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Abstract

The Adomian decomposition method is used to trace the solution
curve of some nonlinear elliptic problems with folds. An approximated
series solution to these problems is obtained. Numerical results of the
examples presented in this paper conjectured that the value of the sim-
ple fold point is the radius of convergence of the series obtained. The
validity of the method is verified for Bratu problem which is governed by
one parameter A and a reaction-diffusion problem which is governed by
the two parameters A and . For the reaction-diffusion problem an im-
plicit relation between o and A is obtained for the first time. Numerical
results obtained indicate the method is efficient and accurate.

1 Introduction

Many problems in science and engineering require the computation of famly of solutions
of a nonlinear system of the form

Glu, A) =0,u =u(A) (1)

where G : R*"! — R is continuously differentiable function, u represents the solution
and A is a real parameter (ie, Reynold’s number, load etec ) It is required to find the
solution for some A—intervals, 1.e., a path solutions, (u(A), A). Equations of the form
(1) are called nonlinear elliptic eigenvalue problems if the operator G with A fixed 1s an
elliptic differential operator. For more details about this type of operators, see [1].

As a typical example of a nonlinear elliptic eigenvalue problems, we consider the

tfollowing problem

Glu,A\) = Au+Af(u)=0, D (2)
u = 0, on J0.
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Equation (2) arises in many physical problems. For example, in chemical reactor the-
ory, radiative heat transfer, combustion theory, and in modelling the expansion of the
universe. The function u could be a function of several variables and the domain () is
usually taken to be the unit interval [0, 1] in R, or the unite square [0, 1] x [0, 1] in R?, or
the unit cube [0,1] x [0,1] x [0,1] in R3.

Equation (2) can take several forms, for example, Bratu equation is given by

Au+Xe* = 0, inQ
u = 0, ondf2

and a reaction-diffusion problem takes the form

Au+/\exp<1fau) = 0, inQ
u = 0, on .

There are no bifurcation points in the two problems above; all singular points are
fold points. The behavior of the solution near the singular points has been studied
numerically [1], [18], [24] and theoretically [19], [22], [29], [30]

For both the one- and two-dimensional cases, the Bratu problem has exactly one fold
point, whereas the three-dimensional case has infinitely many fold points.

In this paper, we will use the Adomian decomposition method (ADM), see [6] , [7] ,
[17]and [11] to solve Equation (2). We will approximate the solution of this problem by
a series of z and A. Then, the estimated radius of convergence of this series will be used
to approximate the folding point.

In the next section we will describe the Adomian decomposition method (Shortly
ADM), and section three will discuss the method of calculating the fold point, while in
section four, the ADM method will be used to solve some problems given by Equation
(2) and summary and conclusions will be presented in section five.

2 Adomian decomposition method

Adomian Decomposition Method (ADM) has been recently used intensively to solve
nonlinear ordinary differential equations as well as partial differential equation [2] [5] [6]
[7] [14] [8] [9] [10] [12] [28] [33] [34] [25] [26] [27] [35] [36] [37] [38] . It is quantitative
rather than qualitative, analytic, requiring neither linearization nor perturbation and
continuous with no resort to discretization .

When applying the ADM, we split the given equation into linear and nonlinear
parts. Then inverting the linear operator on both sides. Decomposing the nonlinear
function in terms of special polynomials called Adomian’s polynomials, and finding the
successive terms of the series solution by recurrent relation using Adomian polynomials.

In this section we describe how to use the Adomian decomposition method for solving
the following problem

Au+ A f(u) = 0, inQ (3)
u = 0, on 0f.
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The Adomian decomposition method assumes that the solution u(z) of Equation (3)
can be written as

u(@) = up(z) (4a)

where u,, n =0,1,2,... are polynomials in z, and the nonlinear function f(u) can be
written in the series form as

)= A, (4b)

where A,,, n =0,1,2,... are called the Adomian polynomials. These polynomials can
be derived by expanding the function f(u) about ug as follows

" (U_UO)2

U — Ug

fu) = f(ug) + f'(uo) 11

and using Equation(4a) to replace u implies:

oo o0 2
f(u) = f(uo) + f’(uo)% + f”(uo)% +
Adomian polynomials are obtained by reordering and rearranging the terms given
in the last equation. We define the order of the component u;" to be ml, and w;"uj
to be ml + nj. Then, the Adomian polynomial Ay depends on uy and collects all
terms of order zero, A; depends on ug and u; and collect all terms of order one, ...etc.
Therefore, rearranging the terms in the last expansion according to the order, and using

the expansion of f(u) given in Equation(4b), will result in the following form of A,

Ao = f(uo)
A = Ulf/(uo)

2

Ay = 5 f"(uo) + uaf (o)

ud 2uqu
As = gpf" (o) + = £ (o) + s f (o)
ud 3uiu 2uyuz + uj
Ay = j @ (up) + %fﬂ,(uo) + %JM(“O) + ua [ (uo)

From the previous discussion, one can show that A; can be derived as

1 d* = ,
A’“:EW [f (Zoﬂ@g)] ,j > 0. (5)
Jj=0 a=0

Next, define the differential operator L as L = j—; on the set of all second order
differentiable functions u such that © = 0 on 052, say A. This operator on A is invertible.
Then Equation (3) can be written in the form

L(u) + Af(u) = 0. (6)
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And defining the inverse operator as L™!(.) = [ [ .dzdz, then the solution u(zx) of
00

Equations (3) can be written in the form:

u(e) = “ALN(f(W) + ez + o (7)

where the term c;x + o is the solution of L(u) = 0 and ¢;x and ¢, will be determined

later using the boundary conditions. Now equating the terms yields

up(r) = cr+e

ur(z) = —AL7Y(Ap)

uy(z) = —AL7'(Ap) (8)
un(x) = —ALY(A,_1).

From (8) the sequence {u,} -, is known, so that the solution of Problem (3) is now
given by

u(z) = ug(x) + uy(z) + uz(x) + ...

3 Computation of fold points

In Equation (1), the parameter A is often a quantity of physical significance, such as tem-
perature in liquid crystal modeling or the Reynolds number in hydrodynamical flow, and
is commonly referred to as the "natural parameter". We are interesting in determining
solution path

C={(u,\): G(u,\) =0,u=u(N),a <X<b}

associated with (1). Here a and b are given bounds for .

The solutions u(A), a < A < b, of Equation (1) are commonly computed by a
continuation method. In these methods an initial value problem for u is derived by
differentiating Equation (1) with respect to A. Thus, let u = u(\) satisfy Equation (1)
yields

Gu(u(A), Mu(A) + Ga(u(A), A) =0, (9)

where & = 2. Given u(a) and assuming that the Jacobian matrix J(G) is a nonsingular
matrix in the neighborhood of the solution path, we can compute u(\) for a < A < b
by solving the initial value problem (9) for u = u()). Points where the Jacobian matrix
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J(@) is nonsingular are referred to as regular points. Points where J(G) is singular are
referred to as singular points. The simple singular point is defined as follows.

Definition 1 A point (ug, Ao) is a simple singular point of G, if the null space of
J(G)(ug, No) denoted by N(JG)(ug, Ao)) is of dimension one.

The range is then given by

range[J(G)(uo, Mo)] = {y : Yoy = 0}

for some nonzero vector 1),.For more details on how to chose 1), we refer the reader to
Ref. [4]

Singular points on the solution path are either turning points or bifurcation points
of the solution path. The determination of the solution path in a neighborhood of a
turning point or bifurcation point requires special care. It is therefore important to
detect singular points on the solution path. In this paper, we concentrate on another
type of singular point which is the fold (turning) point which can be defined as:

Definition 2 A singular point (ug, o) of G is said to be a fold point if it satisfies the
condition:

VoG (ug, o) # 0.

The augmented system of equations used for calculating the fold point is then given
by [30],

G(u, \)
It —1

where [ is not in the null space of G, (ug, A\o).
Such folds frequently are of intrinsic interest, and there are special algorithms for
detecting and calculating them. We refer the reader to [21][22] and [30].

4 Numerical Results

In this section we apply the Adomian decomposition method to solve two special cases
of Eq (2), namely, the Bratu problem and the reaction-diffusion problem.

Example 4.1. Consider the one-dimensional Bratu problem

u"(x) + Ae® =0, z e (0,1) (10)
with the boundary conditions

u(0) = u(1) = 0. (11)

The exact solution of the nonlinear boundary value problem given by Eq (10) and
(11) is given by the following implicit formula
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u(z) = —2In (%) (12)

where y solves

V2 cosh (%) —y=0. (13)

In Figure 1, we sketch the curves of the function in Eq (13) in the (), y)-plane.
From this graph we see that Eq. (10) has two solutions when A < A, one solution
when A\ = )., and no solution when A > \,. In Figure 2, we sketch the graph of
|lull,, = max {|u(x)| : 0 <z < 1} versus A. From this graph we see that there is a turning
point \,. To apply the Adomian decomposition method for finding the solution of Eq.
(10), we first write Eq. (10) in operator form as

L(u) = — e (14)

where L = %, then using the inverse operator L™!(.) = .dtds. One can write the

C—xg
o,

solution of Eq. (14) as

u(z,\) = =AL7H(e") + 17 + ¢ (15)

Assuming that ug(z) = c12 + ¢2, and using the boundary conditions at x = 0 and x = 1
for evaluating ¢, and ¢y, implies that ug(z) = 0. Now using formula (5) for writing down
the Adomian Polynomials and applying the inverse operator (8) to find the consecutive
terms u,(z, \) we get

up(z,A) = 0,A4=1

r — 12 r — 22
A) = NA = A
Uy (-ZC, ) 9 s 411 9 )
x—22% 4+t x + 3% — 82° + 4t
— " TN Q= 3
u2<$7)‘) 24 )\7 2 24 )\7
9z — 1023 — 152" + 2425 + 8°
A) = A?
Us (Iv ) 1440 )
A — 9z + 30z% — 102® — 1652 + 2042° — 682° )3
P 1440
23z — 2123 — 352t + Ta® + 7725 — 6827 + 1728
ug(x, \) = A5
20160
a = 462 + 16122 + 4223 — 6652 — 6162° + 252025 — 198427 + 49628 4
v 40320
one can see that the terms u,(z, \) satisfy the conditions
un(0,A) =0 =1u,(1,\),n=1,2,3,.... (16)

Using the above result, we approximate the exact solution by
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Uappa (T, A) = up(x, A) + ug (2, A) + uz(z, ) + us(x, A) + ua(z, ).

The graphs of the exact solution and the approximate solutions ugppa(x, A) at A = 1,2
and 3 are given in Figure 3, Figure 4 and Figure 5 respectively. From these figures we
see that the approximation function w4 (z, A) is accurate when A is far from A, as in
Figure 3, while it becomes not accurate as we become closer and closer to the folding

point \,, as it is shown in Figure 5. To reduce the error, more terms are computed and
30

added to the series above. Figure 6 shows the graph of usp,30(x,\) = > ug(z, \) and
k=0

the exact solution at A = \,.

One can see that each term in wg,ps0(z, A) satisfies the boundary conditions (11).
This technique is used to compute the approximate solution a specific value of A\. How-
ever, to find the value of \,, we need a normalized condition. This means, we should
force the solution to satisfy another condition different from the boundary ones. To
overcome with this problem, we compute wug(x, \), ui(x, A), uz(x, A), ... that satisfy the
initial condition at x = 0, while the condition at x+ = 1 will be used at the end of the
computations. In both approaches, we will get the same solution when n goes to infinity.
Thus, ug(x, ), us(x, A), us(z, A), ... will be as follows

/\I2 )\2];4
uo(z,A) = 0,ua(x, A) = —T,U2($,)\) = o5
PR 17228
A) = ———— 2\) =
) 507N = o160

Thus, the sum of these polynomials has the form

N

D ur(z,A) =D (1) At (17)

k=1

by = 5;,b3 =

24’

where b; = by = ..Thus, the summation in Eq (17) is zero at

180 ? 20160’ '

1
27
N
x =0 and Z( 1)*b\¥ at # = 1. Therefore, the approximate solution becomes

uappN = —bol’ + Z /\k 2k (18)

N
where by = 3 (—1) b A",
k=1
Recall that the series solution given by Eq. (17) is a series in both = and A. Thus,
as N — oo, one has to determine the radius of convergence p, such that the series
converges for 0 < A\ < p, , provided that the series converges for 0 < z < 1. To find the

value of p, we use the ratio test and find that

) by A2
1- n+1(‘r . ]. n+
0o un(x, A) ‘ ntoo | by
bn—i-l)\
< 1 1
- nl—>oo bn ‘
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where the last inequality was obtained using the fact that 0 < x < 1. Then upon
solving the last inequality for A yields the radius of convergence of the series (18) for the
parameter A which will be given by

n—oo

(19)

n+1

where b, ,n =0,1,2... are the coefficients given by formula (17).

Experimenting with several similar examples showed that the fold point can be cal-
culated using the radius of convergence as calculated above which suggests the following
conjecture:

Conjecture 1 let u(z,\) = 3 up(z, ) = S ax\2F be the solution of Eq. (10) that
k=0 k=0
converges for 0 < x < 1. Then the simple folding point will be \* = p, = lim b:j—l :

Applying the above result on the problem at hand and after computing the first 30
terms in the series approximation of the solution u(x, A\) we find that

by

bn+1

~ ' _ 35138307
bso

py = lim

n—oo

which is the value of the turning point \* accurate to 7 decimal places.

Example 4.2. Consider the reaction-diffusion problem

W (x) + Nexp (1 +“ ) =0, x€(0,1) (20)

au

with the boundary conditions

u(0) = u(1) = 0. (21)

To apply the Adomian decomposition method for finding the solution of Eq. (19) we
first write it in operator form as:

L(u) = —Aexp <1 j‘au> (22)

then using the inverse operator L™1(.) =

d2

£, .dtds. One can write the

where L =

C—xz
o,

solution of Eq. (21) as

u(z, ) = —AL™*(exp ( )) + 11 + e (23)

1+ au

Let ug(x) = ¢1x + ca, then using the boundary conditions at x = 0 and = = 1 to evaluate
c1 and ¢y, gives ug(z) = 0. Similar analysis to Example 4.1 gives
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up(z, \,a) = 0,4=1

2 2
u(z, A\, ) = z 2x MNA = * Qx A,
—22° +a* + 32% — 8% + 4a* —a2? + 22° — 2*
u2(x7)‘705) = %)\27142:%’ - 245E x)\2+05 T 41: J:)\Q,
1 3-2« 1 —14 2« —24 3 -2+ 3

where the terms u,(z, A, a) are computed so that they satisfy the boundary conditions

un (0, A, ) =0 =wu,(1,\,a),n=1,23, ... (24)

Using the above result, we approximate the exact solution by

Uappn (T, A, @) = up(, A, ) + ug (2, A, @) + ua(x, A, @) + ... + up (2, A, ).

The graph of the approximate solution wgpps0(x, A, ) at A = 5.22949 and o =
0.2457804 is given in Figure 7. To compute the value of the turning point (A, ), we
compute ug(z, A, @), ui(x, \, @), us(x, A, ), ... that satisfy the initial condition at x = 0,
while the condition at x = 1 will be used at the end of the computations. Thus,
uo(z, A, @), ur(x, \, @), ug(z, A, @), ... will be as follows

2 2.4
up(z, A, ) = 0,ui(x,\, o) = _%7/&2(@'7 A ) = >\2—z,
A6 A3aS
ug(z, A, ) = — 130 +—120 a,
wa(z, A a) = 17 %28 B 63)\4x8a n 45/\4x8a2
4 20160 20160 20160 7

Thus, the sum of these polynomials has the form

N N
D uk(z, A a) = (=1)F A 2 (25)
k=0 k=1
where b; = %,bg = i,bg = ﬁ — 195,04 = %,...Thus, the summation in Eq
N
(24) is zero at = 0 while at 2 = 1, the sum will be 3 (—1)¥b\". Therefore, the
k=1
approximate solution becomes
N
Uappy (T, A, @) = —boz + Z(—l)kbk)\kw%, (26)
k=1

where
N

bo = (—1)Fb\* (27)

k=1
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and
bk = Z ClOél. (28)

Now using the boundary condition at x = 1, gives the following implicit relation
between the two parameters oo and A

N
Uappn (1) = —by + > _(=1)fpA* = 0.
k=1

For N = 4, the implicit relation between A and « is given as

A )\_2_ )\_3 23 17)\% 63\ 45)\4

5 794 180 T 120“ T 20160 ~ 20160% " 20160

2=0.

Recall that the series given by Eq. (27) is a series in « while the series solution
given by Eq. (25) of 2, A and «. Thus, as N — oo, one has to determine the radius of
convergence of the series (25) and (27). When the ratio test is used to find the radius of
convergence of the series (25), the value of \* = 5.22949 is obtained. While the value of
a* = 0.2457804 is obtained by calculating the radius of convergence of the series (27).
Comparing these two values with the ones obtained in [31] [32] shows that the method
is very efficient.

5 Conclusion

In this article, we have discussed the folding point of nonlinear elliptic eigenvalue prob-
lems. The Adomian decomposition method is used to derive the series representation
of the solution of the problem. The method is tested for the two examples: The Bratu
problem and the diffusion-reaction problem. For the Bratu problem, It is shown that
the value of the simple folding point is the radius of convergence of the series solution of
the problem when it is viewed as a function of the parameter A. The value of the simple
folding point was found to be \* = 3.5138307 which is accurate to 7 decimal places.

For the reaction-diffusion problem, the series solution is a function of the two pa-
rameters o and A. An implicit relation between these two parameters was obtained for
the first time. The value of the simple folding point for this problem was found to be
A" = 5.22949 and the critical value of « is found to be «o* = 0.2457804.

Thus we were able to develop a simple technique to calculate the folding point that
requires no discretization nor approximation. The results obtained indicate that the
method is reliable and accurate.

6 Open problem

In this article, the ADM method was used to determine the fold point for the Bratu
problem. However, the solution of this problem exhibits chaotic behavior for certain
values of the parameter A (See [3] for details). This suggests the following open problem:
How one can employ the ADM method or any other analytical method to study the



On the Computations of Fold Points For ... 123

variation of the solution with the parameter A\? and how one can study the chaotic
behavior of the solution of this problem? . The second open problem is the proof of the

conjucture presented in section 4.
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Figure 1: The curves of Equation (13) in the (), y) plane
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Figure 2: The curve of ||u||, versus A
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Figure 3: The graph of the exact solution and ugp,(z, A) at A = 1.
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Figure 4: — Exact solution and .... ugppa(x, \) at A = 2
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Figure 5: — Exact solution and .... ugppa(x, A) at A =3
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Figure 6: — Exact solution and .... ugppa(x, ) at A = A,
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Figure 7: The approximate solution wgpp30(z, 5.22949, 0.2457804)
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