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Abstract 

     In this paper, we study non-geodesic timelike biharmonic curves 
in the Lorentzian Heisenberg group Heis 3  and we show that all of 
them are helices. We also characterize all non-geodesic timelike 
biharmonic curves in the Lorentzian Heisenberg group Heis 3  and 
prove that all of them are of type (3).AW   
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1      Introduction 

Let ),(),(: hNgMf   be a smooth map between two Lorentzian 

manifolds. The bienergy )(2 fE  of f  over compact domain M  is defined by 

        ,,=2 gdvffhfE   

where   dff gtrace=  is the tension field of f  and gdv  is the volume form of 

M . Using the first variational formula one sees that f  is a biharmonic map if and 

only if its bitension field vanishes identically, i.e., 

 0,=))(,(trace))((:=)(2 dffdfRff N

g

f    

where 

  f

M

ff

g

f

g

f


 trace=)(trace= 2  

is the Laplacian on sections of the pull-back bundle TNf (1
 )and NR  is the 

curvature operator of ),( hN  defined by 

 .],[=),( ], ZZZYXR YXYX   

http://www.i-csrs.org/
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A Riemannian submanifold with vanishing Laplacian of mean curvature 

vector H  is defined as a biharmonic submanifold by B.-Y. Chen [7]. In [9], it 

was proved that the only biharmonic curves in an Euclidean space are straight 

lines. In [1], the classification of curves satisfying HH =  and HH =  in a 

real space form were given. By looking the Chen's formula (Lemma 4.1, [10]), 

one sees that the Laplacian in the normal bundle of H , H , is an ingredient of 

the normal part of H  to M  and 0=H  is less restrictive than 0=H . 

However, the condition HH =  does not imply HH = . The concepts of 

submanifolds of type )(kAW  are defined ; in particular, curves of type )(kAW  

were investigated in [2]. 

 In this paper, we study non-geodesic timelike biharmonic curves in the 

Lorentzian Heisenberg group Heis 3  and we show that all of them are helices. We 

also characterize all non-geodesic timelike biharmonic curves in the Lorentzian 

Heisenberg group Heis 3  and prove that all of them are of type (3).AW  

 

2      The Lorentzian Heisenberg Group Heis 3  
 

The Lorentzian Heisenberg group Heis 3  can be seen as the space 3R  

endowed with the following multiplication: 

 ).,,(=),,)(,,( yxyxzzyyxxzyxzyx   

Heis 3  is a three-dimensional, connected, simply connected and 2-step nilpotent 

Lie group. 

The Lorentz metric g is given by 

 .)(= 222 dzxdydydxg   

The Lie algebra of Heis 3  has an orthonormal basis 
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


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


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=,=,= 321  

for which we have the Lie products 

 0=],[0,=],[,2=], 1213132 eeeeeee  

with 

 1.=),(1,=),(=),( 332211 eegeegeeg  

 

 

 

Proposition 2.1. For the covariant derivatives of the Levi-Civita 

connection of the left-invariant metric g , defined above, the following is true: 
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                                                (2.1) 
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where the ),( ji -element in the table above equals 
j

i
e e  for our basis 

 }.,,{=1,2,3}=,{ 321 eeekek  

We adopt the following notation and sign convention for Riemannian curvature 

operator: 

 .=),( ], ZZZZYXR YXXYYX   

The Riemannian curvature tensor is given by 

 ).,),((=),,,( WZYXRgWZYXR   

Moreover we put 

 ),,,,(=,),(= dcbaabcdcba eeeeRReeeRRabc  

where the indices cba ,,  and d  take the values 1,2 and 3 . 

 ,3=3= 3131232 eRR   

 ,== 1122133 eRR   

 ,3=3= 2121233 eRR   

and 

 3.=1,=1,= 232313131212  RRR  

 

3      Timelike Biharmonic Curves In The Lorentzian 

Heisenberg Group Heis 3  

 

Let 
3: HeisI   be a timelike curve on the Lorentzian Heisenberg group 

Heis 3  parametrized by arc length. Let },,{ BNT  be the Frenet frame fields tangent 

to the Lorentzian Heisenberg group Heis 3  along   defined as follows: 

T  is the unit vector field '  tangent to  , N  is the unit vector field in the 

direction of TT  (normal to  ), and B  is chosen so that },,{ BNT  is a positively 

oriented orthonormal basis. Then, we have the following Frenet formulas: 

 ,= NTT   

 ,= BTNT                                                                          (3.1) 

 ,= NBT   

where ||=|)(=| TT  is the curvature of   and   is its torsion. 

 

 

 With respect to the orthonormal basis },,{ 321 eee  we can write 

 ,= 332211 eTeTeTT   

 ,= 332211 eNeNeNN   

 .== 332211 eBeBeBNTB   
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Theorem 3.1. (see [20]) Let 3: HeisI   be a non-geodesic timelike 

curve on the Lorentzian Heisenberg group 3Heis  parametrized by arc length.   

is a timelike non-geodesic biharmonic curve if and only if 

 0,constant=   

 ,41= 2

1

22 B  (3.2) 

 .2= 11BN'   

 

 

Corollary 3.2. (see [20]) Let 3: HeisI   be a non-geodesic timelike 

curve on the Lorentzian Heisenberg group 3Heis  parametrized by arc length.   

is biharmonic if and only if 

 0,= constant  

 ,= constant  (3.3) 

 0,=11BN  

 .41= 2

1

22 B  

 

 

Theorem 3.3. (see [20]) Let 
3: HeisI   be a non-geodesic timelike 

curve on Lorentzian Heisenberg group 3Heis  parametrized by arc length. If 

01 N  then   is not biharmonic. 

  

Theorem 3.4. (see [20]) Let 
3: HeisI   be a non-geodesic timelike 

biharmonic curve on the Lorentzian Heisenberg group 3Heis  parametrized by arc 

length. If 0=1N , then 

 ,)(coshcosh)(sinhcoshsinh=)( 302010 esesesT   (3.4) 

where R0 . 

 

4  Biharmonic Curves of AW(k)-type 

 

 

Consider a curve in a 3-dimensional Riemannian manifold. Chen [6] 

proved the following identity: 

 ,= '

'''H 


  (4.1) 

where H  is the mean curvature vector. Moreover, the Laplacian of the mean 

curvature in the normal bundle is defined by 

 .= '

'''H 


   (4.2) 
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A curve )(s  in a Riemannian manifold M  is called a curve with proper 

mean curvature vector field [8] if HH = , where    is a function. 

 

Lemma 4.1. Let  )(s  be a timelike biharmonic curve in in the Lorentzian 

Heisenberg group 3Heis . Then, 

 ,= 2 BT'

'' 


  (4.3) 

 

 .)(= 23 N'

''' 


  (4.4) 

 

Proof.  From (3.1) we have 

 ,= 2 BTN''

'' 


  (4.5) 

and 

     .2)(3= 23 BNT ''''''

''' 


 (4.6) 

 

Since )(s  be a timelike biharmonic curve   and   are constants. 

Substituting   and   are constants in (4.5) and (4.6) we have(4.3) and (4.4). 

 

Theorem 4.2. Let  )(s  be a biharmonic curve in the Lorentzian 

Heisenberg group 3Heis . Then,   has parallel mean curvature vector field if and 

only if 0= . 

 

Definition 4.3. ( see [2]) A Frenet curve  )(s  is said to be 

(i) of type AW  (1)  if 0=)(3 sX , 

(ii) of type AW  (2)  if  

 ),()(),(=)()( 2233

2

2 sXsXsXsXsX  (4.7) 

 

(iii) of type AW  (3)  if 

 ),()(),(=)()( 1133

2

1 sXsXsXsXsX  (4.8) 

where  

 ).()(=)(),()(=)(),()(=)( 321 ssXssXssX '''''''''    (4.9) 

 

Let  )(s  be a timelike biharmonic curve in the Lorentzian Heis 3 . Then 

from (3.1), (4.3), (4.4) we get 

 ,=)(1 NsX   (4.10) 

 ,=)(2 BsX   (4.11) 

 .)(=)( 22

3 NsX    (4.12) 
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Theorem 4.4. A timelike biharmonic curve in in the Lorentzian 3Heis  is 

type AW  (1)  if and only if  

 .
2

1
=1 B  (4.13) 

 

Proof. Now suppose that  )(s  is a timelike biharmonic curve of type 

AW  (1). From 0=)(3 sX  we obtain 

 0.=)( 22    (4.14) 

 

Since Theorem 3.1 we have 0,  then  

 0.=22    

Using second equation of (3.2) we get 

 

 .
2

1
=or0=41 1

2

1  BB  

            Theorem 4.5. A timelike biharmonic curve in in the Lorentzian 3Heis  is 

type AW  (2)  if and only if  

 0.=or
2

1
=1 B  (4.15) 

 

Proof. Since )(s  is  AW(2)-type we have  

 0.=)( 2223    

Using second equation of (3.2) we get (4.15). 

 

Theorem 4.6. All the timelike biharmonic curves in the Lorentzian 3Heis  

are type AW  (3). 

  

Proof. Suppose that  )(s  is a timelike biharmonic curve of type AW  

(3). Equations (4.8) are provided for each s. Hence, the proof is completed. 

 

5      Open Problem 

         In this work, we study timelike biharmonic curves in the Lorentzian 

Heisenberg group Heis 3 . We have given some explicit characterizations of 

biharmonic curves. Additionally, problems such as; investigation timelike 

biharmonic curves or extending such kind curves to higher dimensional 

Heisenberg group can be presented as further researches. 
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