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Abstract

In this paper, we give answer to an open problem posed
in the paper [Ling Zhu, Some New Wilker-Type inequalities
for Circular and Hyperbolic Functions, Abstract and Applied
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1 Introduction

In the paper [2], Ling Zhu has posted the following open problem: find the
respective largest range of α such that the inequalities (1) and (2) hold.

Theorem 1.1 (see [2]) Let 0 < x < π/2 and α ≥ 1. Then the inequality(
sin x

x

)2α

+
(

tan x

x

)α

>
(

x

sin x

)2α

+
(

x

tan x

)α

> 2 (1)

holds.

Theorem 1.2 (see [2]) Let x > 0 and α ≥ 1. Then the inequality(
sinh x

x

)2α

+

(
tanh x

x

)α

>
(

x

sinh x

)2α

+
(

x

tanh x

)α

> 2 (2)

holds.
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There are a lot of papers (see [2]) devoted to Wilker’s inequality:

Problem 1.3 Let 0 < x < π/2. Then

(
sin x

x

)2

+
(

tan x

x

)
> 2 (3)

holds.

Zhu (see [2]) in his paper obtained four new Wilker-type inequalities in
exponential form for circular and hyperbolic functions [(1), (2), (4), (5)].

Theorem 1.4 (see [2]) Let 0 < x < π/2 and α ∈ R, and α 6= 0. Then

(i) when α > 0, the inequality(
sin x

x

)2α

+
(

tan x

x

)α

>
(

x

sin x

)2α

+
(

x

tan x

)α

holds. (4)

(ii) when α < 0, inequality (4) is revered.

Theorem 1.5 (see [2]) Let x > 0, α ∈ R, and α 6= 0. Then

(i) when α > 0, the inequality(
sinh x

x

)2α

+

(
tanh x

x

)α

>
(

x

sinh x

)2α

+
(

x

tanh x

)α

holds. (5)

(ii) when α < 0, inequality (5) is revered.

2 Main Results

In this paper we prove two lemmas.

Lemma 2.1 Let 0 < x < π/2 and α ≥ α0 = ln 2/ (2(ln π − ln 2)) . Then(
x

sin x

)2α

+
(

x

tan x

)α

> 2 (6)

holds.
Furthermore, α0 = ln 2/ (2(ln π − ln 2)) is the best constant in (6).

Lemma 2.2 Let x > 0 and α ≥ α1 = 0.6. Then the inequality(
x

sinh x

)2α

+
(

x

tanh x

)α

> 2 (7)

holds.
Furthermore, α1 = 0.6 is the best constant in (7).
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3 Proof of Lemmas

The following lemmas are necessary.

Lemma 3.1 (see [2]). Let f, g : [a, b] → R be two continuous functions
which are differentiable on (a, b). Further, let g′ 6= 0 on (a, b). If f ′/g′ is
increasing (or decreasing) on (a, b), then the functions (f(x) − f(b))/(g(x) −
g(b)) and (f(x) − f(a))/(g(x) − g(a)) are also increasing (or decreasing) on
(a, b).

Lemma 3.2 (see [2]). Let an and bn (n = 0, 1, 2, ...) be real numbers, and
let the power series A(t) =

∑∞
n=0 ant

n and B(t) =
∑∞

n=0 bnt
n be convergent for

|t| < R. If bn > 0 for n = 0, 1, 2, ..., and if an/bn is strictly increasing (or
decreasing) for n = 0, 1, 2, ..., then the function A(t)/B(t) is strictly increasing
(or decreasing) on (0, R).

Proof of Lemma 2.1. Denote H(α, x) = (x/ sin x)2α + (x/ tan x)α − 2
for α ≥ α0, x ∈ (0, π/2). By a simple computation we obtain

∂H(α, x)

∂x
= 2α

(
x

sin x

)2α−1 (sin x− x cos x)

sin2 x
+ α

(
x

tan x

)α−1 (sin x cos x− x)

sin2 x
.

Let α is an arbitrary fixed value such that 1 > α ≥ α0. Denote Hα(x) =
H(α, x) for x ∈ (0, π/2). It is evident that H ′

α(x) = ∂H(α, x)/∂x ≥ 0 on
(0, π/2) iff

α ≥
ln
(

x−sin x cos x
2 cos x(sin x−x cos x)

)
ln
(

2x
sin 2x

) , x ∈ (0, π/2).

If we show that there is only one xα ∈ (0, π/2) such that H ′
α(xα) = 0 and

H ′
α(x) > 0 for x ∈ (0, xα), the proof will be complete. Really, it implies

Hα(x) > min

{
lim

x→0+
Hα(x), lim

x→π
2
−

Hα(x)

}
for all x ∈ (0, π/2).

limx→π
2
− Hα(x) = (π2/4)α − 2 gives limx→π

2
− Hα(x) > 0 for 1 > α > α0. It

implies Hα(x) > 0 for x ∈ (0, π/2) because of limx→0+ Hα(x) = 0. If α < α0

then limx→π
2
− Hα(x) < 0. From this and from the continuity of Hα(x) we get

that α0 is the best constant.
To prove the existence of xα it suffices to show that f(x) is an increasing

function for x ∈ (0, π/2), where

f(x) =
ln
(

x−sin x cos x
2 cos x(sin x−x cos x)

)
ln
(

2x
sin 2x

) .
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Really, from f(0.1) = 0.6 < α0 = 0.767464267, limx→π/2− f(x) = 1 and from
the continuity of f(x) on (0, π/2) we obtain that for each α such that α0 ≤
α < 1 there is only one xα ∈ (0, π/2) such that H ′

α(x0) = 0 and H ′
α(x) > 0 for

x ∈ (0, xα).
To prove f(x) is an increasing function on (0, π/2) it suffices to show that

p′(x)/q′(x) is an increasing function on (0, π/2), where

p(x) = ln

(
x− sin x cos x

2 cos x(sin x− x cos x)

)
and q(x) = ln

(
2x

sin 2x

)
.

It follows from Lemma 3.1 (see [2]), limx→0+ 2x/ sin 2x = 1, and from
limx→0+(x− sin x cos x)/(2 cos x(sin x− x cos x)) = 1. Direct calculation yields

p′(x)

q′(x)
=

(sin2 x cos x− 2x2 cos x + x sin x)

(x− sin x cos x)(sin x− x cos x)

x sin2 x

(sin x cos x− x cos2 x + x sin2 x)
.

Denote

G(x) =
(sin2 x cos x− 2x2 cos x + x sin x)

(x− sin x cos x)(sin x− x cos x)
,

R(x) =
x sin2 x

(sin x cos x− x cos2 x + x sin2 x)
.

G(x) is a positive increasing function on (0, π/2). (See the proof in the paper
[2], page 6.) From

R′(x) =
sin x(sin3 x cos x + x sin x− 2x2 cos x)

(sin x cos x− x cos2 x + x sin2 x)2
=

x2 sin x cos x

(sin x cos x− x cos2 x + x sin2 x)2

(
sin2 x

x2
+

tan x

x
− 2

)
> 0

for x ∈ (0, π/2) we have R(x) is a positive increasing function. It implies that
p′(x)/q′(x) = R(x)G(x) is an increasing function. The proof of Lemma 2.1 is
completed.

Proof of Lemma 2.2 Denote J(α, x) = (x/ sinh x)2α + (x/ tanh x)α − 2 for
α ≥ α1, x > 0. Direct computation results

∂J(α, x)

∂x
=

2α
(

x

sinh x

)2α−1
(

sinh x− x cosh x

sinh2 x

)
+ α

(
x

tanh x

)α−1
(

sinh x cosh x− x

sinh2 x

)
.

Let α is an arbitrary fixed value such that 1 > α ≥ α1. Denote Jα(x) = J(α, x)
for x > 0. If we show that J ′α(x) = ∂J(α, x)/∂x > 0, the proof will be complete
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because of limx→0+ Jα(x) = 0. Elementary calculation gives that J ′α(x) > 0 on
(0,∞) iff(

x

tanh x

)α−1

(sinh x cosh x− x) > 2
(

x

sinh x

)2α−1

(x cosh x− sinh x) . (8)

From sinh x cosh x − x > 0 and x cosh x − sinh x > 0, we obtain that (8) is
equivalent to

α >
ln
(

sinh x cosh x−x
2 cosh x(x cosh x−sinh x)

)
ln
(

2x
sinh 2x

) . (9)

Denote

g(x) =
ln
(

sinh x cosh x−x
2 cosh x(x cosh x−sinh x)

)
ln
(

2x
sinh 2x

) , x > 0.

We show that g(x) is a decreasing function and limx→0+ g(x) = 0.6. Cusa-
Huygeus’ inequality (sinh x)/x < 2/3 + (cosh x)/3 implies

(sinh x cosh x − x)/(2 cosh x(x cosh x − sinh x)) < 1. From this and from
2x < sinh(2x) we get that g(x) is a positive function. Using

lim
x→0+

sinh x cosh x− x

2 cosh x(x cosh x− sinh x)
= 1, lim

x→0+

2x

sinh 2x
= 1

and Lemma 3.1 [2] we obtain that if

gg(x) =

(
ln
(

sinh x cosh x−x
2 cosh x(x cosh x−sinh x)

))′
(
ln
(

2x
sinh 2x

))′
is a decreasing function, then g(x) is a decreasing function. Straightforward
computation leads to(

ln

(
sinh x cosh x− x

2 cosh x(x cosh x− sinh x)

))′
=

2 sinh(2x) + 4x− sinh(4x) + 8x2 sinh(2x)− 4x cosh(2x)

(sinh(2x)− 2x)(2x + 2x cosh(2x)− 2 sinh(2x))

and to (
ln
(

2x

sinh 2x

))′
=

sinh(2x)− 2x cosh(2x)

x sinh(2x)
.

From this gg(x) = r(x)s(x), where

r(x) =
x sinh2 x

2x cosh2 x− x sinh x cosh x
,
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s(x) =
x sinh x + sinh2 x cosh x− 2x2 cosh x

(sinh x cosh x− x)(x cosh− sinh x)
.

It is evident that 2x cosh2 x−x sinh x cosh x > 0 and x sinh x+sinh2 x cosh x−
2x2 cosh x > 0 for x > 0. We show that r(x), s(x) are decreasing functions. It
implies that gg(x) = r(x)s(x) is a decreasing function. By a simple computa-
tion we obtain

r′(x) =
rr(x)

(2x cosh2 x− x sinh x cosh x)2
,

where

rr(x) = x2 sinh x cosh x

(
2− tanh x

x
− sinh2 x

x2

)
< 0.

So, r(x) is a decreasing function. We note that limx→0+ r(x) = 3/4. Now
we prove that s(x) is a decreasing function and limx→0+ s(x) = 8/10. After
rewriting s(x) and using elementary formulas we obtain

s(x) =
4x sinh x + cosh(3x)− (1 + 8x2) cosh x

x sinh(3x)− cosh(3x) + 5x sinh x + (1− 4x2) cosh x
.

From the following power series expansions cosh x =
∑∞

n=0 x2n/(2n)!, sinh x =∑∞
n=0 x2n+1/(2n + 1)!, we get

s(x) =
4x

∞∑
n=0

x2n+1

(2n+1)!
+

∞∑
n=0

(3x)2n

(2n)!
− (1 + 8x2)

∞∑
n=0

(x)2n

(2n)!

x
∞∑

n=0

(3x)2n+1

(2n+1)!
−

∞∑
n=0

(3x)2n

(2n)!
+ 5x

∞∑
n=0

x2n+1

(2n+1)!
+ (1− 4x2)

∞∑
n=0

(x)2n

(2n)!

.

Direct computation leads to s(x) =
∑∞

n=1 anx
2n/

∑∞
n=1 bnx

2n, where

an =
32n + 24n− 32n2 − 1

(2n)!
bn =

32n−1(2n− 3) + 18n− 16n2 + 1

(2n)!
.

It implies that limx→0+ s(x) = a3/b3 = 512/640 = 8/10 and so we have
limx→0+ g(x) = limx→0+ gg(x) = limx→0+ s(x) limx→0+ r(x) = 6/10. We show
that {an/bn}∞n=3 is a decreasing sequence. Then s(x) will be a decreasing func-
tion for x > 0 (see Lemma 3.2). To show this, it suffices to prove that the
function

p(x)

q(x)
=

9x + 24x− 32x2 − 1

9x(2
3
x− 1) + 18x− 16x2 + 1

is decreasing on (2,∞). Because of p(2) = q(2) = 0, it suffices to prove that

t(x) =
p′(x)

q′(x)
=

9x ln 9 + 24− 62x

9x
(

2 ln 9
3

x + 2
3
− ln 9

)
+ 18− 32x
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is decreasing on (2,∞) (see Lemma 3.1). By a simple computation we obtain
that

t′(x) =
tt(x)(

9x
(

2 ln 9
3

x + 2
3
− ln 9

)
+ 18− 32x

)2 ,

where

tt(x) = −2

3
(ln2 9)92x + 9x

(
128

3
(ln2 9)x2 − x

(
112 ln2 9− 128

3
ln 9

)
+

42 ln2 9 + 64 ln 9− 128

3

)
− 384.

Denote pp(x) = (3)9x − 206x2 + 446.9x + 301. From pp′(x) = 3(ln 9)9x −
412x+446.9, pp′′(x) = 3(ln2 9)9x−412, pp′′(2) = 761.1544, pp′(2) = 156.8256,
pp(2) = 613.8 we get pp(x) > 0 for x ∈< 2,∞). Because −2 ln2 9/3 < −3.2,
128 ln2 9/3 < 206, 112 ln2 9−128 ln 9/3 > 446.9, 42 ln2 9+64 ln 9−128/3 < 301
we have tt(x) < −3.2(92x)+9x(206x2−446.9x−301)−384 < −0.2(92x)−384 <
0 for x ≥ 2. We note that, if α < α1 = 0.6 then there is εα1 > 0 such
that J ′α(x) < 0 for x ∈ (0, εα1). Because limx→0+ Jα(x) = 0, we have that
Jα(x) < 0 on (0, εα1) and the inequality (3) does not hold on (0, εα1). The
proof is complete.

4 Open Problem

It has already been proved a lot of other inequalities for circular and hyperbolic
functions in exponential form. Some of them are valid for larger sets of their
exponents as they were defined. So, there is a question of finding the largest
ranges of their exponents.
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