
Int. J. Open Problems Compt. Math., Vol. 4, No. 1, March 2011

ISSN 1998-6262; Copyright © ICSRS Publication, 2011

www.i-csrs.org

NSGA - II with Controlled Elitism for

Scheduling Tasks in Heterogeneous

Computing Systems

G. Subashini and M.C. Bhuvaneswari

Department of Information Technology, PSG College of Technology, India

e-mail: suba@ity.psgtech.ac.in

Department of Electrical and Electronics Engineering, PSG College of

Technology, India

e-mail: mcb@eee.psgtech.ac.in

Abstract

 This paper presents an application of elitist Non-dominated
Sorting Genetic Algorithm (NSGA-II), to efficiently schedule a set of
independent tasks in a heterogeneous distributed computing system.
This scheduling problem is a bi-objective problem considering two
objectives. The first objective is minimization of makespan and the
second one being the minimization of flowtime. As a multi-objective
optimization technique, this paper makes use of Controlled-NSGA-II
that modifies NSGA-II to enhance the diversity of solution sets. This
algorithm uses a distribution function to control elitism and to get
better diversity of individuals. The extent of elitism can be changed
by fixing a user-defined parameter. Simulation results on task
scheduling problem show the effectiveness of the proposed
modification in comparison with NSGA-II.

Keywords: controlled elitism ,Multi-objective, Non-dominated Sorting Genetic

Algorithm (NSGA-II), Task Scheduling

1 Introduction

Distributed computing systems have emerged as a powerful platform to perform

different computationally intensive applications that have various computational

requirements. The applicability and strength of such systems are derived from

their ability to match computing needs to appropriate resources [1]. The problem

of task scheduling is efficiently assigning user or application tasks to a set of

http://www.i-csrs.org/

215 NSGA - II with Controlled Elitism for …

resources. A static task scheduling algorithm [2] can be used in such a

heterogeneous system that may be useful for analysis of heterogeneous computing

systems, to work out the effect of resource failures. Schedulers can be

implemented using complex algorithmic methods that utilize the known properties

of a given application and the available environment. Due to the large number of

resources and the large number of tasks submitted by different applications, task

scheduling on heterogeneous computing (HC) systems is a large scale

optimization problem. Finding optimal schedules in such a system has been

shown, in general, to be NP-hard [3] and therefore the use of heuristics is one of

the suitable approaches.

In the HC environment considered here, the tasks are assumed to be independent,

i.e., no communications between the tasks are needed. This scenario is likely to be

present, for instance, when many independent users submit their tasks to a

collection of shared computational resources. The scheduling of these tasks is

being performed statically. It is also assumed that each machine executes a single

task at a time, in the order in which the tasks are assigned and no preemption

takes place.

Some popular and efficient pure heuristics for task scheduling problem include

min-min, max-min, LJFR-SJFR, min-max, Sufferage etc [4-6]. From a

computational complexity perspective, task scheduling is computationally hard. In

order to cope in practice with its difficulty and also, to improve the quality of

solutions, meta-heuristics have been presented for task scheduling problem. The

most popular of meta-heuristic algorithms are genetic algorithm (GA), simulated

annealing (SA), ant colony optimization (ACO) and particle swarm optimization

(PSO). A hybrid ant colony optimization for scheduling in HC systems is

proposed in [7]. In this, ant colony optimization is combined with local and tabu

search to find shorter schedules. A simulated annealing approach for job

scheduling in grids is given in [8]. Various heuristics are compared on different

types of HC environments in [4] which illustrates that the GA scheduler can

obtain better results in comparison with others. Most of the available methods aim

at minimizing the makespan of the schedule.

Very few attempts have been made to minimize flowtime or both flowtime and

makespan on HC environments. [6] investigates the efficacy of five popular

heuristics for minimizing makespan and flowtime on HC environments with

various characteristics of both machines and tasks. However the objectives are

evaluated separately here. A genetic algorithm based schedulers for computational

grids by transforming multi-objective problem into a single objective one is found

in [9]. The usage of several nature inspired meta-heuristics (SA, GA, PSO, and

ACO) for scheduling jobs in computational grids using single and multi-objective

optimization approaches has been illustrated in [10]. The most important concepts

from grid computing related to scheduling problems and their resolution using

heuristic and meta-heuristic approaches are reviewed in [11]. Several versions of

G. Subashini and M.C. Bhuvaneswari 216

PSO has been implemented for the problem in literature [12,13].The authors

identified different types of scheduling based on different criteria, such as static

vs. dynamic environment, multi-objectivity, adaptivity, etc. [19] uses memetic

algorithms to schedule tasks with communication delay between tasks.

The efficiency of scheduling algorithms can be evaluated based on different

criteria the most important being makespan and flowtime. Makespan is the time

when an HC system finishes the last task and flow time is the sum of finalization

times of all the tasks. Hence this scheduling problem is formulated as a multi-

objective problem with the goal of minimizing the makespan and flowtime of the

system.

The ability of multi-objective evolutionary algorithms to find multiple Pareto-

optimal solutions in one single run has made them attractive for solving problems

with multiple and conflicting objectives. During the last decades, several multi-

objective evolutionary algorithms [14] have been proposed which are aimed at

finding the Pareto-optimal front and keeping diversity of individuals, in the

obtained Pareto-optimal front. Recent studies have indicated that the inclusion of

an elitist element can considerably improve the performance of a multi-objective

evolutionary algorithm (MOEA) [15]. This resulted in a number of elitist MOEA

of which the Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) has

proved its performance against a set of well known difficult test functions.

This paper implements a modified version of NSGA-II for scheduling tasks in HC

environment. A distribution function is used to limit the extent of elitism. This

has been tested on several benchmark instances of task scheduling problem. The

experimental results with controlled elitism show that the proposed algorithm has

much better diversity thereby having a better performance over NSGA-II.

The remainder of this paper is organized as follows. The problem formulation is

given in Section 2. Section 3 gives implementation of controlled NSGA-II for task

scheduling problem. Experimental details and simulation results are presented in

Section 4 and Section 5 concludes with finishing remarks and future work.

2 Problem Formulation

Real-world HC systems are complex combinations of hardware, software and

network components. Let T = {T1, T2, …., Tn} denote the set of tasks that are to

be scheduled on the HC system. It is assumed that the tasks are independent of

each other with no intertask data dependencies and preemption is not allowed. At

the time of the arrival of tasks m processors P = {P1, P2,..., Pm} are available

within the HC environment. To model the problem estimation or prediction of the

computational load of each task, the computing capacity of each resource, and an

estimation of the prior load of each one of the resources is required. This is the

ETC – Expected Time to Compute matrix model [4]. Having the computing

capacity of the resources and the workload of the tasks, an Expected Time to

217 NSGA - II with Controlled Elitism for …

Compute matrix ETC can be built, where each position ETC[n][m] indicates the

expected time to compute task n in processor m. The entries ETC[n][m] could be

computed by dividing the workload of task n by the computing capacity of

processor m. The ETC model allows to quite easily introduce possible

inconsistencies in the HC system and different levels of heterogeneity.

To formulate the objective Ci,j (i {1, 2, …….,n}, j {1, 2,……., m}) is defined

as the completion time for finishing the task i on processor j and Wi (i 1,2, . . .,m)

is the previous workload of Pi, Equation (1) shows the time required for Pi to

complete the jobs include in it.

 ∑(Ci+Wi) (1)

Then makespan and flowtime can be defined as :

 (2)

 (3)

Minimizing makespan aims to execute the whole set of tasks as fast as possible

while minimizing flow time aims to utilize the computing environment efficiently.

The goal of the scheduler is to minimize makespan and flowtime simultaneously.

3 NSGA-II for Task Scheduling

The NSGA-II algorithm and its detailed implementation procedure can be found

in [16,17]. This algorithm has been demonstrated as one of the most efficient

algorithms for multi-objective optimization on a number of benchmark problems.

A brief description of NSGA-II is as follows:

NSGA-II uses non-dominated sorting for fitness assignments. All individuals not

dominated by any other individuals, are assigned front number 1. All individuals

only dominated by individuals in front number 1 are assigned front number 2, and

so on. Selection is made, using tournament between two individuals. This selects

an individual with the lowest front number if the two individuals are from

different fronts. If the individuals are from the same front, then the individual with

the highest crowding distance is selected if they are from the same front. A higher

fitness value is assigned to individuals located on a sparsely populated part of the

front. There are N parents and in every iteration N new offsprings are generated.

Both parents and offspring compete with each other for inclusion in the next

iteration.

NSGA-II uses Simulated Binary Crossover (SBX) and Polynomial mutation

described as follows [17].

3.1 Simulated Binary Crossover

G. Subashini and M.C. Bhuvaneswari 218

The SBX operator operates on two parent solutions and creates two offspring. The

difference between offspring and parent depends on crossover index ηc. The

crossover index „ηc‟ is any non-negative real number. A large value of „ηc‟ gives a

higher probability for creating solutions closer to the parent and a small value of

„ηc‟ allows distant solutions to be selected as offspring. The two offspring created

are symmetric about the parent solutions. Also, for a fixed „ηc‟ the offspring have

a spread which is proportional to that of the parent solutions. It has two properties:

(a) the difference between corresponding decision variables of the created

offspring is proportional to the difference between corresponding decision

variables of the parent solutions; (b) offspring having decision variables nearer to

those of the parent solutions are more likely to be selected.

3.2 Polynomial mutation

This operator has higher probability of creating a solution near to the parent than

the probability of creating one distant from it. The shape of the probability

distribution is directly controlled by an external parameter ηm and the distribution

remains unchanged throughout the iterations.

3.3 Controlled elitism

Elitism is an important issue to ensure diversity of individuals and get a better

convergence. In NSGA-II, elite solutions are emphasized on two occasions, i.e.,

once in the tournament selection operation and again during the elite preserving

operation. This will cause a rapid deletion of solutions belonging to the non-elitist

fronts. Though the crowding tournament operator will ensure diversity along the

current non-dominated front, lateral diversity will be lost. Thus, to ensure better

convergence, an algorithm may need diversity in both aspects – along and lateral

to the Pareto-optimal front.

It is important to restrict the maximum number of currently elitist fronts

adaptively and make solutions of non-elitist fronts involved in new population.

For this purpose a predefined distribution of number of individuals in each front is

maintained. A geometric distribution given by Eq.(4) is used.

Ni=rNi-1 (4)

where Ni is maximum number of allowed individuals in the ith front; r(<1)

reduction rate. Although the parameter r is user defined, it is adaptive.

Selection of solutions for the next iteration is as follows. The combined 2N

population of parent and offspring is sorted for non-domination. If the number of

non-dominated fronts in the 2N population is K, then according to the geometric

distribution, the maximum number of individuals allowed in the i-th front

(i=1,2,……….,K) in the new population of size N is

 (5)

219 NSGA - II with Controlled Elitism for …

 Since r<1, the allowable number of individuals in front one is the highest.

Thereafter, each front is allowed to have an exponentially reducing number of

solutions. Other distributions such as arithmetic distribution, harmonic

distribution are also possible. It is clear that the new population under the

modified algorithm is more diverse than that under NSGA II.

Although Equation (4) denotes the maximum number of individuals Ni in each

front, there may not exist exactly Ni individuals in such fronts. This is resolved

using the following procedure. First the number of individuals in the first front is

counted. Assuming there are individuals, if > N1 then N1 solutions are

chosen using the crowded tournament selection. Hence N1 solutions residing in

the less crowded region are selected. Otherwise, if ≤ N1, all solutions are

chosen and the number of remaining slots X1= N1- is counted. The maximum

number of individuals in the second front is now increased to N2+X1. Thereafter,

the actual number of solutions in the second front is counted and compared

with N2 as above. This procedure is repeated till N individuals are selected.

However, there could be some case that after all 2N solutions are processed, the

size of new population cannot reach N. The new population still has some space

needed to be filled, especially when r is large. In such case, filling the population

again continues with the remainder individuals from the first rank, continue to

other ranks, and include them until the size of new population reaches to N.

4 Test Results

The proposed NSGA-II algorithm with controlled elitism for scheduling tasks was

implemented in C programming language on a PC with Pentium dual processor

running under Linux environment. To measure the effectiveness and viability of

NSGA-II algorithm with controlled elitism results are compared with simple

NSGA-II algorithm.

4.1 Test Problems

To assess the comparative performances of the algorithms, the simulation model

in [4] based on expected time to compute (ETC) matrix for 512 tasks and 16

processors is used. To realistically simulate possible heterogeneous environments,

different types of ETC matrix according to three metrics: task heterogeneity,

machine heterogeneity and consistency are simulated. The task heterogeneity is

defined as the amount of variance possible among the execution times of the jobs

with two possible values low and high. Machine heterogeneity is the variation of

the running time of a particular job across all the processors, which can be high

and low. To capture other possible features of real scheduling problems, three

different ETC consistencies namely consistent, inconsistent and semi-consistent

are used. An ETC matrix is considered consistent if a processor Pi executes task t

faster than processor Pj , then Pi executes all the jobs faster than Pj . Inconsistency

means that a processor is faster for some jobs and slower for some others. An

G. Subashini and M.C. Bhuvaneswari 220

ETC matrix is considered semi-consistent if it contains a consistent sub-matrix. A

semi consistent ETC matrix is characterized by an inconsistent matrix which has a

consistent sub-matrix of a predefined size.

Thus 12 distinct types of ETC matrix can be generated considering the different

combinations. The matrices used here a randomly generated as described. Initially

an m×1 baseline column vector B is generated by repeatedly selecting m uniform

random floating point values between 1 and b, the upper bound on values in B.

Then the ETC matrix is constructed by taking each value B(i) in B and

multiplying it by a uniform random number xr
i,k

 which has an upper bound of r.

Each row in the ETC matrix is then given by B(i) × xr
i,k

. The vector B is not used

in the actual matrix. This process is repeated for each row until the m × n matrix is

full. Therefore, any given value in the ETC matrix is within the range (1, b , r).

Different task and machine heterogeneities described above are modeled by using

different baseline values. High task heterogeneity was represented by b =3000

and low task heterogeneity used b=100. High machine heterogeneity was

represented by r=1000 and low machine heterogeneity was modeled using r

=10. To model a consistent matrix each row in the matrix was sorted

independently, with processor P1 always being the fastest, and Pm being the

slowest. Inconsistent matrices are left in the random state in which they are

generated. Semi-consistent matrices are generated by extracting the row elements

{0,2,4 . .} of each row i, sorting them and then replacing in order, while the

elements {1, 3, 5, . . .} are left in their original order, this means that the even

columns are consistent while the odd columns are inconsistent.

In the results the different problem instances are identified according to the

following scheme: u-x-yy-zz, where

u means uniform distribution

x denotes the type of consistency (c–consistent, i–inconsistent and s means semi-

consistent).

yy indicates the heterogeneity of the jobs (hi–high, and lo–low).

zz indicates the heterogeneity of the resources (hi–high, and lo–low).

4.2 Performance Measure

For all the test instances with NSGA-II and NSGA-II with controlled elitism the

parameters used are given in Table 1.

Table 1 : Test parameters

Parameters Values (type)

Population size 100

221 NSGA - II with Controlled Elitism for …

Number of iteration 1000

Pc, crossover probability 0.8

Pm, mutation probability 0.02
Cross over index ηc 2 (SBX crossover)
Mutation index ηm 20(Polynomial mutation)
r, controlled elitism 0.65(geometric distribution)

Since the diversity among optimized solutions is an important matter in multi-

objective optimization, a measure based on the consecutive distances among the

solutions of the best non-dominated front in the final population is used. The

obtained set of the first non-dominated solutions are compared with a uniform

distribution and the deviation is computed as follows [18]

 (6)

In the above equation, di is the Euclidean distance between two consecutive

solutions in the first non-dominated front of the final population in the objective

function space. The parameter d is the average of these distances.

An average of these deviations over 5 runs is calculated as the measure () for

comparing the two algorithms. Thus, it is clear that an algorithm having a smaller

Table 2 shows the deviation from a uniform spread () in 5 independent runs

obtained using NSGA-II and NSGA-II with controlled elitism.

The entire non-dominated front found by NSGA-II and NSGA-II with controlled

elitism is given for four instances out of the 12 instances considered in Fig 1-4.

This helps in better understanding of how the solutions are spread over the non-

dominated front.

Since flowtime has a higher magnitude over makespan, its difference increases as

more jobs and processors are considered. For this reason, the value of mean

flowtime, flowtime/number of machines, is used to evaluate flowtime. The values

of makespan and mean flowtime are measured in same time units. The values

obtained for the non-dominated solutions are plotted in ten thousands of units in

Fig 1-4.

Table 2 : Comparison of NSGA –II and NSGA-II with controlled elitism

Instances NSGA-II NSGA-II –CE

G. Subashini and M.C. Bhuvaneswari 222

() ()

u_c_lo_lo 0.000053 0.000036

u_c_lo_hi 0.0146 0.0092

u_c_hi_lo 0.0034 0.0016

u_c_hi_hi 0.5761 0.3897

u_s_lo_lo .00012 .00009

u_s_lo_hi .0065 .0063

u_s_hi_lo .0031 .0029

u_s_hi_hi .5489 0.4867

i_s_lo_lo .0002 .00007

i_s_lo_hi .5532 .0278

i_s_hi_lo .0072 .0045

i_s_hi_hi .9769 .4167

Fig 1. Non-dominated solutions obtained on instance u_c_lo_lo

223 NSGA - II with Controlled Elitism for …

Fig 2. Non-dominated solutions obtained on instance u_c_lo_hi

Fig 3. Non-dominated solutions obtained on instance u_c_hi_lo

G. Subashini and M.C. Bhuvaneswari 224

 Fig 4. Non-dominated solutions obtained on instance u_c_hi_hi

Further in NSGA-II with controlled elitism it can be seen that the number of

fronts are more when compared to NSGA-II which shows that the algorithm

preserves good lateral diversity as shown in Fig 5. It is also found that still

thousands of iterations are required to have more number of solutions in the first

front in NSGA-II.

Fig 5. Number of fronts in NSGA-II and NSGA-II with controlled elitism

225 NSGA - II with Controlled Elitism for …

5 Conclusion

In this paper a modified version of NSGA-II is implemented for task scheduling

and compared with NSGA-II. It is found that the quality of schedules achieved by

both the algorithms is almost same. Comparing the performance of both the

algorithms it is seen that NSGA-II with controlled elitism maintains a uniform

spread of solutions in the obtained non-dominated front. Even though NSGA-II

uses crowding tournament selection to ensure diversity it does not preserve

diversity lateral to the Pareto–optimal front. This is achieved by controlling

elitism in NSGA-II. Since the parameter r controls the extent of exploration,

investigation can be extended in choosing a value of r where the algorithm could

perform still better on the task scheduling problem. This concept of controlled

elitism could also be tried on other algorithms for this problem to study its

performance.

6 Open Problem

Traditional methods for determining optimal schedules do not provide exact

solutions and requires an exhaustive search if the distributed system is large.

Many research works using heuristic techniques are being undertaken to solve this

scheduling problem. This problem also requires several criteria to be satisfied

while scheduling tasks on heterogeneous environments. This paper proposes a

static scheduling technique whereas there are problems available that deal with

dynamic scheduling. Moreover this paper considers tasks that are independent of

each other whereas the problem can be analyzed for tasks which depend on other

tasks. The GA parameters applied for the problem also may be analyzed for better

performance.

References

[1] S. Ali, T. D. Braun, H. J. Siegel, and A. A. Maciejewski, “Heterogeneous

computing”, Encyclopedia of Distributed Computing, Kluwer Academic, (2001).

[2] A. Abdelmageed Elsadek, B. Earl Wells, “A Heuristic model for task

allocation in heterogeneous distributed computing systems,” The International

Journal of Computers and Their Applications, Vol. 6, No. 1, (1999).

[3] M.R. Garey and D.Johnson, Computers and Intractability: A Guide to the

theory of NP-Completeness. Freeman and Company, San Francisco,(1979).

[4] H.J. Braun et al, “A comparison of eleven static heuristics for mapping a class

of independent tasks onto heterogeneous distributed computing systems” Journal

of Parallel and Distributed Computing, 61(6), (2001).

[5] H.Izakian, A. Abraham and V. Snasel, “Comparison of Heuristics for

Scheduling Independent Tasks on Heterogeneous Distributed Environments”, In

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(izakian%20%20h.%3cIN%3eau)&valnm=Izakian%2C+H.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20abraham%20%20a.%3cIN%3eau)&valnm=+Abraham%2C+A.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20snasel%20%20v.%3cIN%3eau)&valnm=+Snasel%2C+V.&reqloc%20=others&history=yes

G. Subashini and M.C. Bhuvaneswari 226

Proceedings of International Joint Conference on Computational Sciences and

Optimization 1,8-12, (2009).

[6] E.U. Munir, Jian-Zhong Li, Sheng-Fei Shi, Q. Rasool, “ Performance

Analysis of Task Scheduling Heuristics in Grid” In: ICMLC ’07: Proceedings of

the International Conference on Machine Learning and Cybernetics, Volume 6,

Issue 19-22, (2007) ,pp. 3093 – 3098.

[7] G. Ritchie and J. Levine, “A fast, effective local search for scheduling

independent jobs in heterogeneous computing environments,” Technical report,

Centre for Intelligent Systems and their Applications, School of Informatics,

University of Edinburgh, (2003).

[8] A. Yarkhan , J. Dongarra , “Experiments with scheduling using simulated

annealing in a grid environment,” In Proceedings of the 3rd International

Workshop on Grid Computing (GRID2002), Baltimore, MD, USA, November 18,

(2002), pp. 232–242.

[9] Javier Carretero, Fatos Xhafa and Ajith Abraham, “Genetic Algorithm Based

Schedulers for Grid Computing Systems,” International Journal of Innovative

Computing, Information and Control 3, 6, (2007).

[10] A. Abraham, H. Liu, C. Grosan, F. Xhafa, “Nature inspired meta-heuristics

for grid scheduling: single and multi-objective optimization approaches,” Studies

in Computational Intelligence, Springer Verlag: Heidelberg, Germany, (2008); pp.

247–272.

 [11] F. Xhafa, A. Abraham, “Meta-heuristics for grid scheduling problems”.

Studies in Computational Intelligence, Springer Verlag: Heidelberg, Germany,

(2008), pp. 1–37.

[12] A. Abraham, H. Liu, W. Zhang and T.G. Chang, “Job Scheduling on

Computational Grids Using Fuzzy Particle Swarm Algorithm,” 10th International

Conference on Knowledge-Based and Intelligent Information and Engineering

Systems, B. Gabrys et al. (Eds.): Part II, Lecture Notes on Artificial Intelligence

4252, Springer (2006), pp. 500-507.

[13] H. Izakian, B. Tork Ladani, K. Zamanifar, A. Abraham , “A novel particle

swarm optimization approach for grid job scheduling,” In Proceedings of the

Third International Conference on Information Systems, Technology and

Management, Springer: Heidelberg, Germany,(2009) pp. 100–110.

[14] C.A.C. Coello, “A comprehensive survey of evolutionary-based

multiobjective optimization techniques,” Knowledge and Information Systems, 1,

(1999), pp. 269–308.

[15] R.C. Purshouse, and P.J. Fleming, “Elitism Sharing and Ranking Choices in

Evolutionary Multi-Criterion Optimisation,” Research Report No.815,

Department of Automatic Control and System Engineering, University of

Sheffield, (2002).

[16] Kalyanmoy Deb, “Multi-objective Optimization using Evolutionary

Algorithms,” John Wiley and Sons Ltd, 2002.

227 NSGA - II with Controlled Elitism for …

[17] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan , “A Fast Elitist Multiobjective

Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation,

6 (2002), pp.182–197.

[18] K.Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A Fast Elitist Non-

dominated sorting genetic algorithm for multi-objective optimization: NSGA-II,”

Proceedings of the Parallel Problem Solving from Nature VI conference, Paris,

(2000), pp. 849-858.

[19] S.Padmavathi, S.Mercy Shalinie and R.Abhilaash, “A Memetic Algorithm

Based Task Scheduling considering Communication Cost on Cluster of

Workstations,” International Journal of Advances in Soft Compuing and its

Appications, Vol. 2, No. 2, (2010),pp 174-190

