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Abstract 

      In this paper, we have constructed some new variational 

problems whose optimal solutions coincide with the quasi-Newton 

update matrices. Different measures lead to different formulas. The 

new updating problems are based on the quasi-Newton condition. 

These new variational problems may be useful in suggesting new 

quasi-Newton updates in the future. 
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1.  Introduction   
 

The main point of this paper is some variational problems in Quasi-Newton (QN) 

methods. By working directly in the space of symmetric matrices, we handle the 

symmetry constraint implicitly [2]. This approach simplifies both the formulations 

and the proofs given in the literature, such as the ones given in [3] and [4]. In 

Quasi-Newton methods for unconstrained minimization, an approximation of the 

true Hessian is used in the Newton step. Then, at each iteration, the approximation 

is updated to reflect the information coming form the new point or the gradient at 

the new point. There are two popular and successful updates, Biggs [1] and Oren 

[5] scaled Variable Metric (VM) updates. In these updates, the matrices kB  
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represent an approximation for the Hessian matrix while the matrices kH  

represent an approximation for the inverse Hessian matrix. Superscripts Biggs and 

Oren will be used to refer to the corresponding updates. For easy reference, these 

formulas are presented below in two equivalent formulas: 
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This paper is organized as follows: in Section 2, we formulate various norm 

minimization problems in quasi-Newton methods as least squares problems in nS , 

the vector space nn*  of symmetric matrices. In Section 3, we formulate the Dual 

of these least squares problems showing that the optimal solutions to the Dual 

problems are also produce quasi-Newton update formulas. In Section 4, a general 

conclusion has been given while  an open problem is listed in Section 5. 

 

2. Preliminaries 

 
2.1 QN-methods with least squares 
 

It is well-known that the approximation to the Hessian matrices in various QN 

methods are updated using the solution of some optimization problems. In the 

optimization problems, for obtaining the Oren and Biggs updates, the constraints 

have the form 

                     XXyXsRX Tnn  ,:*
   )4(..........  
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where, s  and y  are given vectors in nR . The first affine equation yXs   is 

called the secant equation (or Quasi-Newton equation), and the constraint 

XX T   is included since a Hessian matrix (or its inverse) is always symmetric, 

and so should be any approximations to it. Now, we solve such problems in a 

simpler way, we first noted that the symmetry constraints can be eliminated 

entirely simply by working in the vector space nS  of nn*  symmetric matrices 

instead of the vector space nnR * . We endow the vector space  nnR *  with the trace 

inner product.  

                



n
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T YXYXtrYX
1,

),(,  ,   )5(.......... a  

which induces the trace inner product 

                )(, XYtrYX     )5(.......... b  

in nS . Both vector spaces become Euclidean spaces with these inner products see 

[6]. 

For the least squares method, the objective function f  has the following special 

form:  
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where each kr  is a smooth function from nR  to R . Least squares problems arise in 

many areas of applications, and may be the largest source of unconstrained 

optimization problems. To see why the special form of  f  often makes least 

square problems easier to solve than the general unconstrained minimization 

problems, we assemble the individual components kr  from )6( a  into a residual 

vectors 
mn RRr :  as follows  

                
T

m xrxrxrxX ))(.,......)(),(()( 21    )6(.......... b  

Using this notation, we can rewrite f  as  

                  
2

2

1
)( Xxf  .   )6(.......... c  

For more details see [7]. 

 

 Lemma 2.2:  Let 0,,  sRys n . Consider the affine subspace 

 yXsSX n  :  in the vector space nS . The linear subspace corresponding 

to  is  0:  XsSX n
. Let  n

ku
1

 be a basis of nR , and define the matrices 

nksusuS T

k

T

kk ,.........1,  . The matrices  n

kS
1

 are linearly independent and 

 is the intersection of n  hyper planes in nS , i.e. 
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             .,........,1,0,: nkSXSX k

n     )7(..........    

Moreover, 

              .:..,,.........1
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n RssSSspan    )8(..........    

     Proof : The formula for  is obvious. Notice that the equation 0Xs  in nnR *  

is equivalent to the component equations. 

  

                    nksuX T

k .....,,.........1,0,   )9(..........  

Since 

     nksuXXsutrXsutrXsu T
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Since X  is symmetric , we also have  
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So that the equation 0Xs  is also equivalent to be the component equations  

                   ....,,.........1,0, nksuX T

k        )12(..........  

Consequently, nS  can be written as an intersection of n  hyper planes 

                   ......,,.........1,0, nkSX k        )13(..........  

The formula  nSSspan ..,,.........1
 follows immediately; and the linear 

combination 
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where  

                  



n

k

kku
1

          )15(..........  

The matrices  n

kS
1

 are linearly independent: the equation  
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gives 

                  ssT 2
)(0   ,         )17(..........  

and taking the inner product of both sides with s  yields  

                  0.)(
222  ssT  .         )18(..........  
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Thus 

                  0.
22
s ,         )19(..........  

and since 0s , we  have 0 . Since 0
1




n

k

kku  and  n

ku
1

 is a basis of 

nR , we have   

                  .......,,.........1,0 nkk           )20(..........  

Most of the variational problems encountered in VM-methods are closely related 

to the following generic least squares problem see [6].  

 

   Theorem 2.3:  The solution to the minimization problem in nS   

                    
2

2

1
min X                           )21(..........  

                   yXstS ..  ,   is any arbitrary scalar                           )22(..........  
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    Proof : Define  

                   2,)(
2

 XXXXf  .                             )24(..........  

We have  XXf  )(  and  

                   ,)(2 IXf                                )25(..........  

and the function f  is convex. Consequently, Lemma 2.2 implies that 


X  is 

characterized by the equation  

                  ,TT ssX  


      )26(..........  

for some  nR . We have  

   ,,2,][,,
2

ssssssssXsy TT 
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and  
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Substituting this in the equation  
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Finally, substituting this in  

                TT ssX  


              )30(..........  

gives equation )23( . 

 

    Corollary 2.4: Let 
nSX 0  be given and Q  be symmetric positive definite 

weight matrix. The optimal solution 


X  to the minimization problem in nS   
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    Proof : With the following changes of the variables 
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       )34(..........  

The problem )31(  reduces to problem )21( . After substituting the expressions for 
^^^

,, sandyX  into )23( , we multiply the resulting equality by 2
1

Q  from both 

sides to get the desired expression for 


X . 

 

   Corollary 2.5:  (New result ): The Oren update matrix 1kB  in )1( a  is the 

optimal solution to the minimization problem in nS  
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                   kk yBstS .. ,   is defined in )3( a     )36(..........  

where 
n

k SB   is an approximation to the Hessian of f  at iteration k ,  

                  )()( 1 kk xfxfy   , kkk xxs  1     )37(..........  

and Q  is any symmetric positive definite matrix satisfying kk sQy  . 

    Proof : Using Corollary 2.4 , we have 
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The requirement  

                  kk sQy   or kk sQy 1     )39(..........  

simplifies the above expression and makes 1kB  independent of Q . It is easy to 

verify that the resulting formula for 1kB  is the same as the one obtained by 

expanding )1( a . 

 

   Corollary 2.6: (New result): The Biggs update matrix 1kH  in )2( b  is the 

optimal solution to the minimization problem in nS  
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                    kk sHytS .. ,   is defined in )3( b     )41(..........  

where ks  and ky  are defined as in Corollary 2.5, 
n

k SH   is a matrix 

approximating the inverse Hessian of f  at iteration k , and Q  is any symmetric 

positive definite matrix satisfying kk yQs  . 

 

   Proof: The proof is similar to the proof of Corollary 2.5.  

 

3. QN-methods with dual least squares problems 
 

In this section, we have proposed two dual problems for the least squares 

minimization problem. The dual problem turns out to be minimization problem 

whose solution coincides with the Oren and Biggs update formulas. 

 

The following, theorem 3.1 and lemma 3.2, are given in [2,6]. 
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   Theorem 3.1  Let Eyx 00 ,  be given point in a Euclidean space E , and let 

EV   be a linear subspace of E . The following least squares problems are duals 

of each other. Furthermore, they have the same optimal solution. 
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Let nSQ be a positive definite matrix. Consider W-norm on nS  given by  
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and the corresponding inner-product 
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Where QXQXQQ  )( .In the Euclidean space ).,(
W

nS , the problem 

)35( becomes :   
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WkBB          )45(..........  

                 kk yBstS ..         )46(..........  

to which Theorem (3.1) applies. Let 


B  be any matrix in the affine constraint set 

 .: kk

n yBsSB    Then 


B  where  0:  kBsB . In order to 

determine the dual problem in this setting, we need to compute the orthogonal 

complement of  . This is done in the lemma below, which is an analogue of 

Lemma 2.2. 

 

   Lemma 3.2 Let nSQ be a positive definite matrix and nRs0 . The 

orthogonal complement of the linear subspace  0:  BsB  in the Euclidean 

space ).,(
W

nS  is  

                    nTT RsQsQ    :)()( 11
.    )47(..........  

 

   Lemma 3.3: (New result ): The matrix 1kB  in the Oren update formula ).1( a  is 
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where QandBsy kkk ,,,  satisfy the conditions in Corollary 2.5, and nSB


 is 

any matrix satisfying the secant equation kk ysB 


. In particular, we may choose  
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   Proof : The affine constraint set in )45(  is  


B  where  0:  kBsB , and 

we have kk ysQ 1
. The proof is follows immediately from Theorem 3.1 and  

Lemma 3.2.  

Similarly, we also have 

 

   Lemma 3.4: (New result ): The matrix 1kH  in the Biggs update formula )2( b  

is the optimal solution to the least squares problem  
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where QandHsy kkk ,,,  satisfy the conditions in Corollary 2.6, and nSH 


 is 

any matrix satisfying the secant equation kk ysH 


. For more details of these 

parameters see [8, 9].  In particular, we may choose  
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Proof: is similar to the proof of lemma 3.3. 

 

4. Conclusions 
  

In this paper, we have scaled the Hessian by a scalar  , for which the QN-like 

condition ( kkkk syH 1 ) is satisfied for two different values of the 

parameter k .The main result of this paper is to show that these formulas gives the 

optimal solution to the least squares problem defined in )21(  and the Dual least 

squares problem defined in )46(  and )48( . Moreover, the condition of the 

theorem 2.2 ensures that the resulting updated matrices 1kB   and  1kH  are 

positive definite. 
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5.  Open Problem  
 

The two VM updates for Oren and Biggs can be further generalized as:  
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where   ,  ,   and   are selected in such away so that they satisfy the Quasi 

Newton like condition. These parameters will generalized both Oren and Biggs to 

improve the performance of the standard variable metric update. These search 

directions under exact line searches will produce mutually conjugate directions 

which are equivalent with the standard conjugate directions using the standard 

quadratic functions [10]. 
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