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Abstract 

 

    We propose a new selection procedures in unequal probability 

sampling that can be used with Horvitz and Thompson Estimator. 

Expression for inclusion probability for ith unit ( i ) and joint 

inclusion probability of ith and jth unit ( ij ) has been obtained. 

Some desirable properties of i  and ij  has been verified for 

proposed procedure. 
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1 Introduction 

Unequal probability sampling has its roots in early thirties. The premier idea of 

unequal probability sampling was introduced by Neyman [7] in his ground 

breaking article. The first mathematical framework of unequal probability 

sampling with replacement was given by Hansen and Hurwitz [5]. The technique 

proposed by Hansen and Hurwitz [5] could not find much applicability due to 

possibility of selection of a population units more than once. Horvitz and 

Thompson [6] developed general sampling theory by restricting selection of 

population units to sample for one time only. The estimator of population total 

proposed by Horvitz and Thompson [6] is given as: 
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where i  is probability of selection of ith unit in the sample. The variance of 

Horvitz and Thompson [6] estimator has two different forms. The variance of 

(1.1) proposed by Horvitz and Thompson [6] is given as: 
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   
  ;  (1.2) 

where ij  is joint probability of inclusion of two units in the sample. Another 

form of variance of (1.1) proposed by Sen [8] and independently by Yates and 

Grundy [10] is: 
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The estimator of (1.3), proposed by Sen [8] and independently by Yates and 

Grundy [10] is: 
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The variance expression given in (1.3) is more popular as compared with (1.2). 

Both variance expressions given in (1.2) and (1.3) are based upon the quantities 

i  and ij . Suitable choice of these quantities can lead to substantial reduction in 

variance of Horvitz and Thompson [6] estimator. Survey statisticians, from time 

to time, has proposed number of selection procedures that can be used with 

Horvitz and Thompson [6] estimator. These selection procedures have been 

proposed with a view that the variance of (1.1) is minimum and (1.4) remain 

positive for all possible samples from a population of size N. Brewer [2] proposed 

a procedure which ensures that i ip   where pi is probability of selection of ith 

unit in the sample. Shahbaz and Hanif [9] have proposed a more simpler selection 

procedure for use with (1.1). Brewer and Hanif [3] and Hanif and Brewer [4] has 

given a comprehensive list of selection procedures that can be used with (1.1). 

Recently Alodat [1] has proposed a simpler selection procedure that can be used 

with Horvitz and Thompson [6] estimator by following the lines of Shahbaz and 

Hanif [9]. In the following we proposed an extension of the selection procedure 

proposed by Alodat [1]. 

 

2 The New Selection Procedure 

Suppose a population of N units is available and a sample of size 2 is to be 

selected. We propose the following selection procedure for selection of the 

sample: 
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 Select first unit with probability proportional to  2i i iq ap p  and 

without replacement. 

 Select second unit with probability proportional to size of remaining units. 

The expression for probability of inclusion of ith unit in the sample is derived 

below: 
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The expression for joint inclusion probability ij  is: 
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We now verify some desirable properties for (2.1) and (2.2) in the following. 

Result 1: The quantity i  satisfies 
1

N

ii
n


 . 

Proof: Consider (2.1) as: 
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Applying summation on both sides we have: 
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Since n = 2, so from (2.3) we can readily see that 
1

N
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n


 . 

Result 2: The quantity ij satisfies  
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Proof: Consider quantity ij from (2.2.) as: 
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Applying conditional summation, we have: 

     

     

       

     

1 1

1 1

1

1

1 1

1 2 1 2

1 2 1 2

2 1 21 2

1

2 1 21 2

N N
i j

ij

j i j i i i j j

N N
ji i

j

j i j ii i j j

N
ji i i

ji i ij j

N
ji i

ji i ij j

ap p

B p p p p

pap ap
p

B p p B p p

pap ap p

B p B p pp p

pap p

B p p pp p

a


   

   





   
   

       

 
   

 
   

     

 
   

     



 

 





     
 

1

1 2
2.4

1 2 1 2

N
ji i

i

ji i j j

pp p

B p p p p




 
  

     


 

Since n = 2 so  
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Result 3: The quantity ij satisfies  
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Proof: The proof is straightforward from proves of results 1 and 2. 

Result 4: The Sen–Yates–Grundy variance estimator is always non–

negative under this selection procedure. 

Proof: For non–negativity of Sen–Yates–Grundy variance estimator 

we must have 0i j ij    . Using (2.1) and (2.2) we have: 
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
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always non–negative and hence Sen–Yates–Grundy variance estimator 

is always non–negative under this procedure. 

Result 5: The quantities i and ij reduces to classical results of 

simple random sampling for 1

i jp p N  . 

Proof: The proof is straightforward. 

 

3 Open Problem 

We have proposed a new selection procedure for use with Horvitz and Thompson 

estimator. The procedure can be extended to sample of any size. The optimum 

value of constant a can be located by conducting empirical study. 
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