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Abstract

In this paper, we give some local estimations for the B (“)-type

polynomials by using asymptotic properties of jacobi orthtogonal
polynomials, the aim of this paper is to prove the similar results

given as those in [1]. It is shown that ifa>—%,,6’>—l, then the
orthonormal Gegenbauer-Sobolev type polynomials fulfill the local

estimate |E§n(“)(t)|£D 1 for all teU (x) and each

a10,1)
a)n 2 42 4 (X)

xe[-L1] where U, (x)are subintervals of [-1,1] defined by

un(x){x—“’“éx),x+‘”"r(lx)}m[—1,1] for neN and x e[-11] with

@, (X) =\1-X° L
n

Keyword: Gegenbauer-Sobolev- type polynomials, Local estimation,
Inequalities.

1 Introduction

Let @“?(x)=(1-x)"(1+x)”,xe[-11], be aJacobi weight with &, B >-1.
Let
P. () =PI () =y X" +..,ne N,
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denote the unique Jacobi polynomials of precise degree n,with leading
coefficients “# >0, fulfilling the orthogonal conditions

1
[ P, (0P, ()@ (X) =5, nMeN,.
-1

In [1], M. Felten, introduced modified Jacobi weights as
28

P (X) = (\/1— X +%) ’ [\/1+ X +%) xe[-11],neN (1)

He proved the following Theorem (see [1])

Theorem 1.1: Let «,8>-1 and neN. Then
1

L35
for all x e[-1,1] with a positive constant C =C(«, ) being independent of n
and x.

| () [<C ()

The above estimate, firstly appeared in [4].

Then for a, 5 > —% Felten (see [1]), extended the previous results as follows:

Theorem 1.2: Let a,ﬂz—% and neN. Then

PP (Bl<C +) 3
w\? 722 (X)

forall teU, (x) and each x €[-1,1], where

U.(x) = {t e[-L1:t—x[< (pT(X)} - {x— ¢"§X) X+ (p”r(lx)}m[—l,l] 4)

for neN and x e[-1,1] with ¢_(X) =+1-X? +1.
n

0
n=

In [3], T. H. Koomwinder, introduced the polynomials (P“"""(x))  defined

as follows:
Definition 1.3: Fix M,N >0 and «, f >-1. For n=0,1,2,--- define
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LA ) {“‘Zﬁj {(m B HBMA-X- AN+ + Ath)} PP (x),

where
(a+1),n! N n(n+af+1)M

A“:(ﬂ+1)n(a+ﬂ+1)n (B+D(a+p+1)’ (), I'(a) ©)
and
B, (p+1,n! N n(n+af +1)N ©6)

(a+]) (a+B+1), (a+D(a+pB+1)

We call these polynomials the Koornwinder’s Jacobi-type polynomials.

The above defined polynomials are orthogonal on the interval [-1,1] with respect
to the measure u defined by (7)
1 INa+f+2)
f(x)d u(x) =
IRIOLI 27 P (g + DT (B+1)
+ Mf (-2) + Nf (1)
where f eC([-11]) and M,N>0,¢,8>-1.
Clearly for M =N =0 one has
P09 (x) = P (x). (8)
Some basic properties of P“)(x) are given as belows, (see [5], page 80)
1

I — 11
Pn(a) (X) — (a i Zj F(n + 20() P(a_?a_gj (X)

[ f00a-x@+x’dx

) 9
I'(2a) F(n+a+;j X
Also ,
P = (1) R (). o
d a a+l]
P00 =2aRE () (11)

We summarize some properties of Gegenbauer-Sobolev- type polynomials that
we will need in the sequel. In [7] the representation of Bn(“) in terms of
gegenbauer orthonormal polynomials is

B, (x) = A, (1-x*) p“3” (%) + B, (1-x*) pi3? (%) +C, " (x) (12)
where
a)lf M =0,N =0,then
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2T (a +1)
a+?2

,B,=-2""T'(a+1) _atl ¢ =—A

A= r(2a+3)" "

b) If M >0,N > 0,then

=~ 2°°r 1 05—4-2’ B ~— *ZQ*Z’B -_ 720172’C 222
A (o )\/F(2a+3) I

c)If M >0,N =0,then
a+l 2a-2

_0.B =2"'T(a+1) |2 ¢ ~_
A n (a+1) F(2a+3) "

Theorem 1.4 : ([6])Let «, S >—-1M,N >0. For every xe[-1,1] there exists a
unique constant C  such that the following relation:

2 4

a1l
(s )';\P;“ﬁ“v“)(x)\sc(l—x+n—12j i 4(1+x+%j ,

holds for every ne N.
For properties of Jacobian polynomials (see [4],[5]), we get the following

estimation for the Bn(“) -type polynomials:

(13)

B, (cos 0)‘ =

for a>—% and n>1.

The aim of this paper is to prove the similar results as those given in Theorems

1.1 and 1.2 for B *-type polynomials, when o > —%,ﬂ >,

2  Main Results

The following Theorem is the main result of this note.

Theorem 2.1 Let a>—%,ﬂ>—l and neN. Then
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5 () 1
|B,“ (x)[< D i 1)
@, 242" (X)
for all x e[-1,1] with a positive constant D = D(«, ) being independent of n
and x.

(14)

Proof: Proof of the Theorem is similar to Theorem 2.1 in [1]. Let x €[0,1], and

let 6 < [0%} such that x =cos@. From (13) one has the following estimation

0“2 ifl<p<”
B (cosp)<ci | " 2 (15)

n“2 ifo<o<S
n

If in the last relation, we substitute x =cosé& we have:

a+

= c
n 2,if 0<arccosx<—

B (”‘)(x)‘ <C n
1 16
(arccos x)*(‘“EJ if % <arccos x < % (16)

where C is fixed positive constant being independent of n and 6.

In what follows we will make use of the following estimates:

ﬂ\/— i 2 t
t = arccos x a7
J’ J’ J'( fj
and
x/i\/_ 1-X .t t
1-x=2 T=25ln§s2-§:t=arccosx (18)

for >—%, we have—(a+%)<0.

If O<arccosx< E, then from relations (15) and (17) we obtain:
n
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—(0{+i N a+1
Ién(”)(x)lscsnmi:CG[%+$J 2)<C7(\/1__X+%j( zj.

If ¢ <arccos X < % again according to relations (16) and (18) we have:
n

1

1 [ gel
|B.() (x)|< C4(arccos x)_(wz) = C, (arccos X +arccos x)_(Mz] <C, (\/1— X + 1} ( 2) :

n

From previous cases we have proved that:
= yl=2) 1yl
18, (x) [ C, (@ ,B)[\/l—_x+—j {\/1+_x+—j
n n

forall xe[0,1],neN and a>—%ﬂ>—1. From (9) and (12) we obtain:

1B, (x)£ Cyet. B) [J1+_x + %j{mg-(ﬁ—_x N %)‘(’“3

forall xe[-1,0),neN and a>—%,,6’>—1.

The proof is completed.

Next, we will show that the local estimates of previous Theorem, can be further
extended. We will prove that | B, (x)] in (14) can be replaced by | B, (t)],

_9,(X) X+¢n(x)jl
n n

when ever t is in the interval U (x) :[x N[-1,1] . In order to

do that we will make use of the following Lemma (see [1]).

Lemma 2.2
Let a,b<0,neN and xe[-11]. Then

a)rsa,b) (t) < 16—(a+b) a)rgaxb) (X) (19)
forall teU, ().

Theorem 2.3 Let >—1,,b’2—% and neN. Then
1

2ie)
a)n

(x)

|B,“)(t)l< D (20)
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forall teU, (x) and each x €[-1,1] where D = D(«, ) is a positive constant

independent of n, t and x.

Proof. Since a>-1,4> 1

2
15

it follows that g+—,—+EZO. Therefore, by Lemma 2.2 with a:—g—1 and
2 4 2 4 2 4

a 1 ]
=———2= we obtain
P 2 4
al p1 a+f+l
1 :a)n(24’24)(x)£ 4
g+1£+1) a1 Lz)
o, 2 4’2 4 (X) o, 2 4'2 4 (X)

forall teU, (x). Applying Theorem 2.1 vyields inequality (15) for all
teU, (x), as claimed.

Corollary 2.4.

For all ne N with CZ>—%,IBZ—%,X€[—1,1] holds:

Joo 1B OF 0 @yat g@.

Proof: Applying Theorem 2.3 we obtain:
D

Jo.0 1B (O)F 0 @yct < WI by AP (D).
a)n a+§,ﬁ‘+5 (X)
Using the following result from [2] we obtain.
1 1
Iu o) wﬁ“'ﬁ)(t)dtﬁgwn( “r2’ 2)(X)
" n

and thus, the proof is completed.
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