ∈ Q,
(iii) N(x+y, z)p ≤ max{N(x, z)p, N(y, z)p} and with equality when N(x, z)p 6=
N(y, z)p.
where N(•, •)p is a non-Archimedean norm on Q.

Let N(x, z)p be a non-negative real valued function defined on the rational
numbers Q×Q such that N(x, z)p = 0 for x = 0 or z = 0, N(x, z)p > 0 when
x 6= 0, z 6= 0. N(xy, z)p = N(x, z)p N(y, z)p for all x, y, z ∈ Q and

N(x + y, z)p ≤ K(N(x, z)p + N(y, z)p) (4)

for some K ≥ 1 and all x, y, z ∈ Q. For the usual triangle inequality one ask
that this condition holds with K = 1, i.e.,

N(x + y, z)p ≤ (N(x, z)p + N(y, z)p) (5)
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for all x, y, z ∈ Q.
The ultrametric version of the triangle inequality is stronger still and asks

that
N(x + y, z)p ≤ max(N(x, z)p, N(y, z)p) (6)

for all x, y, z ∈ Q. If N(•, •)p satisfies the equation (4), n is a positive integer
and x1, x2, x3, . . . , x2n 6= 0, z ∈ Q, then

N

(
2n∑

k=1

xk, z

)

p

≤ Kn
2n∑

k=1

N(xk, z)p (7)

as one can check using induction on n. For all a > 0, N(x, z)a
p is a non-negative

real valued function on Q × Q which vanished at 0, is positive at all nonzero
x ∈ Q and sends products to products. If N(x, z)p satisfies the equation (4),
then

N(x + y, z)a
p ≤ Ka

(
N(x, z)a

p + N(y, z)a
p

)
(8)

when 0 < a ≤ 1 and

N(x + y, z)a
p ≤ 2a−1Ka

(
N(x, z)a

p + N(y, z)a
p

)
(9)

when a ≥ 1.
In particular, if N(x, z)p satisfies the well-known triangle inequality (5) and

0 < a ≤ 1, then N(x, z)a
p also satisfies the the well-known triangle inequality.

If N(x, z)p satisfies the ultrametric version (6) of the triangle inequality, then
N(x, z)a

p satisfies the ultrametric version of the triangle inequality for all a ≥ 0.

Definition 3.11 Let X be a linear space of dimension greater than 1 over
K, where K is the real or complex numbers field. Suppose N(•, •)p be a non-
negative real valued function on X ×X satisfying the following conditions:
(2− pN1) : N(x, z)p = 0 if and only if x and z are linearly dependent vectors,
(2− pN2) : N(xy, z)p = N(x, z)p N(y, z)p for all x, y, z ∈ X,
(2− pN3) : N(x + y, z)p ≤ N(x, z)p + N(y, z)p for all x, y, z ∈ X,
(2− pN4) : N(λx, z)p = |λ| N(x, z)p for all λ ∈ K and x, z ∈ X.
Then N(•, •)p is called a p-adic 2-norm on X and the pair (X, N(•, •)p) is
called p-adic linear 2-normed space.

Definition 3.12 A sequence {xn}n≥1 in a p-adic linear 2-normed space
(X,N(•, •)p) is called convergent if there exists an x ∈ X such that
lim

n→∞N(xn − x, z)p = 0 for all z ∈ X.

Definition 3.13 A sequence {xn}n≥1 in a p-adic linear 2-normed space
(X,N(•, •)p) is called Cauchy sequence if for each ε > 0, there is an ` ≥ 1
such that N(xn − xm, z)p < ε, for all n,m ≥ ` and for all z ∈ X.
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Definition 3.14 A p-adic linear 2-normed space (X, N(•, •)p) is called com-
plete if every Cauchy sequence is convergent in p-adic linear 2-normed space.

Definition 3.15 A p-adic linear 2-normed space (X, N(•, •)p) is called p-
adic 2-Banach space if every p-adic linear 2-normed space is complete.

Proposition 3.16 If lim
n→∞N(xn, z)p exists then we say that {xn}n≥1 is a

Cauchy sequence with respect to N(•, •)p.

Proof. Let us suppose that lim
n→∞N(xn, z)p = x. Then we can obtain a constant

M1 such that n > M1 ⇒ N(x−xn, z)p < ε
2
. If m,n > M1 then N(x−xn, z)p <

ε
2

and N(x− xm, z)p < ε
2
, hence by using the triangle inequality, we have

N(xm − xn, z)p = N(xm − x + x− xn, z)p

≤ N(xm − x, z)p + N(x− xn, z)p <
ε

2
+

ε

2
= ε.

Definition 3.17 A sequence {xn}n≥1 is called a null sequence in p-adic
linear 2-normed space if lim

n→∞N(xn, z)p = 0 for all z ∈ X.

Example 3.18 Let xn = pn and z = pr with r < n in the p-adic 2-norm
over X = Q. Then
N(pn, pr)p = p−ordp(pn,pr), if pn 6= 0 and pr 6= 0

= p−∞ = 0, if pn = 0 or pr = 0.

In this case N(pn, pr)p = p−n = 1
pn = 0, as n →∞. Therefore, lim

n→∞N(xn, z)p =

0 for all z ∈ X. Hence this sequence is a null sequence with respect to the p-adic
2-norm.

Definition 3.19 A p-adic number (α, β) can be uniquely written in the
form

(α, β) =
∞∑

i=n, j=m

(aip
i, bjp

j)

where each 0 ≤ ai, bj ≤ p− 1 and p-adic 2-norm of the number (α, β) is defined
as N(α, β)p = n, (n ∈ R) and the double series (1 + p + p2 + p3 + . . . , 1 + p +
p2 + p3 + . . .) converges to 1

1−p
in the p-adic 2-norm.

4 Main Results

In this section, we investigate some properties of p-adic linear 2-normed spaces
and obtain necessary and sufficient conditions for p-adic 2-norms to be equiv-
alent on p-adic linear 2-normed spaces.
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Proposition 4.1 Let (X,N(•, •)p) be a p-adic linear 2-normed space.
(i) If {xn}n≥1 is a Cauchy sequence in X then {N(xn, z)p : z ∈ X}n≥1 is a
Cauchy sequence of non-negative reals.
(ii) If {xn}n≥1 and {yn}n≥1 are Cauchy sequences in X and {αn}n≥1 is a
Cauchy sequence of reals then {xn + yn}n≥1 and {αnxn}n≥1 are Cauchy se-
quences in X.

Proof. (i) Let {xn}n≥1 is a Cauchy sequence in X then lim
n,m→∞N(xn − xm, z)p =

0 for all z ∈ X. We have
N(xn, z)p = N(xn − xm + xm, z)p ≤ N(xn − xm, z)p + N(xm, z)p

⇒ N(xn, z)p −N(xm, z)p ≤ N(xn − xm, z)p .
Similarly N(xm, z)p −N(xn, z)p ≤ N(xn − xm, z)p .
Combining the above inequalities, we have
|N(xn, z)p − N(xm, z)p| ≤ N(xn − xm, z)p −→ 0 as n,m −→ ∞. Therefore
|N(xn, z)p − N(xm, z)p| −→ 0 as n,m −→ ∞. Hence {N(xn, z)p : z ∈ X}n≥1

is a Cauchy sequence of non-negative reals.
(ii) Let {xn}n≥1 and {yn}n≥1 be two Cauchy sequences in X then

lim
n,m→∞N(xn − xm, z)p = 0 for all z ∈ X and lim

n,m→∞N(yn − ym, z)p = 0 for all

z ∈ X. Now N((xn+yn)−(xm+ym), z)p = N(xn−xm+yn−ym, z)p ≤ N(xn−
xm, z)p +N(yn−ym, z)p −→ 0 as n,m −→∞. Hence {xn +yn}n≥1 is a Cauchy
sequence in X. Let {αn}n≥1 be a Cauchy sequence of reals. Also from (i) we
have {N(xn, z)p : z ∈ X}n≥1 is a Cauchy sequence of reals. Hence they are
bounded. We can find K1, K2 ≥ 0 such that |αn| ≤ K1 and N(xn, z)p ≤ K2 for
all z ∈ X. We have N(αnxn−αmxm, z)p = N(αnxn−αnxm+αnxm−αmxm, z)p

≤ N(αnxn − αnxm, z)p + N(αnxm − αmxm, z)p

≤ |αn| N(xn − xm, z)p + |αn − αm| N(xm, z)p

≤ K1 N(xn − xm, z)p + K2 |αn − αm| −→ 0 as n,m −→ ∞. Thus
N(αnxn − αmxm, z)p −→ 0 as n,m −→ ∞. Hence {αnxn}n≥1 is a Cauchy
sequence in X.

Proposition 4.2 In any p-adic linear 2-normed space (X, N(•, •)p), we
have the following
(i) If lim

n→∞N(xn − x, z)p = 0 and lim
n→∞N(yn − y, z)p = 0 then

lim
n→∞N((xn + yn)− (x + y), z)p = 0 for all z ∈ X.

(ii) lim
n→∞N(xn − x, z)p = 0 and lim

n→∞N(αn − α, z)p = 0 then lim
n→∞N(αnxn − αx, z)p =

0 for all z ∈ X.
(iii) If dimX ≥ 2 and lim

n→∞N(xn − x, z)p = 0 and lim
n→∞N(xn − y, z)p = 0, for

all z ∈ X then x = y.

Proof. (i) We have N((xn + yn)− (x + y), z)p = N(xn − x + yn − y, z)p

≤ N(xn − x, z)p + N(yn − y, z)p −→ 0 as n −→∞ for all z ∈ X.
Therefore N((xn + yn)− (x + y), z)p −→ 0 as n −→∞.
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Hence lim
n→∞N((xn + yn)− (x + y), z)p = 0 for all z ∈ X.

(ii) Using the fact that a real convergent sequence is boudned, we have
N(αnxn − αx, z)p = N(αnxn − αnx + αnx− αx, z)p

≤ N(αnxn − αnx, z)p+N(αnx− αx, z)p ≤ |αn| N(xn − x, z)p+|αn − α|N(x, z)p

≤ K N(xn − x, z)p + |αn − α|N(x, z)p for some K ≥ 0.
Therefore lim

n→∞N(αnxn − αx, z)p = 0 for all z ∈ X, since lim
n→∞N(xn − x, z)p =

0 and lim
n→∞N(αn − α, z)p = 0 and N(x, z)p is finite.

(iii) We have N(x− y, z)p = N(x− xn + xn − y, z)p ≤ N(x− xn, z)p+N(xn − y, z)p .
It follows that N(x−y, z)p = 0, since lim

n→∞N(xn − x, z)p = 0 and lim
n→∞N(xn − y, z)p =

0 for all z ∈ X. Hence x − y and z are linearly dependent vectors. Since
dimX ≥ 2, the only way that x− y can be linearly dependent with all z ∈ X
is for x− y = 0 ⇒ x = y

Proposition 4.3 Let (X,N(•, •)p) be a p-adic linear 2-normed space. If
{xn}n≥1 is a Cauchy sequence in X then {N(xn − x, z)p : z ∈ X}n≥1 is a
Cauchy sequence of non-negative reals for each x ∈ X.

Proof. We have N(xn − x, z)p = N(xn − xm + xm − x, z)p

≤ N(xn − xm, z)p + N(xm − x, z)p

⇒ N(xn − x, z)p −N(xm − x, z)p ≤ N(xn − xm, z)p .
Similarly N(xm − x, z)p −N(xn − x, z)p ≤ N(xn − xm, z)p .
Combining the above inequalities, we have
|N(xn − x, z)p −N(xm − x, z)p| ≤ N(xn − xm, z)p −→ 0 as n,m −→∞.
Therefore |N(xn − x, z)p −N(xm − x, z)p| −→ 0 as n, m −→∞. Hence
{N(xn−x, z)p : z ∈ X}n≥1 is a Cauchy sequence of non-negative reals for each
x ∈ X.

Proposition 4.4 If lim
n→∞N(xn − x, z)p = 0 then lim

n→∞N(xn, z)p = N(x, z)p

for each z ∈ X.

Proof. Let lim
n→∞N(xn − x, z)p = 0, we have |N(xn, z)p −N(x, z)p| ≤ N(xn − x, z)p

−→ 0 as n −→ ∞. It follows that, |N(xn, z)p −N(x, z)p|−→ 0 as n −→ ∞.
Hence, lim

n→∞N(xn, z)p = N(x, z)p for each z ∈ X.

Proposition 4.5 Limit of every convergent sequence in p-adic linear 2-
normed space is unique.

Proof. The proof is easy, so omitted.

Proposition 4.6 Every convergent sequence in p-adic linear 2-normed space
is a Cauchy sequence.

Proof. The proof is easy, so omitted.

Now we are ready to give the main Theorem of this paper.
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Definition 4.7 Two p-adic 2-norms N1(•, •)p and N2(•, •)p on p-adic lin-
ear 2-normed space X are said to be equivalent if there exists constants α > 0
and β > 0 such that

α N1(x, z)p ≤ N2(x, z)p ≤ β N1(x, z)p for all x, z ∈ X.

Theorem 4.8 Two p-adic 2-norms N1(•, •)p and N2(•, •)p are equivalent
on p-adic linear 2-normed space X if and only if every Cauchy sequence with
respect to one of the p-adic 2-norm is a Cauchy sequence with respect to other
p-adic 2-norm.

Proof. Suppose that two p-adic 2-norms N1(•, •)p and N2(•, •)p are equivalent
on p-adic linear 2-normed space X. Then there exists constants α > 0 and
β > 0 such that

α N1(x, z)p ≤ N2(x, z)p ≤ β N1(x, z)p for all x, z ∈ X.
For a sequence {xn}n≥1 in X, we have

α N1(xn − xm, z)p ≤ N2(xn − xm, z)p ≤ β N1(xn − xm, z)p for all z ∈ X
(10)

The second inequality shows that if {xn}n≥1 is Cauchy sequence with respect
to N1(•, •)p if and only if it is a Cauchy sequence with respect to N2(•, •)p. For
the converse part, suppose that the p-adic 2-norms are not equivalent. Then
without loss of generality we can assume the following two cases.
Case (i) we can not find α such that α N1(x, z)p ≤ N2(x, z)p for all x, z ∈ X.
Case (ii) we can not find β such that N2(x, z)p ≤ β N1(x, z)p for all x, z ∈ X.
In case (i) for n = 1, 2, . . . , there exists xn in X such that

1

n
N1(xn, z)p > N2(xn, z)p (11)

Let yn = 1√
n

1
N2(xn,z)p

xn, for each n. Then N2(yn, z)p = 1√
n
−→ 0 as n −→ ∞

and using equation (11) we get

N1(yn, z)p =
1√
n

1

N2(xn, z)p

N1(xn, z)p >
n√
n

=
√

n −→∞,

as n −→ ∞ So, using Proposition 4.6, {yn}n≥1 is a Cauchy sequence with
respect N2(•, •)p but not with respect N1(•, •)p.
Similarly, we can prove case (ii). Hence the theorem.

Corollary 4.9 Let N1(•, •)p and N2(•, •)p be two equivalent p-adic 2-norms
on p-adic linear 2-normed space X, then xn −→ x with respect N1(•, •)p if and
only if xn −→ x with respect N2(•, •)p.

Proof. By replacing ”xn − xm” with ”xn − x” in equation (10) of Theorem
4.8, we get the result.



On Equivalence of p-adic 2-norms in p-adic linear 2-Normed Spaces 37

5 Open Problem

It can be easily introduce the notion of statistically convergence and statisti-
cally Cauchy sequence in p-adic linear 2-normed spaces.
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