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Abstract 

     In previous studies, the concept of quarter-sweep iteration has 
been pointed out to accelerate the convergence rate in solving any 
system of linear equations generated by using approximation 
equations. Based on the same concept, the essential aim of this paper 
is to investigate the effectiveness of the Quarter-Sweep Arithmetic 
Mean (QSAM) method by using the quarter-sweep approximation 
equation based on repeated Simpson scheme in solving second kind 
linear integral equations of Fredholm type. Furthermore, the 
formulation and implementation of the proposed method are also 
presented. Some numerical tests were also conducted to verify the 
efficiency of the proposed method.   

     Keywords: Linear Fredholm equations, Quarter-sweep iteration, Repeated 
Simpson, Arithmetic Mean 

1      Introduction 

The theory and application of the integral equations have been one of the principal 

tools in various areas of science such as applied mathematics, physics, biology, 

chemistry and engineering. On the other hand, integral equations are encountered 

in numerous applications in many fields including continuum mechanics, potential 

theory, geophysics, electricity and magnetism, kinetic theory of gases, hereditary 

phenomena in physics and biology, renewal theory, quantum mechanics, 

radiation, optimization, optimal control systems, communication theory, 
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mathematical economics, population genetics, queuing theory, medicine, 

mathematical problems of radiative equilibrium, particle transport problems of 

astrophysics and reactor theory, acoustics, fluid mechanics, steady state heat 

conduction, fracture mechanics, and radiative heat transfer problems [21]. 

Basically, integral equations can be classified according to the integration domain. 

Integral equations in which the integration domain varies with the independent 

variable in the equation are known as Volterra equations and those with fixed 

integration domain are Fredholm equations. In this paper, second kind linear 

integral equations type of Fredholm is considered. 

Generally, second kind linear Fredholm integral equations can be written as 

follows 

       xfdttytxKxy   , ,  ba,  0                        (1) 

where the parameter  , kernel   2LK  and free term  Lf  are given, 

and   Ly  is the unknown function to be determined. The kernel function 

 txK ,  is assumed to be absolutely integrable and satisfy other properties that are 

sufficient to imply the Fredholm alternative theorem. Meanwhile, Eq. (1) also can 

be rewrite in the equivalent operator form 

  fy  .                                                (2) 

where the integral operator define as follows 

      dttytxKty , .                                          (3) 

Theorem (Fredholm Alternative) [3] 

Let   be a Banach space and let  :  be compact. Then the equation 

  fy  , 0  has a unique solution x  if and only if the homogeneous 

equation   0 z  has only the trivial solution 0z . In such a case, the 

operator 
11

:



onto

 has a bounded inverse   1
 . 

Definition (Compact operators) [3]  

Let   and   be normed vector space and let  :  be linear. Then   is 

compact if the set  1| xxx  has compact closure in  . This is equivalent to 

saying that for every bounded sequence   nx , the sequences  nx  has a 

subsequence that is convergent to some points in  . Compact operators are also 

called completely continuous operators. 

A numerical approach to the solution of integral equations is an essential branch 

of scientific inquiry. As a matter of fact, some valid methods of solving linear 

Fredholm integral equations have been developed in recent years. To solve Eq. (1) 

numerically, we either seek to determine an approximate solution by using the 

quadrature method [9-11, 16], or use the projection method [4, 5, 7, 8]. Such 

discretizations of integral equations lead to dense linear system and can be 
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prohibitively expensive to solve using direct methods as the order of the linear 

system increases. Thus, iterative methods are the natural options for efficient 

solutions. 

Consequently, the concept of the two-stage iterative method has been proposed 

widely to be one of the efficient methods for solving any linear system. The two-

stage iterative method, which is also called as inner/outer iterative scheme was 

first introduced by Nichols [12]. Actually, there are many two-stage iterative 

methods can be considered such as Alternating Group Explicit (AGE) [6], 

Iterative Alternating Decomposition Explicit (IADE) [17], Reduced Iterative 

Alternating Decomposition Explicit (RIADE) [18], Block Jacobi [2] and 

Arithmetic Mean (AM) [15] methods. The standard AM method also named as 

the Full-Sweep Arithmetic Mean (FSAM) method has been modified by 

combining the half-sweep iteration concept and then called as the Half-Sweep 

Arithmetic Mean (HSAM) method [19]. The concept of the half-sweep iteration 

has been introduced by Abdullah [1] via the Explicit Decoupled Group (EDG) 

method to solve two-dimensional Poisson equations. In [20], another variant of 

AM method, known as Quarter-Sweep Arithmetic Mean (QSAM) iterative 

method has been proposed. The QSAM method is derived by combining the 

standard AM method with quarter-sweep iteration concept [13]. The basic idea of 

the half- and quarter-sweep iterative methods is to reduce the computational 

complexity during iteration process. Since the implementation of the half- and 

quarter-sweep iterations will only consider nearly half and quarter of all interior 

node points in a solution domain respectively. In this paper, the performance of 

the FSAM, HSAM and QSAM methods will be investigated in solving dense 

linear system generated from the discretization of the second kind linear Fredholm 

integral equations using quadrature method.   

The outline of this paper is organized in following way. In Section 2, the 

formulation of the full-, half- and quarter-sweep quadrature approximation 

equations will be explained. The latter section of this paper will discuss the 

formulations of the FSAM, HSAM and QSAM methods, and some numerical 

results will be shown in fourth section to assert the performance of the proposed 

methods. Besides that, analysis on computational complexity is mentioned in 

Section 5. Meanwhile, conclusion and open problem are given in Section 6. 

2      Quadrature Approximation Equations 

As afore-mentioned, a discretization scheme based on method of quadrature was 

used to construct approximation equations for problem (1) by replacing the 

integral to finite sums. In order to facilitate the formulation of the full-, half- and 

quarter-sweep quadrature approximation equations for problem (1), further 

discussion will be restricted onto repeated Simpson’s 
3

1
 (RS1) scheme, which is 

based on quadratic polynomial interpolation formula with equally spaced data.  
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The Simpson’s 
3

1
 scheme for approximating definite integral 

b

a
dtty )(  can be 

defined as follows 

        

















b

a
n ybytyay

h
dtty 4

3
                           (4) 

where 

2

ab
h


 ,                                                   (5) 

and 

2

)( ba
t






                                                    (6) 

and  yn  is the truncation error. Meanwhile, RS1 scheme is a repeated 

application of Eq. (4) for a domain divided into an even number of intervals. 

Denoting the total number of intervals by n (even), the RS1 scheme is written as 

           ybyihayihayay
h

dtty n

n

ieven
i

n

iodd
i

b

a


















 








2

2

1

1

24
3

       (7) 

where 

n

ab
h


 .                                                   (8) 

The first summation is over odd i  only and the second summation over even i  

only. 

Fig. 1 shows the finite grid networks in order to form the full-, half- and quarter-

sweep quadrature approximation equations. 
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c) 

Fig. 1: a), b) and c) show distribution of uniform node points for the full-, half- 

and quarter-sweep cases respectively. 

 

Based on Fig. 1, the full-, half- and quarter-sweep iterative methods will compute 

approximate values onto node points of type  only until the convergence 

criterion is reached. Meanwhile, the approximation solutions for the remaining 

points can be calculated by using direct method [1, 13].  

However, in [11], Muthuvalu and Sulaiman carried out a study to investigate the 

applications of the half-sweep iteration in solving dense linear system generated 

from the discretization of the second kind Fredholm integral equations using high-

order Newton-Cotes schemes. From the results obtained, it has shown that 

applications of the half-sweep iteration with high-order Newton-Cotes 

discretization schemes reduce the accuracy of the numerical solutions and it is due 

to the computational technique for calculating the remaining points by using 

direct method. Thus, in this paper, we will use second-order Lagrange 

interpolation method to compute the remaining points for both half- and quarter-

sweep iterations in order to overcome the problem mentioned by Muthuvalu and 

Sulaiman in [11]. Formulations to compute the remaining points using second 

order Lagrange interpolation method for half- and quarter-sweep iterations are 

defined in Eqs. (9) and (10) respectively as follows 




















1,
8

1

8

3

4

3

3,,5,3,1,
8

1

4

3

8

3

311

311

niyyy

niyyy

y

iii

iii

i


                     (9) 



































1,
8

1

8

3

4

3

3,,5,3,1,
8

1

4

3

8

3

2,
8

1

8

3

4

3

6,,10,6,2,
8

1

4

3

8

3

311

311

622

622

niyyy

niyyy

niyyy

niyyy

y

iii

iii

iii

iii

i





.                 (10) 

By applying Eq. (7) into Eq. (1) and neglecting the error,  yn , a linear system 

can be formed for approximation values of  ty . Therefore, the full-, half- and 
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quarter-sweep repeated Simpson’s 
3

1
 approximation equations for Eq. (1) can be 

generally shown as follows  

inni

pn

pj

jjiiji fyKyKyKAy 












 





,,00,     nppi ,,2,1,0   nppj ,,2,1,0     (11) 

where numerical coefficient jA  satisfied following relations 





















otherwiseph

pnpppjph

njph

A j

,
3

2

,,5,3,1,
3

4

,0,
3

1

 .                           (12) 

The value of p , which corresponds to 1, 2 and 4, represents the full-, half- and 

quarter-sweep cases respectively. From Eq. (11), it is obvious that discretization 

of the Eq. (1) using RS1 scheme leads to the dense linear systems as follows  

~~

fyM                                                      (13) 

where 
















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
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M




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











, 

 T

npnpnpp yyyyyyy  220
~

  

and 

 Tnpnpnpp fffffff  220
~

 . 

3      Arithmetic Mean Iterative Methods 

As stated in previous section, AM methods are one of the two-stage iterative 

methods and the iterative process involves of solving two independent systems 

such as 
1

~

y  and 2

~

y . To develop the formulation of AM methods, express the 

coefficient matrix M  as the matrix sum 

UDLM                                               (14) 
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where L , D  and U  are the strictly lower triangular, diagonal and strictly upper 

triangular matrices respectively. Thus, by adding positive acceleration parameter, 

  the general scheme for FSAM, HSAM and QSAM methods is defined by 

  

  









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
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



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





 2

~

1
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)1(

~
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~
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~

1

~

2

1

1)(

1)(

yyy

fyLDyUD

fyUDyLD

k

k

k





                  (15) 

where 
)0(

~

y  is an initial vector approximation to the solution and 20  . 

The AM methods require a slight additional computational effort of the sum of 

two matrices at each iteration k , but its rate of convergence is relatively 

insensitive to the exact choice of the parameter   [15]. Practically, the value of 

  will be determined by implementing some computer programs and then choose 

one value of  , where its number of iterations is the smallest. By determining 

values of matrices L , D  and U  as stated in Eq. (14), the general algorithm for 

FSAM, HSAM and QSAM iterative methods to solve problem (1) would be 

generally described in Algorithm 1. The FSAM, HSAM and QSAM algorithms 

are explicitly performed by using all equations at level (1) and (2) alternatively 

until the specified convergence criterion is satisfied. Generally, the basic idea for 

the convergence analysis of the AM methods has been proven in [15]. 

4      Numerical Tests 

In order to compare the performances of the iterative methods described in the 

previous section, several experiments were carried out on the following Fredholm 

integral equations problems.  

 

Example 1 [21] 

    xdttyxtxxy  
1

0

2 )(4    10  x                           (16) 

and the exact solution is given by 
2924)( xxxy  . 

 

Example 2 [14] 

105)()()( 36
1

0

22   xxxdttytxxy    10  x                  (17) 

with the exact solution  

84

2141

28

1045
5)( 236  xxxxxy . 
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Algorithm 1 FSAM, HSAM and QSAM algorithms    

 

i) Level (1) 

For npnpnppi ,,2,,2,,0    and npnpnppj ,,2,,2,,0    

Calculate 

       

     

       


















































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
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



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i
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,
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1
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1
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ii) Level (2) 

For 0,,2,2,, pppnpnni   and npnpnppj ,,2,,2,,0    

Calculate 

     

       
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i
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,

2
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
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iii) For npnpnppi ,,2,,2,,0    

Calculate 

   211

2

1
ii

k

i yyy   

 

In comparison, the Gauss-Seidel (GS) method acts as the comparison control of 

numerical results. There are three parameters considered in numerical comparison 

such as number of iterations, execution time and maximum absolute error. 

Throughout the simulations, the convergence test considered the tolerance error, 
1010  and carried out on several different values of n . All the simulations 

were implemented by a computer with processor Intel(R) Core(TM) 2 CPU 

1.66GHz and computer codes were written in C programming language. 

Results of numerical simulations, which were obtained from implementations of 

the GS, FSAM, HSAM and QSAM iterative methods for Examples 1 and 2, have 

been recorded in Tables 1 and 2 respectively. Meanwhile, reduction percentages 
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of the number of iterations and execution time for the FSAM, HSAM and QSAM 

methods compared with GS method have been summarized in Table 3. 

 

Table 1: Comparison of a number of iterations, execution time (seconds) and 

maximum absolute error for the iterative methods (Example 1) 

 Number of iterations 

Methods 
n 

480 960 1920 3840 7680 

GS 

FSAM 

HSAM 

QSAM 

194 

84 

84 

83 

194 

84 

84 

84 

195 

84 

84 

84 

195 

84 

84 

84 

195 

84 

84 

84 

 Execution time (seconds) 

Methods 
n 

480 960 1920 3840 7680 

GS 

FSAM 

HSAM 

QSAM 

3.11 

1.95 

1.02 

0.56 

10.08 

7.76 

2.04 

1.09 

42.32 

26.96 

8.38 

3.22 

134.77 

89.43 

30.11 

16.85 

566.50 

445.76 

130.87 

68.44 

 Maximum absolute error 

Methods 
n 

480 960 1920 3840 7680 

GS 

FSAM 

HSAM 

QSAM 

7.156 E-10 

1.480 E-10 

1.465 E-10 

2.366 E-10 

7.552 E-10 

1.502 E-10 

1.496 E-10 

1.467 E-10 

6.868 E-10 

1.513 E-10 

1.510 E-10 

1.496 E-10 

6.961 E-10 

1.519 E-10 

1.518 E-10 

1.510 E-10 

7.008 E-10 

1.521 E-10 

1.521 E-10 

1.518 E-10 

 

 

Table 3: Reduction percentages of the number of iterations and execution time for 

the FSAM, HSAM and QSAM methods compared with GS method 

 

 

      

 

 

 

 

 

 

 

 

Methods 
Number of iterations 

Example 1 Example 2 

FSAM 

HSAM 

QSAM 

56.70 – 56.93% 

56.70 – 56.93% 

56.70 – 57.22% 

42.85 – 42.86% 

42.85 – 42.86% 

42.85 – 42.86% 

Methods 
Execution time 

Example 1 Example 2 

FSAM 

HSAM 

QSAM 

21.31 – 37.30% 

67.20 – 80.20% 

81.99 – 92.40% 

22.58 – 49.03% 

60.48 – 87.34% 

83.06 – 94.04% 
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Table 2: Comparison of a number of iterations, execution time (seconds) and 

maximum absolute error for the iterative methods (Example 2) 

 Number of iterations 

Methods 
n 

480 960 1920 3840 7680 

GS 

FSAM 

HSAM 

QSAM 

56 

32 

32 

32 

56 

32 

32 

32 

56 

32 

32 

32 

56 

32 

32 

32 

56 

32 

32 

32 

 Execution time (seconds) 

Methods 
n 

480 960 1920 3840 7680 

GS 

FSAM 

HSAM 

QSAM 

1.24 

0.96 

0.49 

0.21 

3.53 

2.11 

1.04 

0.54 

18.40 

9.38 

2.33 

1.49 

60.34 

35.85 

10.86 

3.60 

220.45 

126.69 

40.34 

16.94 

 Maximum absolute error 

Methods 
n 

480 960 1920 3840 7680 

GS 

FSAM 

HSAM 

QSAM 

5.8823 E-10 

6.1321 E-10 

4.1221 E-10 

1.7833 E-9 

8.3052 E-10 

6.1889 E-10 

5.1096 E-10 

3.5589E-10 

1.2601 E-10 

1.0376 E-10 

6.3888 E-10 

8.2415 E-10 

1.3006 E-10 

1.0660 E-10 

8.9604 E-10 

9.6604 E-10 

1.3088 E-10 

1.0661 E-10 

2.0551 E-10 

4.0062 E-10 

5      Computational Complexity Analysis 

In order to measure the computational complexity of the FSAM, HSAM and 

QSAM methods, an estimation amount of the computational work required for 

iterative methods has been conducted. The computational work is estimated by 

considering the arithmetic operations performed per iteration. Based on Algorithm 

1, it can be observed that there are 7
2


p

n
 additions/subtractions (ADD/SUB) and 

9
4


p

n
 multiplications/divisions (MUL/DIV) operations in computing a value for 

each node point in the solution domain for second kind linear Fredholm integral 

equations. From the order of the coefficient matrix, M , the total number of 

arithmetic operations per iteration for the FSAM, HSAM and QSAM iterative 

methods for solving Eq. (1) has been summarized in Table 4. 
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Table 4: Total number of arithmetic operations per iteration for FSAM, HSAM 

and QSAM methods 

Methods 
Arithmetic Operation 

ADD/SUB MUL/DIV 

FSAM 792 2  nn  9134 2  nn  

HSAM 7
2

9

2

2


nn

 9
2

132 
n

n  

QSAM 7
4

9

8

2


nn

 9
4

13

4

2


nn

 

6      Conclusion and Open Problem 

In this paper, we present an application of the QSAM iterative method for solving 

dense linear systems arising from the discretization of the second kind linear 

Fredholm integral equations by using repeated Simpson’s 
3

1
 scheme. Through 

numerical results obtained for Examples 1 and 2 (Tables 1 and 2), it clearly shows 

that by applying the AM methods can reduce number of iterations and execution 

time compared to the GS method. At the same time, it has been shown that, 

applying the half- and quarter-sweep iterations reduces the computational time in 

the implementation of the iterative method, see Table 3. Overall, the numerical 

results show that the QSAM method is a better method compared to the GS, 

FSAM and HSAM methods in the sense of number of iterations and execution 

time. For the future works, applications of the quarter-sweep iteration concept 

with other iterative method to solve linear system can be investigate.  
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