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Abstract

In this work, we apply Guo-Krasnosel’skii fixed point the-
orem and use the appropriate Green’s function in the study
of existence of positive solution for the three point boundary
value problem:

u′′ + g(t)f (u) = 0, 0 < t < 1

u (0) = αu′ (0) , u (1) = βu′ (η)

where η ∈ (0, 1) , α, β ∈ R+, g ∈ C [0, 1] , f ∈ C [0,∞[ .

Keywords: Fixed point Theorem, Three point boundary value problem, Non-
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1 Introduction

Three point boundary value problems (BVP) for second order differential equa-
tions, are models for many problems in physics, biology, chemistry....For ex-
ample, second order three point BVP are used as models for the membrane re-
sponse of a spherical cap, in nonlinear diffusion generated by nonlinear sources
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and in chemical reactor theory. Our attention will be focused in particular on
a BVP that requires nonlocal boundary conditions, this is because such con-
ditions allows more precise measurements needed in some cases.

We study the existence of nontrivial positive solution for the following
second order three point boundary value problem:

u′′ + g(t)f (u(t)) = 0, 0 < t < 1 (1)

u (0) = αu′ (0) , u (1) = βu′ (η) (2)

where η ∈ (0, 1) , α, β ∈ R+, g ∈ C [0, 1] , f ∈ C ([0,∞[).
This study is motived by Il’in and Moiseev’s results [2], on similar boundary

value problems for certain linear ordinary differential equations, by Gupta’s
results in [7] for nonlinear ordinary differential equations and by the fact that
existence of positive solutions of nonlinear multi-point boundary value prob-
lems has recently attracted particular attention from many authors and various
methods including, among others, coincidence degree theory, Leray-Schauder
fixed point alternative theorem are used. Also, inspired by [1,3,4,5,8-10], and
under certain conditions on the nonlinearity of f and by using the well known
Guo’s fixed point theorem and the Green’s function for this problem, we study
the existence of positive solutions to problem (1)-(2).

This paper is organized as follows. In section 2 we present some prelimi-
naries, give the Green’s function for the problem (1)-(2), state some definitions
then expose the Guo-Krasnosel’skii Theorem. In section 3 we give the main
results and proofs.

2 Description of the problem and preliminar-

ies Lemmas

Let E = C [0, 1] , with supremum norm ||y|| = max
t∈[0,1]

|y (t)| , ∀ y ∈ E. Denote

E+ the set {x ∈ E, x(t) ≥ 0, t ∈ [0, 1]} .
Now we state two preliminary results.

Lemma 2.1 Let y ∈ E+. If β 6= α + 1, then the three point BVP{
u′′ + g(t)f(y (t)) = 0, 0 < t < 1
u (0) = αu′ (0) , u (1) = βu′ (η)

(3)

has a unique solution

u(t) = −
∫ t

0

(t− s) g(s)f(y (s))ds +
t + α

1 + α− β

∫ 1

0

(1− s) g(s)f(y (s))ds−

β
t + α

1 + α− β

∫ η

0

g(s)f(y (s))ds.
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Proof. The proof is easy, then we omit it.

Lemma 2.2 Under the assumptions of Lemma 2.1, the solution of the prob-
lem (3) can be written as

u(t) =

∫ 1

0

G(t, s)g(s)f(y (s)))ds

where G(t, s) is the Green’s function defined by

G(t, s) =



(1− β − t) (s + α)

1 + α− β
, 0 ≤ s ≤ t < 1; 0 ≤ s ≤ η < 1

(s + α) (1− t) + β (t− s)

1 + α− β
, 0 < η ≤ s ≤ t ≤ 1

(t + α) (1− β − s)

1 + α− β
, 0 ≤ t ≤ s ≤ η < 1

(t + α) (1− s)

1 + α− β
, 0 ≤ t ≤ s < 1, 0 < η ≤ s < 1

(4)

Proof. Let t < η, using Lemma 2.1, we get

u(t) =

∫ t

0

(1− β − t) (s + α)

1 + α− β
g(s)f(y (s))ds (5)

+

∫ η

t

(t + α) (1− β − s)

1 + α− β
g(s)f(y (s))ds

+
t + α

1 + α− β

∫ 1

η

(1− s) g(s)f(y (s))ds.

Now if t > η, then

u(t) =

∫ η

0

[
(−t + s) +

t + α

1 + α− β
(1− s)− β

t + α

1 + α− β

]
g(s)f(y (s))ds

+

∫ t

η

[
(−t + s) +

t + α

1 + α− β
(1− s)

]
g(s)f(y (s))ds

+
t + α

1 + α− β

∫ 1

t

(1− s) g(s)f(y (s))ds

=

∫ η

0

(1− β − t) (s + α)

1 + α− β
g(s)f(y (s))ds (6)

+

∫ t

η

(s + α) (1− t) + β (t− s)

1 + α− β
g(s)f(y (s))ds

+
t + α

1 + α− β

∫ 1

t

(1− s) g(s)f(y (s))ds.

From (5) and (6) we obtain u(t) =
∫ 1

0
G(t, s)g(s)f(y (s)))ds, where G(t, s) is

defined by (4).
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Lemma 2.3 For all t, s ∈ [0, 1] and if β 6= α + 1 and 0 < β ≤ 1, then

0 < k(τ)G(s, s) ≤ G(t, s) ≤ 2 + α

α
G(s, s) (7)

where

k(τ) = min

{
α

(1 + α)
, 1− β − τ

}
0 < τ < 1− β.

Proof. Let t, s ∈ [0, 1] such that G(s, s) 6= 0 then by using (4) it yields

G(t, s)

G(s, s)
=

(1− β − t) (s + α)

(1− β − s) (s + α)
≤ (1− β − t)

(1− β − s)
≤ 1

0 ≤ s ≤ t < 1; 0 ≤ s ≤ η < 1.

G(t, s)

G(s, s)
=

(s + α) (1− t) + β (t− s)

(s + α) (1− s)
≤ 2 + α

α
0 < η ≤ s ≤ t ≤ 1.

G(t, s)

G(s, s)
=

(t + α) (1− β − s)

(s + α) (1− β − s)
≤ 1

0 ≤ t ≤ s ≤ η < 1.

G(t, s)

G(s, s)
=

(t + α)

(s + α)
≤ 1, 0 ≤ t ≤ s < 1, 0 < η ≤ s < 1

so, we get
G(t, s)

G(s, s)
≤ 2 + α

α
, ∀s, t ∈ [0, 1] .

Now we look for lower bounds of G(t, s) for 0 ≤ t ≤ τ < 1− β.

G(t, s)

G(s, s)
=

1− β − t

1− β − s
≥ 1− β − τ

1− β
≥ (1− β − τ)

0 ≤ s ≤ t ≤ 1; 0 ≤ s ≤ η < 1.

G(t, s)

G(s, s)
=

(s + α) (1− t) + β (t− s)

(s + α) (1− s)

≥ (1− t)

(1− s)
≥ 1− τ

1− η
≥ (1− τ) ,

0 < η ≤ s ≤ t < 1.

G(t, s)

G(s, s)
=

(t + α)

(s + α)
≥ α

(1 + α)
0 ≤ t ≤ s ≤ η < 1.
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G(t, s)

G(s, s)
=

(t + α)

(s + α)
≥ α

(1 + α)
0 ≤ t ≤ s < 1, 0 < η ≤ s < 1.

Finally, if we put k(τ) = min

{
α

(1 + α)
, 1− β − τ

}
, we get

G(t, s)

G(s, s)
≥ k(τ).

Lemma 2.4 Under the assumptions of Lemma 2.3 and if y ∈ E+, then the
solution of problem (3) is nonnegative and satisfies

min
t∈[0,τ ]

u(t) ≥ λ ‖u‖

where λ = k(τ)
α

2 + α
.

Proof. Applying the right hand side of inequality (7) we get

u(t) ≤ 2 + α

α

∫ 1

0

G(s, s)g(s)f(y(s))ds,

then ‖u‖ ≤ 2 + α

α

∫ 1

0
G(s, s)g(s)f(y(s))ds. Consequently

∫ 1

0

G(s, s)g(s)f(y(s))ds ≥ α

2 + α
‖u‖ .

Taking into account the left hand side of inequality (7) we obtain for all t ∈
[0, τ ]

u(t) ≥ k(τ)

∫ 1

0

G(s, s)g(s)f(y(s))ds ≥ k(τ)
α

2 + α
‖u‖ .

Thus, min
t∈[0,τ ]

u(t) ≥ k(τ)
α

2 + α
‖u‖ = λ ‖u‖ .

Now we provide some background definitions.

Definition 2.5 Let E be a Banach space. A nonempty closed convex subset
K ⊂ E is called a cone if it satisfies the following two conditions:

(i) x ∈ K and λ ≥ 0 implies λx ∈ K.
(ii) x ∈ K and −x ∈ K implies x = 0.

Definition 2.6 An operator is called completely continuous if it is contin-
uous and maps bounded sets into precompact sets.

Now we state the well known Guo-Krasnosel’skii fixed point Theorem [6].
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Theorem 2.7 Let E be a Banach space, and let K ⊂ E, be a cone. Assume
Ω1, Ω2 are open subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

A : K ∩
(
Ω2\Ω1

)
→ K

be a completely continuous operator such that
(i) ||Au|| ≤ ||u|| , u ∈ K ∩ ∂Ω1, and ||Au|| ≥ ||u|| , u ∈ K ∩ ∂Ω2; or
(ii) ||Au|| ≥ ||u|| , u ∈ K ∩ ∂Ω1, and ||Au|| ≤ ||u|| , u ∈ K ∩ ∂Ω2.
Then A has a fixed point in K ∩

(
Ω2\Ω1

)
.

Definition 2.8 A function u(t) is called positive solution of problem (1)-(2)
if u(t) ≥ 0, ∀t ∈ [0, 1] .

Define the operator T by

Tu(t) =

∫ 1

0

G(t, s)g(s)f(u(s))ds, ∀u ∈ C [0, 1] .

Lemma 2.9 A function u(t) ∈ E is a solution of the BVP (1)-(2) if and
only if Tu (t) = u(t).

3 Main Results

In this section, we present and prove our main results, before that, we make
the following assumptions

(I1)g ∈ C([0; 1]; [0;∞)) and there exists x0 ∈ [0, 1] such that g(x0) > 0.
(I2)f ∈ C([0;∞); [0;∞)) and there exists nonnegative constants a and A,

such that

a = lim
u→0+

f (u)

u
, A = lim

u→∞

f (u)

u
.

Remark. The case a = 0 and A = ∞ is called superlinear case and the case
a = ∞ and A = 0 is called sublinear case.

The main result of this work is the following

Theorem 3.1 Under the assumptions I1 and I2, the problem (1)-(2) has at
least one positive solution in the both cases superlinear as well as sublinear.

Proof. To prove this theorem we apply Guo-Krasnosel’skii fixed point The-
orem (see Theorem 2.7). Denote

K =

{
y/y ∈ C [0, 1] , y ≥ 0, min

t∈[0,τ ]
y (t) ≥ λ ||y||

}
where λ is defined in Lemma 2.4. It is easy to check that K is a nonempty
closed and convex subset of E and satisfies the two statements in Definition
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2.5, so it is a cone. Using Lemma 2.4 we see that TK ⊂ K. Applying Ascoli
Arzela Theorem we prove that T is completely continuous operator in E.

The superlinear case: Since a = lim
u→0+

f (u)

u
= 0, then for any ε > 0,

∃δ1 > 0, such that 0 < y ≤ δ1 implies f (y) ≤ εy. Let Ω1 be an open set in E
defined by ||Tu|| ≤ ||u|| , ∀u ∈ K ∩ ∂Ω1. Then, for u ∈ K ∩ ∂Ω1, it yields

Tu(t) =

∫ 1

0

G(t, s)g(s)f(u(s))ds ≤ 2 + α

α
ε ||u||

∫ 1

0

G(s, s)g(s)ds. (8)

Taking into account that g (x0) > 0, we can choose ε such

ε ≤ α

(2 + α)
∫ 1

0
G(s, s)g(s)ds

(9)

The inequalities (8) and (9) imply that ||Tu|| ≤ ||u|| , ∀u ∈ K ∩ ∂Ω1. Now

from A = lim
u→∞

f (u)

u
= ∞, we have ∀M > 0, ∃H > 0, such that f (y) ≥

My for y ≥ H. Let H1 = max
{
2δ1,

H
λ

}
and denote by Ω2 the open set

{y ∈ E/ ||y|| < H1} . If u ∈ K ∩ ∂Ω2 then

min
t∈[0,τ ]

u (t) ≥ λ ||u|| = λH1 ≥ H

and so

Tu(t) =

∫ 1

0

G(t, s)g(s)f(u(s))ds ≥ k(τ)

∫ 1

0

G(s, s)g(s)f(u(s))ds

≥ k(τ)M ||u||
∫ 1

0

G(s, s)g(s)ds.

Let us choose M such that M ≥ 1

k(τ)
∫ 1

0
G(s, s)g(s)ds

, then we get Tu(t) ≥

||u|| . Hence,
||Tu|| ≥ ||u|| , ∀u ∈ K ∩ ∂Ω2.

By the first part of Theorem 2.7, T has a fixed point in K∩
(
Ω2\Ω1

)
such that

H ≤ ||u|| ≤ H1. This completes the superlinear case of Theorem 3.1.
The sublinear case: Reasoning as in superlinear case, we obtain that the

problem (1)-(2) has at least one positive solution. This achieves the proof of
Theorem 3.1.

4 Open problem

In this work, we have assumed that f and g are continuous functions, it will
be interesting to consider the same problem but with singularities.

As the conditions (2) are imposed for the first time, they can be introduced
to study higher order multipoint boundary value problems.



A Positive Solution For a Nonlocal... 43

References

[1] H. Chen, Positive solutions for the nonhomogeneous three-point bound-
ary value problem of second-order differential equations, Math. Comput.
Modelling, 45 (2007) 844–852.

[2] V. A. Il’in, E. I., Moiseev, Nonlocal boundary value problem of the first
kind for a Sturm-Liouville operator in its differential and finite difference
aspects, Differential Equations, 23, 7, (1987), 803–810.

[3] J. Graef, J. Henderson, B. Yang, Positive solution to a fourth order three
point boundary value problem, Discrete Contin. Dyn. Syst, 2009, 269–275.

[4] A. Guezane-Lakoud, S. Kelaiaia, Solvability of a nonlinear boundary value
problem, EJDE, Vol. 2010, No. 139, (2010), 1–9.

[5] A.Guezane-Lakoud, L. Zenkoufi, Positive solution for a three point non-
linear boundary value problem for second order differential equation, Int.
J. App. Math. Stat, Vol 20, M11, (2011), 38–46.

[6] D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Aca-
demic Press, San Diego, 1988.

[7] C. P. Gupta, Solvability of a three-point nonlinear boundary value problem
for a second order differential equation, J. Math. Anal. Appl. 168, (1992),
540– 551.

[8] M. F. Li and C. Xue, Multiple Positive Solutions For Impulsive Singu-
lar Boundary Value Problems With Integral Boundary ConditionsInt. J.
Open Problems Compt. Math., Vol. 2, No. 4, (2009) 546-561.

[9] R. Ma, Existence of positive solutions for superlinear semi positive m-
point boundary value problems, Proc. Edinburgh Math. Soc., 46 (2003),
279–292.

[10] Y-P. Sun, Positive solutions for third order three point nonhomogeneous
boundary value problems, Applied Mathematics Letters, 22 (2009) 45–51.


