Int. J. Open Problems Compt. Math., Vol. 4, No. 1, March 2011 ISSN 1998-6262; Copyright © ICSRS Publication, 2011 www.i-csrs.org

Timelike Biharmonic Curves Of AW(k)-Type

In The Lorentzian Heisenberg Group Heis³

Essin TURHAN and Talat KÖRPINAR

Fırat University, Department of Mathematics 23119, Elazığ, TURKEY e-mail: essin.turhan@gmail.com

Abstract

In this paper, we study non-geodesic timelike biharmonic curves in the Lorentzian Heisenberg group Heis³ and we show that all of them are helices. We also characterize all non-geodesic timelike biharmonic curves in the Lorentzian Heisenberg group Heis³ and prove that all of them are of type AW(3).

Keywords: Biharmonic curve, curvature, Heisenberg group, helices, torsion.

1 Introduction

Let $f:(M,g) \to (N,h)$ be a smooth map between two Lorentzian manifolds. The bienergy $E_2(f)$ of f over compact domain $\Omega \subset M$ is defined by

$$E_2(f) = \int_{\Omega} h(\tau(f), \tau(f)) dv_g,$$

where $\tau(f) = \text{trace}_g \nabla df$ is the tension field of f and dv_g is the volume form of M. Using the first variational formula one sees that f is a biharmonic map if and only if its bitension field vanishes identically, i.e.,

$$\tau_2(f) \coloneqq -\Delta^f(\tau(f)) - \operatorname{trace}_g R^N(df, \tau(f)) df = 0,$$

where

$$\Delta^{f} = -\operatorname{trace}_{g}(\nabla^{f})^{2} = -\operatorname{trace}_{g}\left(\nabla^{f}\nabla^{f} - \nabla^{f}_{\nabla^{M}}\right)$$

is the Laplacian on sections of the pull-back bundle $f^{-1}(TN)$ and R^{N} is the curvature operator of (N,h) defined by

$$R(X,Y)Z = [\nabla_X, \nabla_Y]Z - \nabla_{X,Y}Z.$$

A Riemannian submanifold with vanishing Laplacian of mean curvature vector ΔH is defined as a biharmonic submanifold by B.-Y. Chen [7]. In [9], it was proved that the only biharmonic curves in an Euclidean space are straight lines. In [1], the classification of curves satisfying $\Delta H = \lambda H$ and $\Delta^{\perp} H = \lambda H$ in a real space form were given. By looking the Chen's formula (Lemma 4.1, [10]), one sees that the Laplacian in the normal bundle of H, $\Delta^{\perp} H$, is an ingredient of the normal part of ΔH to M and $\Delta^{\perp} H = 0$ is less restrictive than $\Delta H = 0$. However, the condition $\Delta H = \lambda H$ does not imply $\Delta^{\perp} H = \lambda H$. The concepts of submanifolds of type AW(k) are defined ; in particular, curves of type AW(k)were investigated in [2].

In this paper, we study non-geodesic timelike biharmonic curves in the Lorentzian Heisenberg group Heis³ and we show that all of them are helices. We also characterize all non-geodesic timelike biharmonic curves in the Lorentzian Heisenberg group Heis³ and prove that all of them are of type AW(3).

2 The Lorentzian Heisenberg Group Heis³

The Lorentzian Heisenberg group Heis³ can be seen as the space R^3 endowed with the following multiplication:

$$(\bar{x}, \bar{y}, \bar{z})(x, y, z) = (\bar{x} + x, \bar{y} + y, \bar{z} + z - \bar{x}y + x\bar{y}).$$

Heis³ is a three-dimensional, connected, simply connected and 2-step nilpotent Lie group.

The Lorentz metric g is given by

$$g = -dx^2 + dy^2 + (xdy + dz)^2$$

The Lie algebra of Heis³ has an orthonormal basis

$$e_1 = \frac{\partial}{\partial z}, e_2 = \frac{\partial}{\partial y} - x \frac{\partial}{\partial z}, e_3 = \frac{\partial}{\partial x}$$

for which we have the Lie products

$$[e_2, e_3] = 2e_1, [e_3, e_1] = 0, [e_2, e_1] = 0$$

with

$$g(e_1, e_1) = g(e_2, e_2) = 1, g(e_3, e_3) = -1.$$

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the left-invariant metric g, defined above, the following is true:

$$\nabla = \begin{pmatrix} 0 & e_3 & e_2 \\ e_3 & 0 & e_1 \\ e_2 & -e_1 & 0 \end{pmatrix},$$
 (2.1)

where the (i, j)-element in the table above equals $\nabla_{e_i} e_j$ for our basis

$$\{e_k, k = 1, 2, 3\} = \{e_1, e_2, e_3\}$$

We adopt the following notation and sign convention for Riemannian curvature operator:

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{X,Y]}Z.$$

The Riemannian curvature tensor is given by

$$R(X,Y,Z,W) = -g(R(X,Y)Z,W).$$

Moreover we put

$$Rabc = R(e_a, e_b)e_c, R_{abcd} = R(e_a, e_b, e_c, e_d),$$

where the indices a, b, c and d take the values 1,2 and 3.

$$R_{232} = -3R_{131} = -3e_3,$$

$$R_{133} = -R_{122} = e_1,$$

$$R_{233} = -3R_{121} = -3e_2,$$

and

$$R_{1212} = -1, R_{1313} = 1, R_{2323} = -3.$$

3 Timelike Biharmonic Curves In The Lorentzian Heisenberg Group Heis³

Let $\gamma: I \to Heis^3$ be a timelike curve on the Lorentzian Heisenberg group Heis³ parametrized by arc length. Let $\{T, N, B\}$ be the Frenet frame fields tangent to the Lorentzian Heisenberg group Heis³ along γ defined as follows:

T is the unit vector field γ' tangent to γ , *N* is the unit vector field in the direction of $\nabla_T T$ (normal to γ), and *B* is chosen so that $\{T, N, B\}$ is a positively oriented orthonormal basis. Then, we have the following Frenet formulas:

$$\nabla_T T = \kappa N,$$

$$\nabla_T N = \kappa T + \tau B,$$

$$\nabla_T B = -\tau N,$$
(3.1)

where $\kappa = |\tau(\gamma)| = |\nabla_T T|$ is the curvature of γ and τ is its torsion.

With respect to the orthonormal basis $\{e_1, e_2, e_3\}$ we can write

$$T = T_1 e_1 + T_2 e_2 + T_3 e_3,$$

$$N = N_1 e_1 + N_2 e_2 + N_3 e_3,$$

$$B = T \times N = B_1 e_1 + B_2 e_2 + B_3 e_3.$$

Theorem 3.1. (see [20]) Let $\gamma: I \to Heis^3$ be a non-geodesic timelike curve on the Lorentzian Heisenberg group Heis³ parametrized by arc length. γ is a timelike non-geodesic biharmonic curve if and only if

$$\kappa = \text{constant} \neq 0,$$

$$\kappa^{2} - \tau^{2} = -1 + 4B_{1}^{2},$$

$$\tau' = -2N_{1}B_{1}.$$
(3.2)

Corollary 3.2. (see [20]) Let $\gamma: I \rightarrow Heis^3$ be a non-geodesic timelike curve on the Lorentzian Heisenberg group Heis³ parametrized by arc length. γ is biharmonic if and only if

$$\kappa = constant \neq 0,$$

$$\tau = constant,$$

$$N_1 B_1 = 0,$$

$$\kappa^2 - \tau^2 = -1 + 4B_1^2.$$

(3.3)

Theorem 3.3. (see [20]) Let $\gamma: I \to Heis^3$ be a non-geodesic timelike curve on Lorentzian Heisenberg group $Heis^3$ parametrized by arc length. If $N_1 \neq 0$ then γ is not biharmonic.

Theorem 3.4. (see [20]) Let $\gamma: I \to Heis^3$ be a non-geodesic timelike biharmonic curve on the Lorentzian Heisenberg group Heis³ parametrized by arc length. If $N_1 = 0$, then

 $T(s) = \sinh \phi_0 e_1 + \cosh \phi_0 \sinh \psi(s) e_2 + \cosh \phi_0 \cosh \psi(s) e_3, (3.4)$ where $\phi_0 \in \mathbb{R}$.

4 Biharmonic Curves of AW(k)-type

Consider a curve in a 3-dimensional Riemannian manifold. Chen [6] proved the following identity:

$$\Delta H = -\nabla_{\gamma'} \nabla_{\gamma'} \nabla_{\gamma'} \gamma', \qquad (4.1)$$

where H is the mean curvature vector. Moreover, the Laplacian of the mean curvature in the normal bundle is defined by

$$\Delta^{\perp} H = -\nabla^{\perp}_{\gamma'} \nabla^{\perp}_{\gamma'} \nabla^{\perp}_{\gamma'} \gamma'.$$
(4.2)

A curve $\gamma(s)$ in a Riemannian manifold *M* is called a curve with proper mean curvature vector field [8] if $\Delta H = \lambda H$, where λ is a function.

Lemma 4.1. Let $\gamma(s)$ be a timelike biharmonic curve in the Lorentzian Heisenberg group Heis³. Then,

$$\nabla_{\gamma} \nabla_{\gamma'} \gamma' = \kappa^2 T + \kappa \tau B, \qquad (4.3)$$

$$\nabla_{\gamma} \nabla_{\gamma} \nabla_{\gamma'} \nabla_{\gamma'} \gamma' = (\kappa^3 - \kappa \tau^2) N.$$
(4.4)

Proof. From (3.1) we have

$$\nabla_{\gamma} \nabla_{\gamma'} \gamma' = \kappa' N + \kappa^2 T + \kappa \tau B, \qquad (4.5)$$

and

$$\nabla_{\gamma} \nabla_{\gamma} \nabla_{\gamma} \nabla_{\gamma'} \gamma' = (3\kappa\kappa')T + (\kappa'' + \kappa^3 - \kappa\tau^2)N + (2\kappa'\tau + \kappa\tau')B.(4.6)$$

Since $\gamma(s)$ be a timelike biharmonic curve κ and τ are constants. Substituting κ and τ are constants in (4.5) and (4.6) we have(4.3) and (4.4).

Theorem 4.2. Let $\gamma(s)$ be a biharmonic curve in the Lorentzian Heisenberg group Heis³. Then, γ has parallel mean curvature vector field if and only if $\kappa = 0$.

Definition 4.3. (see [2]) A Frenet curve $\gamma(s)$ is said to be (i) of type AW (1) if $X_3(s) = 0$, (ii) of type AW (2) if

$$||X_2(s)||^2 X_3(s) = \langle X_3(s), X_2(s) \rangle X_2(s),$$
 (4.7)

(iii) of type AW (3) if

$$\|X_1(s)\|^2 X_3(s) = \langle X_3(s), X_1(s) \rangle X_1(s),$$
 (4.8)

where

$$X_1(s) = (\gamma'')^{\perp}(s), X_2(s) = (\gamma''')^{\perp}(s), X_3(s) = (\gamma'''')^{\perp}(s).$$
(4.9)

Let $\gamma(s)$ be a timelike biharmonic curve in the Lorentzian Heis³. Then from (3.1), (4.3), (4.4) we get

$$X_1(s) = \kappa N, \tag{4.10}$$

$$X_2(s) = \kappa \tau \mathcal{B}, \tag{4.11}$$

$$X_{3}(s) = \kappa(\kappa^{2} - \tau^{2})N.$$
(4.12)

$$B_1 = \pm \frac{1}{2}.$$
 (4.13)

Proof. Now suppose that $\gamma(s)$ is a timelike biharmonic curve of type AW (1). From $X_3(s) = 0$ we obtain

$$\kappa(\kappa^2 - \tau^2) = 0. \tag{4.14}$$

Since Theorem 3.1 we have $\kappa \neq 0$, then

$$\kappa^2 - \tau^2 = 0.$$

Using second equation of (3.2) we get

$$-1 + 4B_1^2 = 0 \text{ or } B_1 = \pm \frac{1}{2}$$

Theorem 4.5. A timelike biharmonic curve in the Lorentzian Heis³ is type AW (2) if and only if

$$B_1 = \pm \frac{1}{2} \operatorname{or} \tau = 0. \tag{4.15}$$

Proof. Since $\gamma(s)$ is AW(2)-type we have

$$\kappa^3 \tau^2 (\kappa^2 - \tau^2) = 0.$$

Using second equation of (3.2) we get (4.15).

Theorem 4.6. All the timelike biharmonic curves in the Lorentzian $Heis^3$ are type AW (3).

Proof. Suppose that $\gamma(s)$ is a timelike biharmonic curve of type AW (3). Equations (4.8) are provided for each s. Hence, the proof is completed.

5 Open Problem

In this work, we study timelike biharmonic curves in the Lorentzian Heisenberg group Heis³. We have given some explicit characterizations of biharmonic curves. Additionally, problems such as; investigation timelike biharmonic curves or extending such kind curves to higher dimensional Heisenberg group can be presented as further researches.

ACKNOWLEDGEMENTS.

The authors would like to thank Professor Iqbal H. Jebril for his kindness and hospitality.

References

[1] J. Arroyo, M. Barros, and O. J. Garay, A characterisation of helices and Cornu spirals in real space forms, Bull. Austral. Math. Soc. 56 (1) (1997), 37-49.

[2] K. Arslan, and C. Özgür, *Curves and surfaces of AW(k) type, Geometry and Topology of Submanifolds*, IX (Valenciennes/Lyon/Leuven, 1997), 21-26, World Sci. Publishing, River Edge, NJ, 1999.

[3] A. Balmus, On the biharmonic curves of the Euclidean and Berger 3dimensional spheres, Sci. Ann. Univ. Agric. Sci. Vet. Med., 47 (2004), 87-96.

[4] R. Caddeo, S. Montaldo, C. Oniciuc and P. Piu, *The classfication of biharmonic curves of Cartan-Vranceanu 3-dimensional space*, arXiv: math. DG/0510435, 2005.

[5] B.Y. Chen, S. Ishikawa, *Biharmonic Surfaces in Pseudo-Euclidean Spaces*, Mem. Fac. Sci. Kyushu Univ. Ser. A 45(2) 1991, 323-347.

[6] B.-Y. Chen, *Total Mean Curvature and Submanifolds of Finite Type*, Series in Pure Mathematics, 1, World Scientific Publishing Co., Singapore, 1984.

[7] B.-Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17 (2) (1991), 169-188.

[8] B.-Y. Chen, Submanifolds in de Sitter space-time satisfying $\Delta H = \lambda H$, Israel J. Math. 91(1) (1995), 373-391.

[9] I. Dimitric, Submanifolds of E^m with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica 20 (1) (1992), 53-65.

[10] I. H. Jebril, R. Hatamleh, *Random n-Normed Linear Space*, Int. J. Open Problems Compt. Math. 2 (3) (2009), 489-495.

[11] S. Izumiya and A. Takiyama, A *time-like surface in Minkowski 3-space which contains pseudocircles*, Proc. Edinburgh Math. Soc. 40 (2) (1997), 127-136.

[12] E. Loubeau, S. Montaldo and C. Oniciuc, *The bibliograph of biharmonic maps*, http://beltrami.sc.unica.it/biharmonic/.

[13] S. Mecheri, *Generalized Derivations and C-Algebras: Comments and Some Open Problems*, Int. J. Open Problems Compt. Math. 2 (3) (2009), 469-474.

[14] J. Milnor, *Curvatures of Left-Invariant Metrics on Lie Groups*, Advances in Mathematics 21 (1976), 293-329.

[15] S. Montaldo and C. Oniciuc, A short survey on biharmonic maps between Riemannian manifolds, preprint, http://arxiv.org/abs/math/0510636.

[16] B. O'Neill, *Semi-Riemannian Geometry*, Academic Press, New York (1983).

[17] Y. -L. Ou, *p*-Harmonic morphisms, biharmonic morphisms, and nonharmonic biharmonic maps, J. Geom. Phys. 56 (2006), 358-374.

[18] S. Rahmani, *Metriqus de Lorentz sur les groupes de Lie unimodulaires de dimension trois*, Journal of Geometry and Physics 9 (1992), 295-302.

[19] E. Turhan and T. Körpinar, *Position vectors of spacelike biharmonic curves with spacelike bihormal in Lorentzian Heisenberg group Heis*³, Int. J. Open Problems Compt. Math. (in press).

[20] E. Turhan, T. Körpinar, On Characterization Of Timelike Horizontal Biharmonic Curves In The Lorentzian Heisenberg Group Heis³, Zeitschrift für Naturforschung A- A Journal of Physical Sciences, (in press).