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Abstract 

    This paper presents an application of elitist Non-dominated 
Sorting Genetic Algorithm (NSGA-II), to efficiently schedule a set of 
independent tasks in a heterogeneous distributed computing system. 
This scheduling problem is a bi-objective problem considering two 
objectives. The first objective is minimization of makespan and the 
second one being the minimization of flowtime. As a multi-objective 
optimization technique, this paper makes use of Controlled-NSGA-II 
that modifies NSGA-II to enhance the diversity of solution sets. This 
algorithm uses a distribution function to control elitism and to get 
better diversity of individuals. The extent of elitism can be changed 
by fixing a user-defined parameter. Simulation results on task 
scheduling problem show the effectiveness of the proposed 
modification in comparison with NSGA-II. 

Keywords:  controlled elitism ,Multi-objective, Non-dominated Sorting Genetic 

Algorithm (NSGA-II),  Task Scheduling 

1   Introduction 

Distributed computing systems have emerged as a powerful platform to perform 

different computationally intensive applications that have various computational 

requirements. The applicability and strength of such systems are derived from 

their ability to match computing needs to appropriate resources [1]. The problem 

of task scheduling is efficiently assigning user or application tasks to a set of 

http://www.i-csrs.org/


 

 

215                                                            NSGA - II with Controlled Elitism for … 

 

 

  

resources. A static task scheduling algorithm [2] can be used in such a 

heterogeneous system that may be useful for analysis of heterogeneous computing 

systems, to work out the effect of resource failures. Schedulers can be 

implemented using complex algorithmic methods that utilize the known properties 

of a given application and the available environment. Due to the large number of 

resources and the large number of tasks submitted by different applications, task 

scheduling on heterogeneous computing (HC) systems is a large scale 

optimization problem.  Finding optimal schedules in such a system has been 

shown, in general, to be NP-hard [3] and therefore the use of heuristics is one of 

the suitable approaches. 

In the HC environment considered here, the tasks are assumed to be independent, 

i.e., no communications between the tasks are needed. This scenario is likely to be 

present, for instance, when many independent users submit their tasks to a 

collection of shared computational resources. The scheduling of these tasks is 

being performed statically. It is also assumed that each machine executes a single 

task at a time, in the order in which the tasks are assigned and no preemption 

takes place.  

Some popular and efficient pure heuristics for task scheduling problem include 

min-min, max-min, LJFR-SJFR, min-max, Sufferage etc [4-6]. From a 

computational complexity perspective, task scheduling is computationally hard. In 

order to cope in practice with its difficulty and also, to improve the quality of 

solutions, meta-heuristics have been presented for task scheduling problem. The 

most popular of meta-heuristic algorithms are genetic algorithm (GA), simulated 

annealing (SA), ant colony optimization (ACO) and particle swarm optimization 

(PSO).  A hybrid ant colony optimization for scheduling in HC systems is 

proposed in [7]. In this, ant colony optimization is combined with local and tabu 

search to find shorter schedules. A simulated annealing approach for job 

scheduling in grids is given in [8]. Various heuristics are compared on different 

types of HC environments in [4] which illustrates that the GA scheduler can 

obtain better results in comparison with others. Most of the available methods aim 

at minimizing the makespan of the schedule. 

Very few attempts have been made to minimize flowtime or both flowtime and 

makespan on HC environments. [6] investigates the efficacy of five popular 

heuristics for minimizing makespan and flowtime on HC environments with 

various characteristics of both machines and tasks. However the objectives are 

evaluated separately here. A genetic algorithm based schedulers for computational 

grids by transforming multi-objective problem into a single objective one is found 

in [9].  The usage of several nature inspired meta-heuristics (SA, GA, PSO, and 

ACO) for scheduling jobs in computational grids using single and multi-objective 

optimization approaches has been illustrated in [10]. The most important concepts 

from grid computing related to scheduling problems and their resolution using 

heuristic and meta-heuristic approaches are reviewed in [11]. Several versions of 
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PSO has been implemented for the problem in literature [12,13].The authors 

identified different types of scheduling based on different criteria, such as static 

vs. dynamic environment, multi-objectivity, adaptivity, etc. [19] uses memetic 

algorithms to schedule tasks with communication delay between tasks. 

The efficiency of scheduling algorithms can be evaluated based on different 

criteria the most important being makespan and flowtime.  Makespan is the time 

when an HC system finishes the last task and flow time is the sum of finalization 

times of all the tasks. Hence this scheduling problem is formulated as a multi-

objective problem with the goal of minimizing the makespan and flowtime of the 

system. 

The ability of multi-objective evolutionary algorithms to find multiple Pareto-

optimal solutions in one single run has made them attractive for solving problems 

with multiple and conflicting objectives. During the last decades, several multi-

objective evolutionary algorithms [14] have been proposed which are aimed at 

finding the Pareto-optimal front and keeping diversity of individuals, in the 

obtained Pareto-optimal front. Recent studies have indicated that the inclusion of 

an elitist element can considerably improve the performance of a multi-objective 

evolutionary algorithm (MOEA) [15]. This resulted in a number of elitist MOEA 

of which the Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) has 

proved its performance against a set of well known difficult test functions.   

This paper implements a modified version of NSGA-II for scheduling tasks in HC 

environment.  A distribution function is used to limit the extent of elitism. This 

has been tested on several benchmark instances of task scheduling problem. The 

experimental results with controlled elitism show that the proposed algorithm has 

much better diversity thereby having a better performance over NSGA-II. 

The remainder of this paper is organized as follows. The problem formulation is 

given in Section 2. Section 3 gives implementation of controlled NSGA-II for task 

scheduling problem.  Experimental details and simulation results are presented in 

Section 4 and Section 5 concludes with finishing remarks and future work.  

2      Problem Formulation 

Real-world HC systems are complex combinations of hardware, software and 

network components. Let T = {T1, T2, …., Tn} denote the set of tasks that are  to 

be scheduled on the HC system. It is assumed that the tasks are independent of 

each other with no intertask data dependencies and preemption is not allowed. At 

the time of the arrival of tasks m processors P = {P1, P2,..., Pm}  are available 

within the HC environment. To model the problem estimation or prediction of the 

computational load of each task, the computing capacity of each resource, and an 

estimation of the prior load of each one of the resources is required.  This is the 

ETC – Expected Time to Compute matrix model [4]. Having the computing 

capacity of the resources and the workload of the tasks, an Expected Time to 
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Compute matrix ETC can be built, where each position ETC[n][m] indicates the 

expected time to compute task n in processor  m. The entries ETC[n][m] could be 

computed by dividing the workload of task n  by the computing capacity of 

processor m. The ETC model allows to quite easily introduce possible 

inconsistencies in the  HC system and different levels of heterogeneity. 

To formulate the objective Ci,j (i {1, 2, …….,n}, j  {1, 2,……., m}) is  defined  

as the completion time for finishing the task i on processor j and Wi (i  1,2, . . .,m) 

is the previous workload of Pi, Equation (1) shows the time required for Pi to 

complete the jobs include in it.  

                       ∑(Ci+Wi)                                                                             (1) 

Then makespan and flowtime can be defined as : 

                                          (2) 

                                                      (3) 

Minimizing makespan aims to execute the whole set of tasks as fast as possible 

while minimizing flow time aims to utilize the computing environment efficiently. 

The goal of the scheduler is to minimize makespan and flowtime simultaneously. 

3  NSGA-II for Task Scheduling  

The NSGA-II algorithm and its detailed implementation procedure can be found 

in [16,17]. This algorithm has been demonstrated as one of the most efficient 

algorithms for multi-objective optimization on a number of benchmark problems. 

A brief description of NSGA-II is as follows: 

NSGA-II uses non-dominated sorting for fitness assignments. All individuals not 

dominated by any other individuals, are assigned front number 1. All individuals 

only dominated by individuals in front number 1 are assigned front number 2, and 

so on. Selection is made, using tournament between two individuals. This selects 

an individual with the lowest front number if the two individuals are from 

different fronts. If the individuals are from the same front, then the individual with 

the highest crowding distance is selected if they are from the same front. A higher 

fitness value is assigned to individuals located on a sparsely populated part of the 

front. There are N parents and in every iteration N new offsprings are generated. 

Both parents and offspring compete with each other for inclusion in the next 

iteration. 

NSGA-II uses Simulated Binary Crossover (SBX) and Polynomial mutation 

described as follows [17]. 

3.1      Simulated Binary Crossover  
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The SBX operator operates on two parent solutions and creates two offspring. The 

difference between offspring and parent depends on crossover index ηc. The 

crossover index „ηc‟ is any non-negative real number. A large value of „ηc‟ gives a 

higher probability for creating solutions closer to the parent and a small value of 

„ηc‟ allows distant solutions to be selected as offspring. The two offspring created 

are symmetric about the parent solutions. Also, for a fixed „ηc‟ the offspring have 

a spread which is proportional to that of the parent solutions. It has two properties: 

(a) the difference between corresponding decision variables of the created 

offspring is proportional to the difference between corresponding decision 

variables of the parent solutions; (b) offspring having decision variables nearer to 

those of the parent solutions are more likely to be selected. 

3.2 Polynomial mutation 

This operator has  higher probability of creating a solution near to the parent than 

the probability of creating one distant from it. The shape of the probability 

distribution is directly controlled by an external parameter ηm and the distribution 

remains unchanged throughout the iterations. 

3.3 Controlled elitism  

Elitism is an important issue to ensure diversity of individuals and get a better 

convergence. In NSGA-II, elite solutions are emphasized on two occasions, i.e., 

once in the tournament selection operation and again during the elite preserving 

operation. This will cause a rapid deletion of solutions belonging to the non-elitist 

fronts. Though the crowding tournament operator will ensure diversity along the 

current non-dominated front, lateral diversity will be lost. Thus, to ensure better 

convergence, an algorithm may need diversity in both aspects – along and lateral 

to the Pareto-optimal front. 

It is important to restrict the maximum number of currently elitist fronts 

adaptively and make solutions of non-elitist fronts involved in new population. 

For this purpose a predefined distribution of number of individuals in each front is 

maintained. A geometric distribution given by Eq.(4) is used. 

Ni=rNi-1                                                                    (4) 

where Ni is maximum number of allowed individuals in the ith front; r(<1) 

reduction rate. Although the parameter r is user defined, it is adaptive.  

Selection of solutions for the next iteration is as follows. The combined 2N 

population of parent and offspring is sorted for non-domination. If the number of 

non-dominated fronts  in the 2N population is K, then according to the geometric 

distribution, the maximum number of individuals allowed in the i-th front 

(i=1,2,……….,K) in the new population of size N is  

                                                                            (5) 
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 Since r<1, the allowable number of individuals in front one is the highest. 

Thereafter, each front is allowed to have an exponentially reducing number of 

solutions. Other distributions such as arithmetic distribution, harmonic 

distribution are also possible. It is clear that the new population under the 

modified algorithm is more diverse than that under NSGA II. 

Although Equation (4) denotes the maximum number of individuals Ni in each 

front, there may not exist exactly Ni individuals in such fronts. This is resolved 

using the following procedure. First the number of individuals in the first front is 

counted. Assuming there are  individuals, if  > N1 then N1 solutions are 

chosen using the crowded tournament selection. Hence N1 solutions residing in 

the less crowded region are selected. Otherwise,    if  ≤ N1, all  solutions are 

chosen and the number of remaining slots X1= N1-  is counted. The maximum 

number of individuals in the second front is now increased to N2+X1. Thereafter, 

the actual number of solutions  in the second front is counted and compared 

with N2 as above. This procedure is repeated till N individuals are selected. 

However, there could be some case that after all 2N solutions are processed, the 

size of new population cannot reach N. The new population still has some space 

needed to be filled, especially when r is large. In such case, filling the population 

again continues with the remainder individuals from the first rank, continue to 

other ranks, and include them until the size of new population reaches to N. 

4 Test Results 

The proposed NSGA-II algorithm with controlled elitism for scheduling tasks was 

implemented in C programming language on a PC with Pentium dual processor 

running under Linux environment. To measure the effectiveness and viability of 

NSGA-II algorithm with controlled elitism results are compared with simple 

NSGA-II algorithm. 

4.1   Test Problems 

To assess the comparative performances of the algorithms, the simulation model 

in [4]  based on expected time to compute (ETC) matrix for 512 tasks and 16 

processors is used. To realistically simulate possible heterogeneous environments, 

different types of ETC matrix according to three metrics: task heterogeneity, 

machine heterogeneity and consistency are simulated. The task heterogeneity is 

defined as the amount of variance possible among the execution times of the jobs 

with two possible values low and high. Machine heterogeneity is the variation of 

the running time of a particular job across all the processors, which can be high 

and low. To capture other possible features of real scheduling problems, three 

different ETC consistencies namely consistent, inconsistent and semi-consistent 

are used. An ETC matrix is considered consistent if a processor Pi executes task t 

faster than processor Pj , then Pi  executes all the jobs faster than Pj . Inconsistency 

means that a processor is faster for some jobs and slower for some others. An 
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ETC matrix is considered semi-consistent if it contains a consistent sub-matrix.  A 

semi consistent ETC matrix is characterized by an inconsistent matrix which has a 

consistent sub-matrix of a predefined size. 

Thus 12 distinct types of ETC matrix can be generated considering the different 

combinations. The matrices used here a randomly generated as described. Initially 

an m×1 baseline column vector B is generated by repeatedly selecting m uniform 

random floating point values between 1 and b, the upper bound on values in B. 

Then the ETC matrix is constructed by taking each value B(i) in B and 

multiplying it by a uniform random number xr
i,k

 which has an upper bound of  r.  

Each row in the ETC matrix is then given by B(i) × xr
i,k

.  The vector B is not used 

in the actual matrix. This process is repeated for each row until the m × n matrix is 

full.  Therefore, any given value in the ETC matrix is within the range (1, b , r ). 

Different task and machine heterogeneities described above are modeled by using 

different baseline values. High task heterogeneity was represented by b =3000 

and low task heterogeneity used b=100. High machine heterogeneity was 

represented by r=1000 and low machine heterogeneity was modeled using r 

=10. To model a consistent matrix each row in the matrix was sorted 

independently, with processor P1 always being the fastest, and Pm being the 

slowest. Inconsistent matrices are left in the random state in which they are 

generated. Semi-consistent matrices are generated by extracting the row elements 

{0,2,4  . .} of each row i, sorting them and then replacing in order, while the 

elements {1, 3, 5, . . .} are left in their original order, this means that the even 

columns are consistent while the odd columns are inconsistent. 

In the results the different problem instances are identified according to the 

following scheme: u-x-yy-zz, where    

u means uniform distribution  

x denotes the type of consistency (c–consistent, i–inconsistent and s means semi-

consistent). 

yy indicates the heterogeneity of the jobs (hi–high, and lo–low). 

zz indicates the heterogeneity of the resources (hi–high, and lo–low). 

4.2    Performance Measure 

For all the test instances with NSGA-II and NSGA-II with controlled elitism the 

parameters  used are given in Table 1. 

 

 

Table 1 : Test parameters 

Parameters Values (type) 

Population size 100 
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Number of iteration 1000 

 

Pc, crossover probability 0.8 

 

Pm, mutation probability 0.02 
Cross over index ηc 2 (SBX crossover) 
Mutation index  ηm 20(Polynomial mutation) 
r, controlled elitism 0.65(geometric distribution) 

Since the diversity among optimized solutions is an important matter in multi-

objective optimization, a measure based on the consecutive distances among the 

solutions of the best non-dominated front in the final population is used. The 

obtained set of the first non-dominated solutions are compared with a uniform 

distribution and the deviation is computed as follows [18] 

                                                                                                      (6) 

In the above equation, di is the Euclidean distance between two consecutive 

solutions in the first non-dominated front of the final population in the objective 

function space. The parameter d is the average of these distances. 

An average of these deviations over 5 runs is calculated as the measure ( ) for 

comparing the two algorithms. Thus, it is clear that an algorithm having a smaller 

Table 2 shows the deviation from a uniform spread ( ) in 5 independent runs 

obtained using NSGA-II and NSGA-II with controlled elitism. 

The entire non-dominated front found by NSGA-II and NSGA-II with controlled 

elitism is given for four instances out of the 12 instances considered in Fig 1-4. 

This helps in better understanding of how the solutions are spread over the non-

dominated front. 

Since flowtime has a higher magnitude over makespan, its difference increases as 

more jobs and processors are considered. For this reason, the value of mean 

flowtime, flowtime/number of machines, is used to evaluate flowtime. The values 

of makespan and mean flowtime are measured in same time units. The values 

obtained for the non-dominated solutions are plotted in ten thousands of units in 

Fig 1-4. 

 

 

 

 

Table 2 : Comparison of NSGA –II and NSGA-II with controlled elitism 

Instances NSGA-II NSGA-II –CE 
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( ) ( ) 

u_c_lo_lo 0.000053 0.000036 

u_c_lo_hi 0.0146 0.0092 

u_c_hi_lo 0.0034 0.0016 

u_c_hi_hi 0.5761 0.3897 

   

u_s_lo_lo .00012 .00009 

u_s_lo_hi .0065 .0063 

u_s_hi_lo .0031 .0029 

u_s_hi_hi .5489 0.4867 

   

i_s_lo_lo .0002 .00007 

i_s_lo_hi .5532 .0278 

i_s_hi_lo .0072 .0045 

i_s_hi_hi .9769 .4167 

 

 

 
Fig  1. Non-dominated solutions obtained on instance u_c_lo_lo 
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Fig  2.  Non-dominated solutions obtained on instance u_c_lo_hi 

 

 

 
Fig  3.  Non-dominated solutions obtained on instance u_c_hi_lo 
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 Fig   4.  Non-dominated solutions obtained on   instance u_c_hi_hi 

 

Further in NSGA-II with controlled elitism it can be seen that the number of 

fronts are more when compared to NSGA-II which shows that the algorithm 

preserves good lateral diversity as shown in Fig 5. It is also found that still 

thousands of   iterations are required to have more number of solutions in the first 

front in NSGA-II. 

 
 

Fig 5.  Number of fronts in NSGA-II and NSGA-II with controlled elitism 
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5  Conclusion 

In this paper a modified version of NSGA-II is implemented for task scheduling 

and compared with NSGA-II. It is found that the quality of schedules achieved by 

both the algorithms is almost same. Comparing the performance of both the 

algorithms it is seen that NSGA-II with controlled elitism maintains a uniform 

spread of solutions in the obtained non-dominated front. Even though NSGA-II 

uses crowding tournament selection to ensure diversity it does not preserve 

diversity lateral to the Pareto–optimal front. This is achieved by controlling 

elitism in NSGA-II.  Since the parameter r controls the extent of exploration, 

investigation can be extended in choosing a value of r where the algorithm could 

perform still better on the task scheduling problem. This concept of controlled 

elitism could also be tried on other algorithms for this problem to study its 

performance. 

6 Open Problem 

Traditional methods for determining optimal schedules do not provide exact 

solutions and  requires an exhaustive search if the distributed system is large. 

Many research works using heuristic techniques are being undertaken to solve this 

scheduling problem. This problem also requires several criteria to be satisfied 

while scheduling tasks on heterogeneous environments. This paper proposes a 

static scheduling technique whereas there are problems available that deal with 

dynamic scheduling. Moreover this paper considers tasks that are independent of 

each other whereas the problem can be analyzed for tasks which depend on other 

tasks. The GA parameters applied for the problem also may be analyzed for better 

performance. 
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