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Abstract

In this paper we defined prime ideal and maximal ideal
and proved several properties of these. We have discussed
the space of prime ideals of a C-algebra A with respect to the
hull-kernel topology, which is called the prime spectrum of A
and denoted by Spec A. It is also proved that Spec A is a T0

space.
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1 Introduction

In [3] Fernando Guzman and Craig C.Squier introduced the variety of C-
algebras as the variety generated by the three element algebra C = {T, F, U}
with the operations ∧,∨ and ′ of type (2,2,1), which is the algebraic form of
the three valued conditional logic. They proved that C and the two element
Boolean algebra B = {T, F} are the only subdirectly irreducible C-algebras
and that the variety of C-algebras is a minimal cover of the variety of Boolean
algebras. In [7] U.M.Swamy et.al., have worked on three valued logic and in-
troduced the concept of the Centre B(A) of a C-algebra A and proved that
the centre of a C-algebra is a Boolean algebra. Later in [4] S.Kalesha Vali
et.al., introduced the notion of an ideal and principal ideal of a C-algebra and
discuss various properties of these including the set of ideals forms an alge-
braic distributive lattice. In this paper we define prime ideal, maximal ideal
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and proved several properties of these. We discuss the space of prime ideals
of a C-algebra with respect to the hull-kernel topology. If X is the set of all
prime ideals of A and, for any a ∈ A, Na = {P | a /∈ P}, then the class
{Na | a ∈ A} forms a base for a topology on the set X. Also, the topology
generated by {Na | a ∈ A} on the set X of prime ideals of A is the Stone
topology. X together with the Stone topology is called Stone space or the
prime spectrum and is denoted by Spec A. The Stone topology on X is also
called the hull-kernel topology.

2 C-algebra

In this section we recall the definition of a C-algebra and some results from
[3, 5, 7, 8]. Let us start with the definition of a C-algebra.

Definition 2.1 ([3]). By a C-algebra we mean an algebra of type (2, 2, 1)
with binary operations ∧ and ∨ and unary operation ′ satisfying the following
identities.
(1) x′′ = x (2) (x ∧ y)′ = x′ ∨ y′

(3) (x ∧ y) ∧ z = x ∧ (y ∧ z) (4) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
(5) (x ∨ y) ∧ z = (x ∧ z) ∨ (x′ ∧ y ∧ z) (6) x ∨ (x ∧ y) = x
(7) (x ∧ y) ∨ (y ∧ x) = (y ∧ x) ∨ (x ∧ y).

Example 2.2 ([3]). The three element algebra C = {T, F, U} with the op-
erations given by the following tables is a C-algebra.

∧ T F U
T T F U
F F F F
U U U U

∨ T F U
T T T T
F T F U
U U U U

x x′

T F
F T
U U

Note 2.3 ([3]). The identities 1.1(1), 1.1(2) imply that the variety of C-
algebras satisfies all the dual statements of 1.1(2) to 1.1(7). ∧ and ∨ are not
commutative in C. The ordinary distributive law of ∧ over ∨ fails in C. Every
Boolean algebra is a C-algebra.

Now we give some results on C-algebra collected from [3, 5, 7, 8].

Lemma 2.4. Every C-algebra satisfies the following identities:
(1) x ∧ x = x (2) x ∧ x′ = x′ ∧ x
(3) x ∧ y ∧ x = x ∧ y (4) x ∧ x′ ∧ y = x ∧ x′

(5) x ∧ y = (x′ ∨ y) ∧ x (6) x ∧ y = x ∧ (y ∨ x′)
(7) x ∧ y = x ∧ (x′ ∨ y) (8) x ∧ y ∧ x′ = x ∧ y ∧ y′

(9) (x∨y)∧x = x∨(y∧x) (10) x∧(x′∨x) = (x′∨x)∧x = (x∨x′)∧x = x.

The dual statements of the above identities are also valid in a C-algebra.
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3 Ideals of a C-algebra

In this section we recall the the definition of an ideal and principal ideal of a C-
algebra and some results from [4] which are useful in proving the results in the
forthcoming sections. Let us start with the definition of an ideal of a C-algebra.

A nonempty subset I of a C-algebra A is said to be an ideal of A if it sat-
isfies (i) a, b ∈ I implies that a ∨ b ∈ I and (ii) a ∈ I implies that x ∧ a ∈ I,
for each x ∈ A. The set {x ∧ a | x ∈ A} is the smallest ideal containing a and
is denoted by < a >. An element z of a C-algebra A is called a left zero for
∧ if z ∧ x = z for all x ∈ A. By Lemma 2.4(4), x ∧ x′ is a left zero for ∧,
for all x ∈ A. In fact, any left zero for ∧ must be of the form x ∧ x′ for some
x ∈ A also x ∧ x′ ∈ I for all x ∈ A. Its observed that the set of ideals of a
C-algebra A is closed under arbitrary intersections and I0 = {x ∧ x′ | x ∈ A}
is the smallest ideal of A. If X is a non-empty subset of a C-algebra A then

{
n∨

i=1

(yi ∧ xi) | yi ∈ A, xi ∈ X} is the smallest ideal containing X and is de-

noted by < X >. If {Iα}α∈∆ be a family of ideals of a C-algebra A then

{
n∨

i=1

ai | ai ∈ Iα, for some α} is the smallest ideal containing Iα’s.

Lemma 3.1. [4] Let I be an ideal of a C-algebra A and a, b ∈ A. Then
(1) y ∈< a >⇔ y = y ∧ a.
(2) < a >=< b >⇔ a ∧ b = a and b ∧ a = b.
(3) < a ∧ b >=< b ∧ a >=< a > ∩ < b >.
(4) < a >=< b >⇒ a ∨ b = b ∨ a
(5) < a >=< b > it is not necessary that a = b.
(6) If a ∧ b ∈ I, then a ∧ z ∧ b ∈ I for each z ∈ A.
(7) a ∧ b ∈ I if and only if b ∧ a ∈ I.

Theorem 3.2. [4] Let A be a C-algebra and =(A) the set of all ideals of
A. Then =(A) is an algebraic distributive lattice with respect to the inclusion
ordering.

4 Prime Ideals

In this section, we first discuss the concept of prime ideal and prove certain
important fundamental properties of a prime ideal. In particular, we extend
the Stone’s theorem on prime ideals of a distributive lattice to C-algebras and
prove that every ideal I of a C-algebra A is the intersection of all prime ideals
of A containing I.

Definition 4.1. Let A be a C-algebra. A proper ideal P of A is called a
prime ideal if, for any a, b ∈ A, a ∧ b ∈ P implies that either a ∈ P or b ∈ P.
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Theorem 4.2. The following are equivalent for any proper ideal P of a
C-algebra A
(1) P is a prime ideal
(2) For any ideals I and J of A, I ∩ J ⊆ P ⇒ I ⊆ P or J ⊆ P
(3) For any ideals I and J of A, P = I ∩ J ⇒ P = I or P = J .

Proof. (1) ⇒ (2): Let P be a prime ideal and I and J are ideals of A such
that I ∩ J ⊆ P . Assume that I * P . Then there exists a ∈ I such that
a /∈ P . Let b ∈ J . Then a ∧ b ∈ I ∩ J ⊆ P . Since P is Prime, a ∈ P or
b ∈ P. But a /∈ P . Therefore b ∈ P (since a /∈ P ). Thus J ⊆ P . (2) ⇒ (3) is
trivial. (3) ⇒ (1): Assume (3). Let a and b ∈ A such that a ∧ b ∈ P . Then
< a > ∩ < b >=< a ∧ b >⊆ P (by Lemma 3.1) and hence
(< a > ∨P ) ∩ (< b > ∨P ) = (< a > ∩ < b >) ∨ P = P (since by Theorem
3.2) so that < a > ∨P = P or < b > ∨P = P or equivalently, < a >⊆ P or
< b >⊆ P and therefore a ∈ P or b ∈ P . Thus P is a prime ideal.

Lemma 4.3. Let P be a prime ideal of a C-algebra A. Then, for any x ∈ A,
either x ∈ P or x′ ∈ P .

In the following, we prove a theorem analogous to that of the Stone’s the-
orem for distributive lattices.

Theorem 4.4. Let I be an ideal of a C-algebra and a ∈ Ar I. Then there
exists a prime ideal P containing I and not containing a.

Proof. Let a /∈ I. Let ℘ = {J | J is an ideal of A, I ⊆ J and a /∈ J}.
Clearly I ∈ ℘. Therefore ℘ is nonempty and is a partially ordered set under
the inclusion. It is easily verify that the union of all ideals in chain of ideals
is again an ideal. Therefore by Zorn’s lemma there exists a maximal member
M in ℘. Then, clearly M is a proper ideal of A not containing a and I ⊆ M .
We shall prove that M is a prime ideal of A. let x, y ∈ A such that x /∈ M
and y /∈ M . Then M is properly contained in M∨ < x > and M∨ < y > and
hence by the maximality of M , we have
a ∈ (M∨ < x >) ∩ (M∨ < y >) = M ∨ (< x > ∧ < y >) = M ∨ (< x ∧ y >)
Therefore x ∧ y /∈ M ( for, if x ∧ y ∈ M then M ∨ (< x > ∧ < y >) = M ,
which is a contradiction, since a /∈ M ). Therefore M is prime containing I
and not containing a.

Corollary 4.5. For any ideal I of a C-algebra A,
I = ∩{P | P is a prime ideal of A and I ⊆ P}.

Proof. If a /∈ I, then by above theorem, there exists a prime ideal P containing
I and not containing a and therefore a /∈ ⋂

I⊆P,Pprime

P .Therefore
⋂

I⊆P,Pprime

P ⊆
I. Thus I = ∩{P | P is a prime ideal of A and I ⊆ P}.
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Corollary 4.6. The intersection of all prime ideals coincides with the set
of all left zeros for ∧ in A.

Theorem 4.4 is strengthened in the following.

Theorem 4.7. Let I be an ideal of a C- algebra A and S a nonempty subset
of A which is closed under the operation ∧ and is disjoint with I. Then there
exists a prime ideal P of A containing I and disjoint with S.

5 Maximal Ideals

In this section, we discuss maximal ideals of a C-algebra A. As usual, a proper
ideal of A is called maximal, if it is not contained in any proper ideal except
itself. We prove here that every maximal ideal is prime and that the converse
is true in certain special cases.

Definition 5.1. A proper ideal M of a C-algebra A is said to be a Maximal
ideal of A if M is maximal among all the proper ideals of A.

Lemma 5.2. Let A be a C-algebra. Every maximal ideal in A is a prime
ideal.

Proof. Let M be a maximal ideal of A. Then clearly M is a proper ideal of A.
Suppose a, b ∈ A such that a /∈ M and b /∈ M .
Then M $< M ∪ {a} >= A; M $< M ∪ {b} >= A (since M is maximal).

Then b ∈< M ∪ {a} >= {
n∨

i=1

(yi ∧ xi) | yi ∈ A, xi ∈ M ∪ {a}}.

That is, b =
n∨

i=1

(yi ∧ xi), for some yi ∈ A, xi ∈ M ∪ {a}.

Now, b = b ∧ b = b ∧
n∨

i=1

(yi ∧ xi) =
n∨

i=1

(b ∧ yi ∧ xi).

If xi ∈ M , then clearly b∧ yi ∧ xi ∈ M. Since b /∈ M and b =
n∨

i=1

(b∧ yi ∧ xi), it

follows that b ∧ yi ∧ a /∈ M for some yi ( since xi ∈ M or xi = a ). By Lemma
3.1, we get that b ∧ a /∈ M , and hence a ∧ b /∈ M . Thus M is a prime ideal of
A.

The validity of the converse of the above theorem is not known. In Boolean
algebras every prime ideal is maximal but in C-algebras, we do not know that
every prime ideal is maximal, it is under investigation.

In the following, we discuss another class of C-algebras where every prime
ideal is maximal. First let us recall the following.
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Definition 5.3. [7] Let A be a C-algebra with T (that is, T is the identity
element for ∧ in A). Then the Boolean centre of A is defined as the set
B(A) = {a ∈ A | a ∨ a′ = T}. B(A) is known to be a Boolean algebra under
the operations induced by those on A.

Theorem 5.4. [7] Let A be a C-algebra with T. Suppose that, for any x ∈ A,
there exists a smallest x0 ∈ B(A) such that x ∧ x0 = x and x′0 ∨ x = T .Then
every prime ideal of A is a maximal ideal.

Proof. Let P be a prime ideal of A and Q be any ideal such that P $ Q.
Since, P $ Q, there exists x ∈ Q such that x /∈ P . Then there exists smallest
x0 ∈ B(A) such that x ∧ x0 = x and x′0 ∨ x = T . Therefore x0 /∈ P (for, if
x0 ∈ P then x ∈ P , a contradiction). Since P is prime, x′0 ∈ P ⊆ Q. Therefore
both x and x′0 belong to Q and hence T = x′0 ∨ x ∈ Q (since, Q is an ideal).
Then a = T ∧ a ∈ Q for all a ∈ A. Therefore Q = A. Thus P is a maximal
ideal of A.

Theorem 5.5. Let X be a nonempty set and C = {T, F, U} be the three-
element C-algebra. Let CX be the set of all mappings of X into C. Then CX

is a C-algebra under the pointwise operations. For any Y ⊆ X, let fY ∈ CX

be defined by fY (x) =

{
T, if x ∈ Y ;
F, if x /∈ Y .

and, for any x ∈ X, let fx = f{x}.

Also, for any f ∈ CX , let |f | = {x ∈ X | f(x) = T}, |f | is called the support
of X. Then every prime ideal of CX is a maximal ideal.

Proof. It can be easily verified that CX is a C-algebra under the pointwise
operations. Before proving every prime ideal of CX is maximal first we prove
that for any g ∈ CX and Y ⊆ X (1)f ′Y = fXrY , (2) fY ∧ f ′Y = F̄ , the
constant map, (3) fY ∈ B(CX) and (4) g ∧ f|g| = g. Define F̄ : X → C by
F̄ (x) = F , for all x ∈ X. (1) This follows from the facts that T ′ = F and
f ′(x) = f(x)′ for all x ∈ X and for all f ∈ CX . (2) If z ∈ Y, (fY ∧ f ′Y )(z) =
T ∧ F = F . If z /∈ Y, (fY ∧ f ′Y )(z) = F ∧ T = F . Therefore fY ∧ f ′Y = F̄ .
(3) Since fY ∧ f ′Y = F̄ , (fY ∧ f ′Y )′ = (F̄ )′ and hence f ′Y ∨ fY = T̄ , so that
fY ∨ f ′Y = T̄ . Therefore fY ∈ B(CX). (4) For x ∈ |g|, f|g|(x) = T and
g(x) ∧ f|g|(x) = g(x) ∧ T = T ∧ T = T = g(x). For x /∈ |g|, f|g|(x) = F
g(x) ∧ f|g|(x) = g(x) ∧ F = g(x) (since g(x) = U or F, g(x) ∧ F = g(x)).
Therefore g ∧ f|g| = g.
Let P be a prime ideal of CX . Let Q be any ideal of CX such that P $ Q.
Then there exists g ∈ Q such that g /∈ P . Since g ∈ CX , g ∧ f|g| = g. Then
f|g| /∈ P (since g /∈ P ). Since f|g| ∧ f ′|g| = F̄ ∈ P and P is a prime ideal,

f ′|g| ∈ P ⊆ Q. We shall prove that f ′|g| ∨ g = T̄ . If x ∈ |g| then g(x) = T

and f ′|g|(x) = F and hence (f ′|g| ∨ g)(x) = F ∨ T = T = g(x). If x /∈ |g| then

g(x) = U or F and f ′|g|(x) = T and hence (f ′|g|∨ g)(x) = T ∨U or T ∨F = T ).

Therefore f ′|g| ∨ g = T̄ . Since f ′|g| ∈ Q and g ∈ Q, f ′|g| ∨ g ∈ Q (since Q is an
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ideal). Therefore T̄ ∈ Q which implies that Q = CX . Therefore P is maximal
ideal of CX .

6 The Prime Spectrum

Stone’s celebrated theorem [6]on the topological representation of Boolean al-
gebras was extended to several algebraic structures like Post algebras, dis-
tributive lattices, Stone lattices etc. In each of these, the set of prime ideals
together with the Stone topology (or the Hull- Kernel topology) plays the key
role. In this section we discuss the space of prime ideals of a C-algebra with
respect to the hull- kernel topology. We begin with the following.

Definition 6.1. Let A be a C-algebra and X the set of all prime ideals of
A. For any a ∈ A, let Na = {P | a /∈ P}.

Theorem 6.2. The class {Na | a ∈ A} forms a base for a topology on the
set X of all prime ideals of a C-algebra A. Also, for any a, b ∈ A, the following
hold.
(1) Na ∩Nb = Na∧b (2) Na∨b ⊆ Na ∪Nb

(3) Na′ ⊆ X rNa (4) Na∧a′ = φ.

Proof. Let P be any prime ideal of A. Then
(1) P ∈ Na ∩Nb ⇔ a /∈ P and b /∈ P ⇔ a ∧ b /∈ P ⇔ P ∈ Na ∩Nb.
Therefore Na ∩Nb = Na∧b

(2) P ∈ Na∨b ⇒ a ∨ b /∈ P ⇒ a /∈ P or b /∈ P ⇒ P ∈ Na or P ∈ Nb ⇒ P ∈
Na ∪Nb. Therefore Na∨b ⊆ Na ∪Nb.
(3) First note that a ∧ a′ is a left zero for ∧ and hence a ∧ a′ ∈ P.
P ∈ Na′ ⇒ a′ /∈ P ⇒ a ∈ P ⇒ P /∈ Na. Therefore Na′ ⊆ X rNa.
(4) By (3), Na ∧Na′ = φ, and hence, by (1), Na∧a′ = φ.

Thus {Na | a ∈ A} is a class of subsets of X which is closed under finite
intersections. Also, since every prime ideal is a proper ideal, we get that⋃
a∈A

Na = X. Thus {Na | a ∈ A} is a base for a topology on X.

Note that Na∨b may not be equal to Na ∪Nb and Na′ may not be equal to
X rNa. For, consider the following

Example 6.3. Consider the three element C-algebra C = {T, F, U}. Here
there is only one prime ideal, namely I0 = {F, U} and hence X = {I0}.
Note that NU = φ,NT = X, NU ∪ NT = X and NU∨T = NU = φ. Also,
NU ′ = NU = φ.

It is well known that, for any prime ideal P of a Boolean algebra B and for
any a ∈ B, either a ∈ P or a′ ∈ P but not both; that is, exactly one of a and
a′ belongs to P. But this is not true for prime ideals of a C-algebra. In fact,
we have the following.
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Theorem 6.4. The following are equivalent for any C-algebra A.
(1) A is a Boolean algebra
(2) X rNa = Na′, for any a ∈ A.
(3) For any prime ideal P of A and a ∈ A, exactly one of a and a′ belongs to
P .
(4) Na ∪Nb = Na∨b for any a, b ∈ A.

Proof. (1) ⇒ (2): Let A be a Boolean algebra and P ∈ X rNa. Then
P /∈ Na and hence a ∈ P so that a′ /∈ P (since A is a Boolean algebra and
a∨a′ = 1 /∈ P ). Therefore P ∈ Na′ . Thus, XrNa ⊆ Na′ . By Theorem 6.2(3),
Na′ ⊆ X rNa. Therefore X rNa = Na′ , for any a ∈ A.
(2) ⇒ (3): Suppose that XrNa = Na′ , for any a ∈ A. Let P be a prime ideal
of A and a ∈ A. Since a ∧ a′ ∈ P , we get that a ∈ P or a′ ∈ P . Suppose that
both a, a′ ∈ P . Then P /∈ Na and P /∈ Na′ , which is a contradiction to (2).
Therefore exactly one of a and a′ belongs to P .
(3) ⇒ (4): Suppose exactly one of a and a′ ∈ P , for any prime ideal P of A
and a ∈ A. Then Na∨b ⊆ Na ∪Nb ( by Theorem 6.2(2)).
Now P ∈ Na ∪ Nb ⇒ P ∈ Na or P ∈ Nb ⇒ a /∈ P or b /∈ P ⇒ a′ ∈ P or
b′ ∈ P ⇒ a′ ∧ b′ ∈ P ⇒ (a′ ∧ b′)′ /∈ P (since by assumption)⇒ a ∨ b /∈ P ⇒
P ∈ Na∨b. Therefore Na ∪Nb ⊆ Na∨b. Thus Na ∪Nb = Na∨b for any a, b ∈ A.
(4) ⇒ (1): Suppose Na∪Nb = Na∨b for any a, b ∈ A. Then Na∨b = Nb∨a (Since
Na ∪Nb = Nb ∪Na). We know that < a ∨ b >=< b ∨ a > and hence
a ∨ b = (a ∨ b) ∧ (b ∨ a) (by Lemma 3.1) = (b ∨ a) ∧ (a ∨ b) = b ∨ a.
Therefore a ∨ b = b ∨ a for all a, b ∈ A. In [7] it is proved that a C-algebra
is a Boolean algebra if and only if a ∨ b = b ∨ a for all a, b ∈ A. Thus A is a
Boolean algebra.

We have proved in Theorem 6.2 that the class {Na | a ∈ A} forms a base
for a topology on X.

Definition 6.5. The topology generated by {Na | a ∈ A} on the set X
of prime ideals of A is called the Stone topology. X together with the Stone
topology is called Stone space or the prime spectrum and denote it by Spec A.

The Stone topology on X is also called the hull-kernel topology, the reason
being the following.

Theorem 6.6. Let X be the prime spectrum of a C-algebra A. For any
S ⊆ A and Y ⊆ X, we define the hull of S and the kernel of Y respectively by
h(S) = {P ∈ X | S ⊆ P} and K(Y ) =

⋂
P∈Y

P.

Then, for any Y ⊆ X, the closure Ȳ of Y is equal to the hull of the kernel of
Y ; that is Ȳ = h(K(Y )).
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Proof. First we prove that h(S) is closed in X, for any S ⊆ A.
We have h(S) = {P ∈ X | S ⊆ P} = X r {P ∈ X | S * P} = X r

⋃
a∈S

Na.

Since each Na is open,
⋃

a∈S

Na is also open. Therefore X r
⋃

a∈S

Na is closed.

That is h(S) is closed. Thus h(K(Y )) is closed.
Let Y ⊆ X and Q ∈ Y . Then

⋂
P∈Y

P ⊆ Q. Therefore Q ∈ h(
⋂

P∈Y

P ). Hence

h(
⋂

P∈Y

P ) is a closed set containing Y .

Let C be any closed set in X containing Y . Then XrC is an open set in X and
hence X r C =

⋃
a∈I

Na for some I ⊆ A, which implies that C = X r
⋃
a∈I

Na =

h(I). Therefore Y ⊆ h(I) (since C is closed such that Y ⊆ C).
Now let P ∈ Y . Then P ∈ h(I) and hence I ⊆ P (since by definition of h(S)).
Therefore I ⊆ P , for every P ∈ Y . That is I ⊆ ⋂

P∈Y

P . Therefore

h(
⋂

P∈Y

P ) ⊆ h(I) = C. Thus h(
⋂

P∈Y

P ) is the smallest closed set containing Y .

Hence h(K(Y )) is the closure of Y in X.

Definition 6.7. For any S ⊆ A, we define
N(S) = X r h(S) = {P ∈ X | S * P}.

Since N(S) =
⋃

a∈S

Na, it follows that the open subsets of the prime spectrum

X are precisely of the form N(S), S ⊆ A, and the closed subsets of X are of
the form h(S), S ⊆ A. It can be easily verified that N(S) = N(< S >) for
any S ⊆ A.

Theorem 6.8. For any ideal I of A, consider the open set
N(I) = {P ∈ X | I * P}. Then the map I 7→ N(I) is an isomorphism of the
lattice =(A) of ideals of A onto the lattice of open subsets of X.

Proof. Let I, J ∈ =(A). Then
N(I ∩ J) = {P ∈ X | I ∩ J * P}

= X r {P ∈ X | I ∩ J ⊆ P}
= X r ({P ∈ X | I ⊆ P} ∪ {P ∈ X | J ⊆ P})
= (X r {P ∈ X | I ⊆ P}) ∩ (X r {P ∈ X | J ⊆ P})
= N(I) ∩N(J)

N(I ∪ J) = {P ∈ X | I ∪ J * P}
= {P ∈ X | I * p} ∪ {P ∈ X | J * P}
= N(I) ∪N(J)

Therefore the map I 7→ N(I) is a homomorphism of the lattice =(A) into the
lattice of open subsets of X.
Suppose I 6= J . Then I * J or J * I. I * J then there exists a ∈ I such that
a /∈ J . Since a /∈ J , there exists a prime ideal P such that J ⊆ P and a /∈ P .
Therefore J ⊆ P and I * P (since a ∈ I and a /∈ P ). Therefore P /∈ N(J)
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and P ∈ N(I). Thus N(I) * N(J). Therefore N(I) 6= N(J).
Therefore the map I 7→ N(I) is an injective map.
Further, if G is any subset of X, then G =

⋃
a∈S

Na for some subset S of A and

hence G = N(S) = N(< S >). Therefore the map I 7→ N(I) is a surjective
map. Thus the map is an isomorphism of lattices.

In the following we prove certain topological properties of the prime spec-
trum of a C-algebra.

Theorem 6.9. Let X be the prime spectrum of a C-algebra A. Then Na is
compact for any a ∈ A.

Proof. To prove the theorem it is enough if we prove that every basic open
cover of Na contains a finite sub cover. Let B ⊆ A such that Na =

⋃
a∈B

Nb.

Let I =< B >, the ideal generated by B in A. If a /∈ I then there exists a
prime ideal P such that I ⊆ P and a /∈ P , which imply that P ∈ Na and
P /∈ Nb for all b ∈ B, a contradiction to the assumption that Na ⊆

⋃
b∈B

Nb.

Thus a ∈ I =< B > and hence a =
n∨

i=1

(yi ∧ xi) where yi ∈ A, xi ∈ B.

Now Na = N nW
i=1

(yi∧xi)
⊆

n⋃
i=1

Nyi∧xi
(by Theorem 6.2(2))

⊆
n⋃

i=1

Nxi
(since Ny∧x ⊆ Ny ∩Nx ⊆ Nx)

=
⋃
b∈S

Nb where S = {x1, x2, ..., xn}, which is

a finite subset of B. Thus Na is compact.

Corollary 6.10. Let Y be an open subset of the prime spectrum X of a
C-algebra A. Then Y is compact if and only if Y = N(I) for some finitely
generated ideal I of A.

Proof. Suppose that Y is compact. Since Y is an open subset of X, we have
that Y =

⋃
a∈S

Na for some S ⊆ A. From the compactness of Y , it follows that

Y =
n⋃

i=1

Nsi
= N(< {s1, s2, ..., sn} >). The converse follows from the facts

that any finite union of compact sets is compact and that N(I) = N(< F >
) =

⋃
a∈F

Na where F is a finite set generating I.

Corollary 6.11. If A is a C-algebra with T , then Spec A is compact.

Proof. Let A be a C-algebra with T ; that is T is the identity for ∧ in A. Then
< T >= A and hence Spec A = NT , which is compact.
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In general the prime spectrum of a C-algebra may not be compact. For con-
sider the following example, in which the C-algebra is not possessing identity
for ∧.

Example 6.12. Let X be an infinite set and C = {T, F, U} be the
three element C-algebra. Let A = {f : X → C | f(x) = U for all but finite
number of x ∈ X} and |f | = {x ∈ X | f(x) 6= U}, for any f ∈ CX . Therefore
A = {f : X → C | |f | is finite }.
First we show that A is a subalgebra of the C-algebra CX (refer [7]). Since
the variety of C-algebras satisfies the identities x′′ = x and (x ∧ y)′ = x′ ∨ y′,
it is enough if we show that A is closed under ∧ and ′ (or ∨ and ′). Note
that |f | = |f ′| for any f ∈ CX . Let f ∈ A. Then |f | is finite and so is |f ′|.
Therefore f ′ ∈ A. Let f, g ∈ A. Suppose that x /∈ |f |. Then f(x) = U .
Now, f(x) ∨ g(x) = U which implies that (f ∨ g)(x) = U that is, x /∈ |f ∨ g|.
Therefore, x ∈ |f ∨ g| implies that x ∈ |f |. That is, |f ∨ g| ⊆ |f |. On the
other hand, if |f | is finite then |f ∨ g| is finite and therefore f ∨ g ∈ A. Thus
A is a C-algebra with respect to the point wise operations. Suppose if possible
that there exist h ∈ A such that h ∧ f = f = f ∧ h, for all f ∈ A. Then
h(x) ∧ f(x) = f(x), for all f ∈ A, which is possible if and only if h(x) = T ,
for all x ∈ X. Therefore h /∈ A. Thus A has no identity for ∧.
For each x ∈ X, let Px = {f ∈ A | f(x) = F or U}. Then it can be easily
verified that Px is an ideal of A. Now, let f ∧g ∈ Px. Then f(x)∧g(x) = F or
U that is, f(x) ∧ g(x) 6= T . If f(x) = T and g(x) = T then f(x) ∧ g(x) = T .
Therefore f(x) 6= T or g(x) 6= T that is, f ∈ Px or g ∈ Px. Thus Px is a
prime ideal of A.
Let X be the prime spectrum of A. We have that X =

⋃
a∈A

Na. Suppose

that X is compact. Then X =
n⋃

i=1

Nfi
, for some f1, f2, ...., fn ∈ A. Now, let

Y =
n⋃

i=1

|fi|. Then Y is a finite subset of X (since fi ∈ A, |fi| is finite). Since

X is infinite, we can choose x0 ∈ X r Y . Now, Px0 ∈ X =
⋃

Nfi
and hence

Px0 ∈ Nfi
and therefore fi /∈ Px0 which implies that fi(x0) = T , which is a

contradiction to the fact that x0 /∈ |fi|. Thus X is not compact.

In the following we discuss the separation property of the topological space
Spec A, for a general C-algebra A.

Theorem 6.13. Spec A is a T0 space, for any C-algebra A.

Proof. Let P 6= Q be prime ideals. Then P * Q or Q * P . Suppose P * Q.
Choose a ∈ P such that a /∈ Q. Then Q ∈ Na, P /∈ Na. Thus Na is an open
set such that Na containing Q but not containing P . Thus Spec A is a T0

space.
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7 Open Problems

1. It is known that in a Boolean algebra, every prime ideal is maximal. It
is under investigation that whether every prime ideal is maximal or not
in a C-algebra.

2. If A1, A2 are two C-algebras in which prime ideals are all maximal. Does
the direct product A1 × A2 have the same property.
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