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Abstract

We are interested in the study of hyperbolic integro-differential
equation with initial and integral conditions by using Rothe’s
method. We transform the integral inhomogeneous conditions
to homogeneous ones by introducing a new function then prove,
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tion, the existence and uniqueness of weak solution
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1 Introduction

Many physical phenomena can be modeled by boundary value problems with
non-local conditions. This is when the values of function on the boundary
are related to values inside the domain or when direct measurements on the
boundary are not possible.

It shows that problems related to non- local conditions have many appli-
cations in many problems such as in the theory of heat conduction, thermo
elasticity, plasma physics, control theory, etc.. In particular, the introduction
of non-local conditions can improve the qualitative and quantitative character-
istics of the problem which lead to good results concerning existence, unique-
ness and regularity of the solution. The current analysis of these problems has
a great interest. and many methods are used to solve such problems as the
functional methods, methods of approximation, a priori estimates ....
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In this work, we apply an approximation method to study of an hyper-
bolic integro-differential equation with non local conditions of integral type.
The importance of approximation methods is that they don’t only prove the
existence and uniqueness of the solution but they also allow the construction
algorithms for numerical solutions. These methods such Galerkin method and
discretization in time methode called also the Rothe method, are a very effec-
tive tool in the study of the approximate solution and its convergence to the
solution of problem. In general it is difficult to find the exact solution of such
problems, the approximation methods provide other ways to find approximate
solutions.

The Rothe method has its origins in the work of E. Rothe in 1930 [14], it
has also been developed in the works of Rektorys [12, 13] and Kacur [7, 8].
Several other results have been achieved for differential equations with integral
conditions in the work of Bouziani and all [4, 10] and Mesloub [9] and for the
problems of integro-differential equations in the works of Bahuguna [1-3] and
Guezane-Lakoud and all [5, 6].

Inspired by [1, 4, 6], our goal is to extend this technics to hyperbolic integro-
differential equations with integral conditions.

2 Description of the Problem and Hypothesis

In this paper we study a semi-linear hyperbolic integro-differential equation

∂2θ

∂t2
− ∂2θ

∂x2
= g (x, t) +

∫ t

0

a (t− s) k (s, θ (x, s)) ds (x, s) ∈ (0, 1)× (0, T ) ,

(1)
with the initial conditions

θ (x, 0) = θ0 (x) ,
∂θ

∂x
(x, 0) = θ1 (x) x ∈ (0, 1) (2)

and the integral conditions

∫ 1

0

θ (x, t) dx = E (t) t ∈ [0, T ] , (3)

∫ 1

0

xθ (x, t) dx = M (t) t ∈ [0, T ] (4)

Using the transformation u (x, t) = θ (x, t)− r (x, t) , where
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r (x, t) = 6 (2M (t)− E (t)) x− 2 (3M (t)− 2E (t)) , then, the equivalently
problem is to find a function u satisfying

∂2u

∂t2
− ∂2u

∂x2
= f (x, t) +

∫ t

0

a (t− s) k (s, u (x, s)) ds (x, s) ∈ (0, 1)× (0, T ) ,

(5)

u (x, 0) = U0 (x) ,
∂u

∂x
(x, 0) = U1 (x) x ∈ (0, 1) , (6)

∫ 1

0

u (x, t) dx =

∫ 1

0

xu (x, t) dx = 0 (7)

where

f (x, t) = g (x, t)− ∂2r

∂t2
, U0 (x) = θ0 (x)− r (x, 0) , U1 (x) = θ1 (x)− ∂r

∂t
(x, 0) .

(8)
Hence, instead of looking v we simply look for u. The solution of problem

(1)-(4) will be obtained by the formula θ (x, t) = u (x, t) + r (x, t) .
To solve this problem we apply Rothe’s approximation, we divide the time

interval I into n subintervals [tj−1,tj] , j = 1....n, where tj = j.h and the length
h = T

n
, we denote uj = uj(x) = uj(x, jh) the approximation of u, then we

replace ∂2u
∂t2

and ∂u
∂t

at each point t = tj, j = 1....n,by the difference quotients

respectively δ2uj =
δuj − δuj−1

h
and δuj =

uj − uj−1

h
. Thereafter, we get a

system of n differential equations in x with the unknown functions uj(x) that
are the approximative solutions of (5) at the points tj, we use these functions
to construct the Rothe’s functions defined by

un (x, t) = uj−1 + δuj (t− tj−1) , t ∈ [tj−1, tj] , j = 1....n,

and the corresponding step function

un (t) =

{
uj, t ∈ [tj−1, tj] , j = 1....n

U0 t ∈ [−h, 0] .

Then we prove that un (x, t) converges in some appropriate sense to the solution
of (5).

Let I = [0, T ] , we denote by (, ), and ‖.‖ the classical inner product and
the corresponding norm respectively in L2 (0, 1). Let V be the following space

V =

{
v ∈ L2 (0, 1) :

∫ 1

0

v (x) dx =

∫ 1

0

xv (x) dx = 0

}
(9)

Obviously, V is a closed subset of L2 (0, 1) and hence is a Hilbert space that
can be embedded in the space B, which is the completion of C0 (0, 1), the space
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of all continuous functions on (0, 1) having compact support in (0, 1) with the

inner product (u, v)B =
∫ 1

0

(∫ x

0
u (ξ) dξ

∫ x

0
v (ξ) dξ

)
dx and the corresponding

norm ‖u‖2
B = (u, u)B , then the inequality

‖u‖2
B ≤

1

2
‖u‖2 (10)

holds for every u ∈ L2 (0, 1) .

We identify a function u : (0, 1)×I 7−→ u(x, t) ∈ R, such that for each t ∈ I,
u(., t) ∈ L2 (0, 1) with the function u : I 7−→ L2 (0, 1) by u (t) (x) = u(x, t),
t ∈ I, x ∈ (0, 1) . We will use in this paper the classical function spaces
C0,1 (I, X) , C1,1 (I, X) , L2 (I, X) and L∞ (I, X) where X is a Banach space.

For solving the problem (5)-(7) we make the following hypothesis:

H1) f (t) ∈ L2 (0, 1) and ‖f (t)− f (t′)‖B ≤ l |t− t′| , for some positive
constant l.

H2) U0 (x) , U1 (x) ∈ H2 (0, 1) .

H3) ∫ 1

0

U0 (x) dx =

∫ 1

0

xU0 (x) dx = 0, (11)

∫ 1

0

U1 (x) dx =

∫ 1

0

xU1 (x) dx = 0. (12)

H4) The continuous functions a and k are such that

|a (t)− a (t′)| ≤ c1 |t− t′| . k : I×B −→ L2 (0, 1) is continuous to both the
variables and satisfies ‖k(t, u)‖B ≤ ‖u(t)‖B .

H5) For u (t) , v (t) ∈ V, we have ‖k (t, u)− k (t, v)‖ ≤ L(t) ‖u(t)− v(t)‖B ,
for almost all t ∈ I, where L ∈ L1(I) is a positive function.

Definition 2.1 By a weak solution of the problem (5) − (7) we mean a
function u : I −→ L2 (0, 1) such that:

1) u ∈ C0,1 (I, V )

2) u has (a.e. in I) a strong derivative du
dt
∈ L∞ (I, V ) ∩ C0,1 (I, B)) and

∂2u
∂t2

∈ L∞ (I, B) .

3) u (0) = U0 in V and du
dt

(0) = U1inB.

4) for all φ ∈ V and a.e.t ∈ I, the identity

∫

I

(
d2u (t)

dt2
, φ

)

B

dt+

∫

I

(u (t) , φ) dt =

∫

I

(
f (t) +

∫ t

0

a (t− s) k (s, u) ds, φ

)

B

dt

(13)
is satisfied.
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3 Main Results

Now we expose the main result of this paper.

Theorem 3.1 Assume that hypotheses (H1)−(H4) hold, then there exists a
weak solution u for problem (5)-(7) in the sense of definition 2.1. In addition,
if (H5) is also satisfied, then u is unique.

The prove of this theorem will be done later with the help of several Lem-
mas.

3.1 Discretization Scheme and A priori Estimates

We divide the interval I into n subintervals of the length h = T
n
, and denote

uj = u (tj), with tj = jh, j = 1, ..., n. Successively, for j = 1, ..., n we solve the
linear stationary boundary value problem

uj − 2uj−1 + uj−2

h2
− d2uj

dx2
= fj + h

j−1∑
i=0

ajiki, (14)

∫ 1

0

uj (x) dx = 0, (15)

∫ 1

0

xuj (x) dx = 0, (16)

where fj = f (tj) , aji = a (tj − ti) , and ki = k (ti, ui) . Setting u−1 (x) =
U0 (x)− hU1 (x) , u0 (x) = U0 (x) , x ∈ (0, 1) . Denote δuj =

uj−uj−1

h
, δ2uj =

δuj−δuj−1

h2 , j = 0, ..., n and define Rothe’s sequence (un) of Lipschitz contin-
uous functions from I −→ H2 (0, 1) ∩ V by

u(n) (t) = uj−1 + δuj (t− tj) , t ∈ [tj−1, tj] , j = 1, ..., n (17)

the auxiliary functions are

δu(n) (t) = δuj−1 + δ2uj (t− tj) , t ∈ [tj−1, tj] , j = 1, ..., n, (18)

−
u

(n)

(t) =

{
uj for t ∈ (tj−1, tj] , j = 1, ..., n

U0 for t ∈ [−h, 0] ,
(19)

−
δu

(n)

(t) =

{
δuj for t ∈ (tj−1, tj] , j = 1, ..., n

U1 for t ∈ [−h, 0]
(20)
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Theorem 3.2 The problem (14)-(16) admits a unique solution uj ∈ H2 (0, 1)
for n ≥ 1, j = 1, ..., n.

Proof. Suppose that uj−1 and uj−2 are already known in H2 (0, 1) , then
fj ∈ L2 (0, 1) , then the general solution of (14) is given by

uj (x) = k1 (x) cosh
(x

h

)
+ k2 (x) sinh

(x

h

)
, x ∈ (0, 1) (21)

where k1 and k2 are two functions of x such that

dk1

dx
(x) cosh

(
x
h

)
+ dk2

dx
(x) sinh

(
x
h

)
= 0

dk1

dx
(x) sinh

(
x
h

)
+ dk2

dx
(x) cosh

(
x
h

)
= h

[
−2uj−1+uj−2

h
− fj − h

∑j−1
i=0 ajiki

]
.

}

(22)
Remarking that the determinant of (22) is

4 = cosh2
(x

h

)
− sinh2

(x

h

)
= 1, (23)

then
dk1

dx
(x) = hFj (x) sinh

(x

h

)
,
dk2

dx
(x) = hFj (x) cosh

(x

h

)
, (24)

with

Fj =
−2uj−1 + uj−2

h
− fj − h

j−1∑
i=0

ajiki (25)

that is
k1 (x) = h

∫ x

0
Fj (ξ) sinh

(
ξ
h

)
dξ + λ1

k2 (x) = h
∫ x

0
Fj (ξ) cosh

(
ξ
h

)
dξ + λ2.

}
(26)

From identity (17), we get

uj (x) = h

∫ x

0

Fj (ξ) sinh

(
x− ξ

h

)
dξ + λ1 cosh

(x

h

)
+ λ2 sinh

(x

h

)
. (27)

Choosing a pair (λ1, λ2) such that conditions (15) and (16) hold, then we
obtain

λ1

∫ 1

0
cosh

(
x
h

)
dx + λ2

∫ 1

0
sinh

(
x
h

)
dx = −h

∫ 1

0

∫ x

0
Fj (ξ) sinh

(
x−ξ
h

)
dξdx

λ1

∫ 1

0
x cosh

(
x
h

)
dx + λ2

∫ 1

0
x sinh

(
x
h

)
dx = −h

∫ 1

0

∫ x

0
xFj (ξ) sinh

(
x−ξ
h

)
dξdx,

}

(28)
therefore

{
λ1 sinh 1

h
+ λ2

(
cosh 1

h
− 1

)
= − ∫ 1

0

∫ x

0
Fj (ξ) sinh x−ξ

h
dξdx

λ1 sinh 1
h

+ λ2

(
cosh 1

h
− 1

)
= − ∫ 1

0

∫ x

0
Fj (ξ) sinh x−ξ

h
dξdx,

(29)
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since the determinant of (29)

4 (h) = 2h−2h cosh

(
1

h

)
+sinh

(
1

h

)
= 2 sinh

(
1

2h

) (
cosh

(
1

2h

)
− 2h sinh

(
1

2h

))

(30)
does not vanish for any h > 0, we deduce that the system (29)) admits a
unique solution (λ1, λ2) ∈ R2, which means that problem (14)-(16) is uniquely
solvable and obviously uj ∈ H2 (0, 1) since Fj ∈ L2 (0, 1) . In what follow we
denote by C a non negative constant not depending on n, j and h.

Lemma 3.3 There exist a constant C > 0 and a natural number N ∈ N∗

such that‖δuj‖2
B + ‖uj‖2 ≤ C, j = 1, ..., n, n > N.

Proof. Let φ ∈ V. It is easy to see that
∫ x

0
(x− ξ) φ (ξ) dξ = =2

xφ, ∀x ∈
(0, 1) where =2

xφ := =x (=ξφ) =
∫ x

0
dξ

∫ ξ

0
φ (µ) dµ. Thus

=2
1φ =

∫ 1

0

(1− ξ) φ (ξ) dξ =

∫ 1

0

φ (ξ) dξ −
∫ 1

0

ξφ (ξ) dξ. (31)

Multiplying (14) by =2
xφ for all j = 1, ..., n, then integrating over (0, 1) to get

∫ 1

0

δ2uj (x)=2
xφdx−

∫ 1

0

d2uj

dx2
(x)=2

xφdx =

∫ 1

0

(
fj (x) + h

j−1∑
i=0

ajiki

)
=2

xφdx.

(32)
Integrating by parts all terms in (32) then using (30), it yields

∫ 1

0

δ2uj (x)=2
xφdx = =x

(
δ2uj

)=2
xφ

∣∣x=1

x=0
−

∫ 1

0

=x

(
δ2uj

)=xφdx

= − (
δ2uj, φ

)
B

.

∫ 1

0

d2uj

dx2
(x)=2

xφdx = −uj (x)=xφ|x=1
x=0 +

∫ 1

0

uj (x) φ (x) dx = (uj, φ) .

∫ 1

0

(
fj + h

j−1∑
i=0

ajiki

)
=2

xφdx =

∫ 1

0

d

dx
=x

(
fj + h

j−1∑
i=0

ajiki

)
=2

xφdx

= −
(

fj + h

j−1∑
i=0

ajiki, φ

)

B

. (33)

So (32) becomes

(
δ2uj, φ

)
B

+ (uj, φ) =

(
fj + h

j−1∑
i=0

ajiki, φ

)

B

, ∀φ ∈ V, ∀j = 1, ..., n. (34)
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Setting φ = δuj ∈ V in (34), we get (δuj − δuj−1, δuj)B + (uj, uj − uj−1) =

h2
∑j−1

i=0 (ajiki, δuj)B+h (fj, δuj)B . Taking account the identities 2 (uj, uj − uj−1)

= ‖uj‖2 + ‖uj − uj−1‖2 − ‖uj−1‖2, 2 (δuj − δuj−1, δuj)B = ‖δuj‖2
B

+ ‖δuj − δuj−1‖2
B − ‖δuj−1‖2

B , we obtain

‖δuj‖2
B−‖δuj−1‖2

B+‖uj‖2−‖uj−1‖2 ≤ 2Ch2

j−1∑
i=0

‖ki‖B ‖δuj‖B+2h ‖fj‖B ‖δuj‖B .

(35)
From ε-inequality for ε = 1, we deduce 2 ‖ki‖ ‖δuj‖B ≤ 2 ‖ui‖ ‖δuj‖B

≤ ‖ui‖2 + ‖δuj‖2
B , 2h ‖fj‖B ‖δuj‖B ≤ 2h ‖f‖C(I,B) ‖δuj‖B ≤ h + Ch ‖δuj‖2

B .
Substituting in (35) to get

‖δuj‖2
B−‖δuj−1‖2

B +‖uj‖2−‖uj−1‖2 ≤ Ch ‖δuj‖2
B +Ch2

j−1∑
i=0

‖ui‖2 +Ch (36)

Now choosing in inequality (36), N such that C T
N

< 1, then for n > N , it
yields

(1− Ch)
[‖δuj‖2

B + ‖uj‖2] ≤ (
1− Ch2

) [‖δuj−1‖2
B + ‖uj−1‖2]

+Ch2

j−1∑
i=0

‖ui‖2 + Ch. (37)

Applying this inequality recursively, we obtain (1− Ch)j [‖δuj‖2
B + ‖uj‖2] ≤

(1 + jCh2)
j [‖δu0‖2

B + ‖U0‖2] + jCh, which implies ‖δuj‖2
B + ‖uj‖2 ≤ C.

Lemma 3.4 There exist a constant C > 0 and a natural number N ∈ N∗

such that‖δ2uj‖2

B + ‖δuj‖2 ≤ C, j = 1, ..., n > N.

Proof. We consider the difference (34)j − (34)j−1 so

(
δ2uj, φ

)
B

+ (uj − uj−1, φ) =
(
δ2uj−1, φ

)
B

+ (ajj−1kj−1, φ)B

+h

j−2∑
i=0

((aji − aj−1i) ki, φ)B + (fj − fj−1, φ)B . (38)

Setting φ = δ2uj in (38) we get

2
∥∥δ2uj

∥∥2

B
+ 2 (δuj, δuj − δuj−1) = 2

(
δ2uj−1, δ

2uj

)
B

+ 2h
(
ajj−1kj−1, δ

2uj

)
B

+2h

j−2∑
i=0

(
(aji − aj−1i) ki, δ

2uj

)
B

+ 2
(
fj − fj−1, δ

2uj

)
B

,
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which gives

2
∥∥δ2uj

∥∥2

B
+ ‖δuj‖2 − ‖δuj−1‖2 ≤

∥∥δ2uj−1

∥∥2

B
+

∥∥δ2uj

∥∥2

B

+2Ch ‖kj−1‖B

∥∥δ2uj

∥∥
B

2Ch2

j−2∑
i=0

‖ki‖B

∥∥δ2uj

∥∥
B

2 ‖fj − fj−1‖
∥∥δ2uj

∥∥
B

. (39)

Remarking that ‖ki‖B ≤ ‖ui‖ ≤ C and using ε-inequality for ε = 1 we obtain

2Ch ‖kj−1‖B ‖δ2uj‖B ≤ Ch ‖kj−1‖2
B +Ch ‖δ2uj‖2

B ≤ Ch+Ch ‖δ2uj‖2

B . On the
other hand we have

2Ch2

j−2∑
i=0

‖ki‖B

∥∥δ2uj

∥∥
B

≤ Ch2

j−2∑
i=0

(
‖ki‖2

B +
∥∥δ2uj

∥∥2

B

)

≤ (j − 1) Ch2 + (j − 1) Ch2
∥∥δ2uj

∥∥2

B
≤ Ch + Ch

∥∥δ2uj

∥∥2

B
,

the last term on the right (39) is estimate by 2 ‖fj − fj−1‖ ‖δ2uj‖B ≤ 2Ch ‖δ2uj‖B

leqCh + Ch ‖δ2uj‖2

B . Substituting in (39) it yields

∥∥δ2uj

∥∥2

B
−

∥∥δ2uj−1

∥∥2

B
+ ‖δuj‖2 − ‖δuj−1‖2 ≤ Ch

∥∥δ2uj

∥∥2

B

+Ch2

j−1∑
i=0

‖δui‖2 + Ch(40)

Let N ∈ N∗ such that C T
N

< 1,for n > N , then inequality (40) implies:

(1− Ch)
[∥∥δ2uj

∥∥2

B
+ ‖δuj‖2

]
≤ (

1 + Ch2
) [∥∥δ2uj−1

∥∥2

B
+ ‖δuj−1‖2

]

+Ch2

j−1∑
i=0

‖δui‖2 + Ch, (41)

similarly to the proof of Lemma 3.3, we get the desired result.

Corollary 3.5 For all t, s ∈ I and n > N , Lemmas 3.3 and 3.4 imply

∥∥u(n) (t)
∥∥ +

∥∥∥∥
−
u

(n)

(t)

∥∥∥∥ +
∥∥δu(n) (t)

∥∥ +

∥∥∥∥∥
−
δu

(n)

(t)

∥∥∥∥∥ +

∥∥∥∥
d

dt
δu(n) (t)

∥∥∥∥
B

≤ C (42)

∥∥∥∥u(n) (t)− −
u

(n)

(t)

∥∥∥∥ +

∥∥∥∥∥δu(n) (t)−
−
δu

(n)

(t)

∥∥∥∥∥
B

≤ C

n
(43)

∥∥u(n) (t)− u(n) (s)
∥∥ +

∥∥δu(n) (t)− δu(n) (s)
∥∥ ≤ C |t− s| (44)
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3.2 Convergence Results and Existence

We define the functions

fn (t) =

{
fj, t ∈ (tj−1, tj, ] , 1 ≤ j ≤ n

f0 = f (0)

and

Kn (0) = ha10k0, K
n (t) = h

j−1∑
i=0

ajiki,

then (34) becomes

(
d

dt
δu(n) (t) , φ

)

B

+

(
−
u

(n)

(t) , φ

)
= (fn (t) + Kn (t) , φ)B , ∀φ ∈ V (45)

which gives

∫

I

(
d

dt
δu(n) (t) , φ

)

B

dt+

∫

I

(
−
u

(n)

(t) , φ

)
dt =

∫

I

(fn (t) + Kn (t) , φ)B dt ∀φ ∈ V

(46)

Theorem 3.6 Under the hypotheses (H1)− (H4) , then there exists a func-
tion u ∈ C0,1 (I, V ) such that du

dt
∈ L∞ (I, V )∩C0,1 (I, B), d2u

dt2
∈ L∞ (I, V ) and

subsequences {unk}k ⊂ {un}n ,

{
−
u

(nk)
}

k

⊂
{
−
u

(n)
}

n

such that

unk ⇀ u in L2 (I, V ) , (47)

−
u

(nk)

⇀ u in L2 (I, V ) , (48)

δu(nk) ⇀
du

dt
in L2 (I, V ) , (49)

−
δu

(nk)

⇀
du

dt
in L2 (I, V ) , (50)

d

dt
δu(nk) ⇀

d2u

dt2
in L2 (I, B) , (51)

where “⇀” denotes the weak convergence.

Proof. From inequality (42) we deduce that
{
u(n)

}
n
,

{
−
u

(n)
}

n

are uniformly

bounded in L2 (I, V ) with respect to n. Therefore, there exists subsequences
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{unk}k and

{
−
u

(nk)
}

k

that converge weakly to some functions u and u respec-

tively. From the estimate (43) it follows that u = u. The inequality (42) implies

that
{
δu(n)

}
n
, and

{
−
δu

(n)
}

n

are uniformly bounded in L2 (I, V ), so we can

extract two subsequences
{
δu(nk)

}
k
,

{
−
δu

(nk)
}

k

that converge weakly to w and

w respectively,using (43) we obtain w = w. Now we prove that w = du
dt

. From

u(nk)(t)− U0 =

∫ t

0

du(nk)(s)

ds
, ∀t′ ∈ I,

we get

u(t) = U0 +

∫ t

0

w(s)ds, ∀t′ ∈ I, (52)

that gives u ∈ C (I, B) and w = du
dt

in L2 (I, V ) . Taking into account (42)
we have

{
d
dt

δu(n)
}

n
is uniformly bounded in L2 (I, B) , so it has a subsequence{

d
dt

δu(nk)
}

k
such that d

dt
δu(nk) ⇀ S. To prove that S = d2u

dt2
, we consider the

equality

δu(nk) − U1 =

∫ t

0

d

ds
δu(nk) (s) ds,

so
du

dt
− U1 =

∫ t

0

S (s) ds (53)

and consequently du
dt
∈ C (I, B) and S = d2u

dt2
in I. From corollary 3.5 it follows

that u : I −→ V and w = du
dt

: I −→B are Lipschitz continuous, hence

du

dt
inL∞ (I, V ) and

dw

dt
=

d2u

dt2
∈ L∞ (I, B) . (54)

Lemma 3.7 The sequence {Kn (t)}n is uniformly bounded in L2 (I, B) and
has a subsequence {Knk (t)}k such

Knk → K (u) , as k −→ +∞, in L2 (I, B) . (55)

Proof. See the Proof of Lemma 2.4 in [3].

Theorem 3.8 Under the hypotheses (H1) − (H4) then the limit u is the
weak solution for problem (5)-(7) in the sense of definition 2.1. In addition,
if (H5) is satisfied, then u is unique.
Proof. Remarking that u ∈ C0,1 (I, V ) , du

dt
inL∞ (I, V )∩C0,1 (I, B) , d2u

dt2
inL∞ (I, B)

and u satisfies the integral conditions since u (t) ∈ V and by virtue of (52),



12 A. Guezane-Lakoud et al.

(53) we deduce that u (0) = U0 and du
dt

(0) = U1. From the hypothesis (H1) we
get:

‖fn (t)− f (t)‖B ≤
C

n
a.e. in I, (56)

thus
fn −→ f in L2 (I, B) (57)

Passing to the limit as n = nk −→ +∞ in (46) and by means of the convergence
properties (48), (51), (55) and (57) we arrive at
∫

I

(
d2u

dt2
(t) , φ

)

B

dt+

∫

I

(u (t) , φ) dt =

∫

I

(f (t) , φ)B dt+

∫

I

(Ku (t) , φ)B dt ∀φ ∈ V .

Now we prove the uniqueness under the hypothesis (H5) . If u1 and u2 are two
weak solutions of (5)-(7) then the difference u := u1 − u2 satisfies:

∫

I

(
d2u

dt2
(t) , φ

)

B

dt +

∫

I

(u (t) , φ) dt =

∫

I

(∫ t

0

a (t− s) [k (s, u1)− k (s, u2)] ds, φ

)

B

dt ∀φ ∈ V,

let

w = max |a (t)|
∫ T

0

L (t) dt (58)

we divide the interval I into a finite number of subintervals of lengths p such
that

w.p <
1

2
. (59)

Substituting in (13) the function φ by

φ =

{
du
dt

t ∈ [0, p]
0 t ∈ ]p, T ] ,

(60)

we obtain
∫ p

0

d

dt

∥∥∥∥
du

dt

∥∥∥∥
2

B

dt+

∫ p

0

d

dt
‖u (t)‖2 dt = 2

∫ p

0

(∫ t

0

a (t− s) [k (s, u1)− k (s, u2)] ds,
du

dt

)

B

dt,

(61)
therefore

∫ p

0

d

dt

∥∥∥∥
du

dt

∥∥∥∥
2

B

dt +

∫ p

0

d

dt
‖u (t)‖2 dt

≤ 2

∫ p

0

∥∥∥∥
∫ t

0

a (t− s) [k (s, u1)− k (s, u2)] ds

∥∥∥∥
∥∥∥∥
du

dt

∥∥∥∥
B

dt

≤ 2pmax
I
|a (t)|

∫ T

0

L (t) dt ‖u (t)‖
∥∥∥∥
du

dt

∥∥∥∥
B
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≤ wp

[(
max
t∈[0,p]

‖u (t)‖
)2

+

(
max
t∈[0,p]

∥∥du
dt

∥∥
B

)2
]

(62)

Let t1 and t2 ∈ [0, p] such that
∥∥∥∥
du

dt
(t1)

∥∥∥∥
B

= max
[0,p]

∥∥∥∥
du

dt
(t)

∥∥∥∥
B

(63)

‖u (t2)‖ = max
[0,p]

‖u (t)‖ (64)

So, taking into account that du
dt

(0) = u (0) = 0 it follows

∫ t1

0

d

dt

∥∥∥∥
du

dt

∥∥∥∥
2

B

dt +

∫ t2

0

d

dt
‖u (t)‖2 dt

=

∥∥∥∥
du

dt
(t1)

∥∥∥∥
2

B

+ ‖u (t2)‖2

≤
∫ p

0

d

dt

∥∥∥∥
du

dt

∥∥∥∥
2

B

dt +

∫ p

0

d

dt
‖u (t)‖2 dt (65)

from inequalities (60), (63) and (66), we get

du

dt
(t) = u (t) = 0, ∀t ∈ [0, p] . (66)

Repeating the above argument for [kp, (k + 1) p] , i = 1,..., we deduce u = 0.
this achieves the proof of Theorem 3.8.

4 Open Problem

In this paper we have studied a second order integro-differential equation with
integral conditions. One can develop the Rothe’s method for a higher or-
der integro-differential equation. Instead of Rothe’s method, one can adopt
Galerkine method to investigate a complete hyperbolic integro-differential equa-
tion with more general integral conditions.
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