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Abstract 

    Using group theoretic method the similarity solutions for three-
dimensional steady incompressible magnetohydrodynamic boundary 
layer equations in rectangular coordinates for a power-law fluid are 
investigated. The particular form of restriction to be imposed on free 
stream velocities and magnetic field strength are derived 
systematically from the similarity requirement. For the small cross 
flows, the cross flow component may be generalized and found to be 
representable as a polynomial of flow variable x. Controlled 
equations are reduced to those found in literature.  
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1      Introduction 

Magnetohydrodynamics (MHD) deals with the motion of conducting fluids. The 

research of MHD incompressible viscous flow has many important engineering 

applications in devices such as power generator, the cooling of reactors, the 

design of heat exchangers and MHD accelerators. Further, the applications of 

MHD also cover a wide range of physical areas from liquid metals to cosmic 

plasmas; for example, the intensely heated and ionized fluids in an 

electromagnetic field in astrophysics, geophysics, aerodynamics, and plasma 

physics all deal with magnetohydrodynamics. Because of this, MHD flow 

problems have attracted the attention of mathematicians and engineers. In these 

problems, the authors generally assume that the fluid is Newtonian. 

Recently non-Newtonian fluids have been found important and useful in 

technological applications (For details see Refs. [1–3]). A large class of real fluids 

exhibits non-linear relationships between stress and the rate of strain. Because of 

this non-linear dependence, the analysis of the behavior of the fluid motion of the 

non-Newtonian fluids tends to be much more complicated and subtle than that of 

the Newtonian fluids. Hansen and his co-worker [4-6] are rather first to derive the 

systematic similarity analysis for three-dimensional boundary layer flow of 

Newtonian fluids. Further they [7] have extended their work to non-Newtonian 

power-law fluids and have obtained class of similarity solutions including 

similarity solutions for small cross flow. Following them [7], Timol et al [8], have 

used group theoretic technique to derive similarity solutions for the class of three-

dimensional boundary layer flow of non-Newtonian fluids of different models 

including power-law fluids.  

In past couple of decades numerous attempts have been made in applying 

boundary layer theory to the non-Newtonian fluids. The theory makes great 

simplification in the equation of motion and as a consequence, the equations are 

much simple to solve. For various non-Newtonian fluid models the progress in 

such a theoretical simplification is bit slowly. Most work found in literature on the 

said topic is restricted to simple two dimensional MHD and non MHD boundary 

layer flow of non-Newtonian power law fluids. In recent years, many 

investigations have concentrated on the MHD flows because of its important 

applications in metallurgical industry, such as the cooling of continuous strips and 

filaments drawn through a quiescent fluid and the purification of molten metals 

from non-metallic inclusions. The MHD flows of non-Newtonian fluids were 

initially studied by Sarpkaya [9], and then followed by Djukic [10, 11], Andersson 

et al. [12], and Liao [13], etc. Xu et al [14] have presented the study of the 

unsteady magnetohydrodynamic (MHD) viscous flows of non-Newtonian fluids 

caused by an impulsively stretching plate by means of an analytic technique, 

namely the homotopy analysis method. Whereas Ishak et al [15] have reported the 

numerical solution of MHD flow and heat transfer outside a stretching cylinder. 
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The governing system of partial differential equations is converted into a system 

of ordinary differential equations using similarity transformation, which is then 

solved numerically by the Keller-box method. Guedda et al [16] have studied the 

steady-state laminar boundary layer flow, governed by the Ostwald-de Wale 

power-law model of an incompressible non-Newtonian fluid past a semi-infinite 

power-law stretched flat plate with uniform free stream velocity. A generalization 

of the usual Blasius similarity transformation is used to find similarity solutions. 

Under appropriate assumptions, they have transformed their partial differential 

equations into an autonomous third-order nonlinear degenerate ordinary 

differential equation with boundary conditions. Recently, Ferdows and Olajuwon 

[17] have derived the Similarity solution of Micropolar Power law fluid over a 

vertical plate. 

Quite rare information is available in the literature about three-dimensional 

magnetohydrodynamic boundary layer flows of non-Newtonian fluids. This is 

because the differential equations governing the flow are highly non-linear system 

of partial differential equations of boundary value type with three independent and 

three dependent variables. Further the presence of terms due to non-Newtonian 

nature of fluids and external transverse magnetic field poses extra difficulties 

while simplifying such flow equations. Timol and Timol [18] are probably first to 

derive basic equations and similarity solutions of three-dimensional magneto-

hydrodynamic boundary layer flow of Newtonian fluids. But in order to meet 

similarity requirements they have assumed the specific form of outer flow and 

specific form of imposed magnetic field parameter in priori and hence set of 

similarity equations so obtained have limited practical applications.  

In the present paper using group theoretic method systematic similarity analysis is 

derived to find similarity equations for steady three-dimensional incompressible 

boundary layer flow of electrically conducting non-Newtonian power-law fluids 

past external surface under the influence of transverse magnetic field. We have 

considered special type of flow situation which is independent of z-coordinate, 

hence it is essentially quasi two-dimensional. Such flows are characterized by the 

fact that streamline form a system of translates i.e. entire streamline pattern can be 

obtained by translating any particular streamline parallel to leading edge of the 

surface. It is hoped that by omitting dependence of flow quantities in one direction 

more qualitative information may be obtained on the characteristic of three-

dimensional boundary layer flows of power-law fluids. It is observed that for 

some special cases, the present set of equations is well reduced to past well-

known equations like Blasius equation, Falkner-Skan equations etc.  
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2      Problem Formulations 

The well-known Ostwald-de-Wale model of power-law fluid is purely 

phenomenological; however, it is useful in that approximately describes a great 

number of real non-Newtonian fluids. This model behaves properly under tensor 

deformation. Use of this model alone assumes that the fluid is purely viscous. 

Mathematically it can be represented in the form Bird et al [19], Kapur [20] and 

Sirohi et al [21] as, 

1
1

= :
2

n

m

 
 

    
 
 

                                                                         (2.1) 

where   and   are the stress tensor and the rate of deformation tensor, 

respectively. Also m and n are called the consistency and flow behavior indices 

respectively. If n < 1, the fluid is called pseudo plastic power law fluid and if n > 

1, it is called dilatants power law fluid since the apparent viscosity decreases or 

increases with the increase shear of rate according as n < 1 or n > 1, if n =1 the 

fluid will be Newtonian.  

Following Patel and Timol [22], equation (2.1), under the boundary layer 

assumptions, yields following two non-vanishing components: 

1
2 2 2u u

= m +
y y y

n

w
yx

 
                
         
   

                                                        (2.2)        

1
2 2 2u

= m +
y y y

n

w w
yz

 
                
         
   

                                                        (2.3)    

Where the absolute sign has been dropped since both terms within the sign are 

positive.  

Consider an incompressible and electrically conducting fluid over a vertical 

isothermal semi-infinite flat plate in the presence of a strong non-uniform 

magnetic field. The geometry of the flow domain is illustrated in “Fig. 1”, in 

which x-coordinate is orientated parallel to the plate in upward direction with y-

axis is taken normal to it, and the origin located at the leading edge of the plate. 

Due to a cross flow in z-direction, the flow becomes three-dimensional. To 

simplify the problem, we assume that all flow quantities are independent of the z-
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coordinate. A magnetic field is assumed to be applied normal to the vertical plate 

and the induced magnetic field is neglected due to a very small Reynolds number.  

It is assumed that U and W are the components of velocity outside the boundary-

layer in x and z-direction [8].    

 

   

  

  

 

 

 

 

 

 

 

 

Following Timol et al [8] and Patel et al [23, 24] for above “equation of state”, the 

dimensionless equations governing the motion of three-dimensional laminar 

incompressible magnetohydrodynamic boundary layer flow of non-Newtonian 

power-law fluids can be written as:  

Continuity Equation 

v
+ = 0

y

u

x

 

                                                                                                      (2.4) 

Momentum Equations 

 

1
2 2 2u u u

+ v = + + U + S(x) U u
y y y y y

n

u dUw
u

x dx

 
                           
   

            (2.5) 

Fig1. Flow over a plate in rectangular coordinate system under the influence of 

transverse magnetic field. 
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 

1
2 2 2

+ v = + + U + S(x)
y y y y y

n

w w dWu w w
u W w

x dx

 
                           
   

             (2.6) 

with the boundary conditions, 

At y = 0: u = v = w = 0                                                                           (2.7) 

At  y = : u = U(x),    w = W(x)                                                                 (2.8) 

 And the magnetic field strength is 

 
2

0

B L
S  where B = B ( ) yx x

U




                                                                   (2.9) 

Where the non-dimensional quantities used are, 

1
v 1

= , v = Re , w = , U =
0 0 0 0

1
x y L S1

W = , x = , = Re ,   S(x) =
L L U

0 0

u w Un
u n

U U U U

W n
y n

U

   

     

where 
( 1)

2

2-n nρ U L
0Ren = , m = 2 K  provided 0 < n < 2
m

n 

.       (2.10) 

Here m is the true consistency of the liquid. Assuming implicitly that B does not 

depends upon the transverse coordinate y . The equation of continuity can be 

satisfied identically by introducing a mathematical function,   such that  

and v =
y x

u
  

 
 

                                                                                 (2.11) 

Equations (2.4-2.8) then becomes, 

1
2 22 2 22 2

= + + U + S(x) U
2 y 2 2yy y y

n

dUw

y x y x dx y

      

 
  

                                      
  
 

    (2.12) 
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 

1
2 222

= + + U + S(x)
y y 2 y yy

n

w w dWw w
W w

y x x dx

  

 
  
                            
  
 

       (2.13) 

with the boundary conditions, 

At y = 0: = w = 0
x y

  


                                                             (2.14) 

At  y = : = U(x),    w = W(x) 
y




                                                           (2.15) 

The boundary value problem (2.12)-(2.15) is coupled non-linear partial 

differential equations whose exact solution is indeed tough. We transform this set 

of non-linear partial differential equations into ordinary differential equations by 

the similarity technique so that it’s numerical or closed form solution can be 

obtained. A group-theoretic analysis is employed in the next section to find the 

proper similarity transformations and the proper form of U(x) W(x) and S(x) for 

which similarity solutions will exist. 

 

3      Similarity Analysis 

The methods for obtaining similarity transformation were classified into (a) direct 

methods and (b) group-theoretic methods. The direct methods do not invoke 

group invariance such as separation of variables method. It is quite 

straightforward and simple to apply. On the other hand group-theoretic methods 

are mathematically more elegant and the important concept of invariance under a 

group of transformations is always invoked. In some group-theoretic procedures 

the specific form of the group is assumed a priori such as the Birkhoff–Morgan 

method and the Hellums–Churchill method. On the other hand, procedure such as 

the finite group method of Moran–Gaggioli is deductive. In this procedure, a 

general group of transformations is defined and similarity solutions are 

systematically deduced.  

Our method of solution depends on the application of a one-parameter group 

transformation to the system of highly non-linear partial differential equations 

(2.12-2.13) along with boundary conditions (2.14-2.15). Under this group 

transformation the two independent variables (x, y) will be reduced to one i.e. η  

and the system of partial differential equations (2.12-2.13) along with boundary 

conditions (2.14-2.15) transforms into system of an ordinary differential 

equations. Our aim is to make use of group methods to represent the problem in 

the form of system of ordinary differential equations (similarity representation) in 
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a single independent similarity variable η . In our analysis we search a complete 

set of absolute invariants of the independent and the dependent variables.  

If  η =  η (x, y)  is the absolute invariant of independent variables then, 

jF [η (x, y)] = g (x, y, ψ, w) for j = 1, 2  are two absolute invariants corresponding to 

ψ  and w. 

Two different groups of one-parameter transformation namely the linear and the 

spiral are usually found to give adequate treatment of boundary layer equations. 

Each group gives rise to two cases, case-I and case-II that will be separately 

discussed. 

Case I. 

 A linear group of transformation is chosen as 

pp p
31 2

x = A x , y = A y , ψ = A ψ

p p pp
5 6 74

w = A w , U = A U , W = A W , S = A S
                                      (3.1)  

where p , p , p , p , p , p , p1 2 3 4 5 6 7 and A are constants.  

We now seek relations among the ip ’s such that the equations (2.12-2.15) will be 

invariant under the group of transformation (3.1). By the application of 

transformation (3.1), the invariance of (2.12-2.15) implies 

 

p 1 + (n 2) p2 =
p (n +1)
1

                                                                                               (3.2)                      

 

p 1 + (2n 1) p3 =
p (n +1)
1

                                                                                            (3.3)           

 

pp p
5 64 = =  = p

p p p
1 1 1

                                                                                           (3.4) 

 

p
7 = p 1

p
1

                                                                                                         (3.5)                                                     
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We therefore obtain the complete set of absolute invariants for the independent 

and the dependent variables as, 

y
η =

1 + (n 2) p
(n +1)

x


                                                                                               (3.6)    

                                        

ψ
F (η) =
1 1 + (2n 1) p

(n +1)
x


                                                                                           (3.7) 

 

w
G (η) = p1 x

                                                                                                   (3.8) 

 

S
S =

0 (p 1)
x


                                                                                                (3.9)     

            

U
C = p1 x

                                                                                                      (3.10) 

 

W
C = p2 x

                                                                                                       (3.11)  

where p is an arbitrary constant.  

Here equations (3.10-3.11) are due to the invariance of boundary conditions (2.14-

2.15). Substitution from (3.6 -3.11) into (2.12-2.15) yields a set of ordinary 

differential equations,  

 

2 2dF d F1 + (2n 1) p1 1p F
1 2dη (n +1) dη

n 1
2 222 2d F dG d F dFd 21 1 1 1= + + p C + S C

1 0 12 2dη dη dηdη dη

   
    
  

 
  
                         
  
  

                        

                                                                                                                          (3.12) 
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And  

 

 

dF dG1 + (2n 1) p1 1p G F
1 1dη (n +1) dη

n 1
2 222d F dG dGd 1 1 1+ + p C + S C

1 2 0 2 12dη dη dηdη
C G

   
    
  

 
  
                 
  
  

                             

                                                                                                                          (3.13)                            

with the transformed boundary conditions, 

At η = 0 : F = = G = 0
1 1 1

F                                                                  (3.14)    

At η = : F = C , G = C
1 1 1 2
                                                              (3.15) 

Deductions:  

 For the non-magnetic case S = 0
0

, equations (3.12-3.15) will reduce to 

those derived by Na and Hansen [7]. 

 For the Newtonian case n = 1, equations (3.12-3.15) will reduced to those 

obtained by Timol et al. [18]. 

 For two-dimensional case, velocity w in z-direction along with free stream 

velocity W will vanish and hence equation (3.13) will vanish identically 

and G1 along with its derivative will also vanish. Hence equation (3.12) 

becomes, 

            

2 2dF d F1 + (2n 1) p1 1p F
1 2dη (n +1) dη

n-1
2 2d F d F dFd 21 1 1= + p C + S C

1 0 12 2dη dηdη dη

   
    
  

 
    
           
 

 

                                                                                                                          (3.16) 

             which is reduced to the equation that is derived by Timol et al [25] and                

              Cobble [26].       
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Case II.  

A one-parameter spiral group of transformation is selected as 

qq
32= q + x, y = e y, = e

1

qq q q
5 6 74= e w, = e U, = e W, = e S

bb
x b

bb b b
w U W S

 
        (3.17) 

where , , , , , ,
5 71 2 3 4 6

q q q q q q q and b are constants. 

Repeating the same procedures as in case-I, the absolute invariants observed are, 

y
ξ =

n 2
q x

n + 1
e

 
 
  
 


                                                                                               (3.18) 

 

 
ψ

F ξ =
2 2n 1

q x
n + 1

e

 
 
  
 


                                                                                      (3.19) 

 

 
w

G ξ = q x2 e
                                                                                                 (3.20) 

 

S
S = q x0 e

                                                                                                       (3.21) 

 

U
C = q x3 e

                                                                                                       (3.22) 

 

W
C = q x4 e

                                                                                                      (3.23)      

where q is an arbitrary constant.  

Here equations (3.22-3.23) are due to the invariance of boundary conditions (2.14-

2.15). Substituting these quantities from (3.18 – 3.23) in to the basic equations 

(2.14-2.15), the reduced set of ordinary differential equations found are, 
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2 2d F d F2n 12 2q qF
2 2dξ n +1 dξ

n 1
2 222 2d F d G d F dFd 22 2 2 2= + + q C + S C

3 0 32 2dξ dξ dξdξ dξ

   
    
  

 
  
                         
  
  

                                                     

                                                                                                                          (3.24)  

And 

 

 

 

d F dG2n 12 2q G q F
2 2dξ n +1 dξ

n 1
2 222d F d G dGd 2 2 2= + + q C  C + S C G

3 4 0 4 22dξ dξ dξdξ

   
    
  

 
  
                 
  
  

                     

                                                                                                                          (3.25) 

with the transformed boundary conditions 

At ξ = 0 : F = = G = 0
2 2 2

F                                                                (3.26)  

At ξ = : F = C , G = C
2 3 2 4
                                                              (3.27)   

 

The equations (3.9 – 3.11) and (3.21 – 3.23) shows the mainstream velocities U, 

W and the magnetic strength S are either powers or exponentials of x for which 

the similarity solutions may exist. We also observed U (x) = (const.) W (x) .This 

means the main flow streamlines are straight lines. Although this is a severe 

restriction, the form of velocity components is somewhat more general than the 

cases found by Schowalter [27]. 

 

 



 

 

 

109                                                   Similarity Solutions of a Class of Laminar… 

Deductions:  

 For the non-magnetic case S = 0
0

equations (3.24 -3.27) will reduced to 

those derived by Na and Hansen [7]. 

 For the Newtonian case n = 1 equations (3.24 -3.27) will reduced to those 

obtained by Timol et al. [18]  

 For two-dimensional case, velocity w in z-direction along with free stream 

velocity W will vanish and hence equation (3.25) will vanish identically 

and G2 along with its derivative will also vanish. Hence equation (3.24) 

becomes, 

             

2 2d F d F2n 12 2q q F
2 2dξ n +1 dξ

n-1
2 2d F d F dFd 22 2 2= + q C + S C

3 0 32 2dξ dξdξ dξ

   
    
  

 
    
           
 

 

                                                                                                                         (3.28) 

             which is reduced to the equations that is derived by Timol et al [25] and            

             Cobble [26].          

 

4.       Group Theoretic Solutions for Small Cross Flow 

The restriction that U (x) = (const.) W (x) can be relaxed, if the cross-wise 

velocity is assumed to be small and the mainflow streamlines need not be straight. 

The principle of superposition of solutions is applied due to the momentum 

equation in the z-direction is linear in W. The simplifications permitted from the 

assumption of small cross flow may be made evident by considering the limiting 

deflection angle,  of the streamlines within the boundary layer. This angle is the 

arctangent of the ratio of velocities in the z and x-directions, evaluated at y = 0, i.e. 

 

w

yw
tan = lim = lim

0 0uy y u

y



 
 
 

   
 
 

                                                               (4.1) 

L’Hospital rule is being implemented due to indeterminate form. Therefore, for 

small cross flow, i.e. small , we would expect  
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u

y

w

y

 


 
                                                                                                            (4.2) 

within the boundary layer. The basic equations, (2.12-2.15) may then be 

simplified to 

n
2 2 2

= + U + S(x) U
2 2yy y

dU

y x y x dx y

              
            

                                 (4.3) 

 

 

1
2

= + U + S(x)
2y y yy

n
w w w dW

W w
y x x dx

  
 

        
  
          

                                (4.4) 

with the boundary conditions 

At y = 0: = w = 0
x y

  


 
                                                                         (4.5) 

At y = : = U(x),    w = W(x)  
y





                                                                    (4.6) 

By following the same procedures as in the preceding section, the following 

results are obtained. 

 

Case I.  

For the linear group of transformation, the absolute invariants investigated are,  

y
η =

1 + (n 2) ν
   (n +1)

x


                                                                                            (4.7) 

ψ
F (η) =
3 1 + (2n 1) ν

 (n +1)
x


                                                                                    (4.8) 

w
G (η) = ν3 x

                                                                                                   (4.9) 

S
S =

0 (ν 1)
x


                                                                                              (4.10) 

U
C = ν5 x

                                                                                                      (4.11) 
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W
C = ν6 x

                                                                                                       (4.12) 

where ν  is an arbitrary constant.  

Equations (4.11 - 4.12) are due to the invariance of boundary conditions (4.5-4.6). 

Thus, equations (4.3 – 4.6) are transformed to  

 

n2 2 2d F d F d F d F1 + (2n 1) ν d 23 3 3 3ν F = + ν C + S C
5 53 02 2dη (n +1) dη dηdη dη

                     

    (4.13) 

 
n 1

2d F d G d F d G1 + (2n 1) ν d3 3 3 3ν  G F =  + ν C  C + S C G
53 3 6 0 6 32dη (n +1) dη dη dηdη

 
                     
 

    (4.14)  

with the transformed boundary conditions,  

At η = 0 : F = = G = 0
3 3 3

F                                                                 (4.15)  

At η = : F = C , G = C
53 3 6

                                                             (4.16)     

 

Deductions:  

 For the non-magnetic case S = 0
0

equations (4.13- 4.16) will reduced to 

those derived by Na and Hansen [7]. 

 For ν = 0  and n = 1 the above case is reduced to that analyzed by Timol et 

al [8]. 

 For two-dimensional case, velocity w in z-direction along with free stream 

velocity W will vanish and hence equation (4.14) will vanish identically 

and G3 along with its derivative will also vanish. Hence equation (4.13) 

becomes, 

            

n2 2 2d F d F d F d F1 + (2n 1) ν d 23 3 3 3ν F = + ν C + S C
5 53 02 2dη (n +1) dη dηdη dη

                     

  (4.17)    

             which is reduced to the equation that is derived by Timol et al [25] and     

             Cobble [26].       
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Case II.  

For the spiral group of transformation, the following absolute invariants are 

obtained. 

y
ξ =

n 2
δ x

n +1
e

 
 
  
 


                                                                                               (4.18) 

 
ψ

F ξ =
4 2n 1

δ x
n + 1

e

 
 
  
 


                                                                                      (4.19) 

 
w

G ξ =
4 δ x

e

                                                                                                 (4.20)       

S
S =

0 δ x
e

                                                                                                        (4.21) 

U
C =

7 δ x
e

                                                                                                       (4.22) 

W
C =

8 δ x
e

                                                                                                       (4.23) 

where   is an arbitrary constant.  

Equations (4.22 - 4.23) are due to the invariance of boundary conditions (4.5-4.6). 

Substituting these quantities in equations (4.3 - 4.6) we obtain, 

 

n2 2 2d F d F d F d F2n 1 d 24 4 4 4δ δ F = + δ C + S C
7 74 02 2dξ n +1 dξ dξdξ dξ

                     

         (4.24) 

 

 
n 1

2d F d G d F d G2n 1 d4 4 4 4δ G δ F =  + δ C  C + S C G
74 4 8 0 8 42dξ n +1 dξ dξ dξdξ

 
                     
 

         (4.25)  

with the boundary conditions 

At η = 0 : F = = G = 0
4 4 4

F                                                                (4.26)       

At η = : F = C , G = C
74 4 8

                                                              (4.27) 
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Deductions: 

 For the non-magnetic case S = 0
0

equations (4.24 – 4.27) will reduced to 

those derived by Na and Hansen [7]. 

 For 0  and n = 1, the above case is reduced to that analyzed by Timol et 

al [8]. 

 For two-dimensional case, velocity w in z-direction along with free stream 

velocity W will vanish and hence equation (4.25) will vanish identically 

and G4 along with its derivative will also vanish. Hence equation (4.24) 

becomes, 

            

n2 2 2d F d F d F d F2n 1 d 24 4 4 4δ δ F = + δ C + S C
7 74 02 2dξ n +1 dξ dξdξ dξ

                     

   (4.28) 

           which is the same equation derived by Timol et al [25] and Cobble [26]. 

 

5      Conclusion 

 

The analysis of the laminar, incompressible three-dimensional MHD boundary 

layer equations of power law fluids with streamlines forming a system of 

“Translates” led to solutions for mainstream flows described by equations (3.10-

3.11) and (3.22-3.23). By placing the condition of small cross flow, restrictions on 

mainstream velocity W are considerably relaxed, as it is shown in equations (4.11-

4.12) and (4.22-4.23). Furthermore, the linearity of the momentum equation in the 

crosswise direction makes it possible to generalize the form to any mainstream 

shape, which can be approximated by a polynomial. Also it is interesting to note 

that in all cases of flow geometries, the specific form of the transverse magnetic 

field S(x), for which similarity solution exist is derived from conditions of 

existence of similarity solution rather than assume it in priori.  

 

6      Open Problem 

 

In the present paper using group theoretic method systematic similarity analysis is 

derived to find similarity equations for steady three-dimensional incompressible 

boundary layer flow of electrically conducting non-Newtonian power-law fluids 

past external surface under the influence of transverse magnetic field. In order to 

meet the similarity requirements it is observed in the earlier research that the 

specific form of outer flow and specific form of imposed magnetic field parameter 
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is assumed in priory and hence sets of similarity equations so obtained have 

limited practical applications. Where as in the present work in all cases of flow 

geometries, the specific form of the transverse magnetic field S(x), for which 

similarity solution exist is derived from conditions of existence of similarity 

solution rather than assuming it in priori. 
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Notations 

F, G   : Dependent variables in the transformed ordinary differential equations. 

L            :  A characteristic length  

m, n       : Parameters of power-law fluid model 

Ren        : Reynolds number 

u, v, w   : Velocity components along the x, y and z-axes                    

U, W     : Main stream velocity in x and z direction  

           : Density of fluid   

           : A mathematical function  

,         : Independent variables in the transformed ordinary differential equations 

           : Stress tensor 

            : The rate of deformation tensor 

,yx yz   : The two non-vanishing components of the stress tensor. 

S             : Magnetic field strength 

S , p, q, ν, δ
0

: Arbitrary constants.  
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