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Abstract

In this paper, we firstly establish a new generalization of the clas-
sical Hermite-Hadamard inequality for a real-valued convex func-
tion. Then the convexity of the matrix function g (A) = f (detA) is
proved under certain conditions on the function f and the matrix
A. Based on these, finally we derive a new Hermite-Hadamard type
inequality for the function g (t) = f (detA (t)).
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terminant; Minkowski inequality.

1 Introduction and Main Results

Inequalities with well symmetry are important and interesting in Analysis and
PDE, and among the inequality theory, the inequalities relating to convexity
of functions are extremely valuable. Moreover in the research of the convexity
of functions, a well-known example is the famous Hermite-Hadamard inequal-
ity. It was firstly published in [1], which gives us an estimate of the mean value
of a convex function.
In this paper we consider the function g (t) = f (detA (t)), and present a

new generalization of the classical Hermite-Hadamard inequality. Firstly we
recall some basic facts.
Throughout this note, we denote by I the closed interval [a, b]. A real-

valued function f is said to be convex on I if

f (μx+ (1− μ) y) ≤ μf (x) + (1− μ) f (y) ,

and concave on I if

f (μx+ (1− μ) y) ≥ μf (x) + (1− μ) f (y)
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for all x, y ∈ I and 0 ≤ μ ≤ 1.
A matrix A ∈ Mn is said to be positive definite if Re

¡
xTAx

¢
> 0, and is

said to be non-negative definite if Re
¡
xTAx

¢
≥ 0 for all nonzero x ∈ Cn. The

convex set of positive definite matrices is denoted byM+
n , and the convex set of

non-negative definite matrices is denoted by SMn. Together with the definition
of real-valued convex functions, we have the definition of convexity of matrix
functions as follows:

Definition 1.1. A real valued function f defined on M+
n or SMn is said to

be convex if

f (μA+ (1− μ)B) ≤ μf (A) + (1− μ) f (B) ,

and is said to be concave if

f (μA+ (1− μ)B) ≥ μf (A) + (1− μ) f (B)

for all 0 ≤ μ ≤ 1 and all A,B ∈M+
n or SMn, A 6= B.

Recall that it has been proved by Horn and Johnson in [2] that the func-
tion g (A) = log (detA) is a strictly concave function on the convex set of pos-
itive definite Hermitian matrices M+

n , and by the following famous Minkowski
inequality, we obtain that the function g (A) = (detA)

1
n is also concave on the

set of positive definite Hermitian matrices.

Theorem 1.2 (Minkowski Inequality). If A,B ∈M+
n (R), then

(det (A+B))
1
n ≥ (detA)

1
n + (detB)

1
n . (1)

But in general, the function g (A) = (detA)m is not concave form 6= 1
n
, not

to mention a general function g (A) = f (detA). In this paper, we will derive
the convexity of the matrix function g (A) = f (detA) under certain conditions
on the function f and the matrix A as follows:

Theorem 1.3. Let A be a positive definite matrix with the eigenvalues λi (A), and
B be a symmetric matrix with the eigenvalues λi (B), where i = 1, · · · , n. Then
for arbitrary monotonic increasing and convex function f (x), the inequality

f (det (μA+ (1− μ)B)) ≤ μf (detA) + (1− μ) f (detB) (2)

holds true for all 0 ≤ μ ≤ 1 if one of the following conditions is satisfied:
(i) λi (B) ≥ max

1≤i≤n
λi (A) for all i = 1, · · · , n;

(ii) λi (B) ≤ min
1≤i≤n

λi (A) for all i = 1, · · · , n.
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Theorem 1.4. Let A, B be two non-negative definite matrices such that AB =
BA, and λi (A), λi (B), where i = 1, · · · , n, be the eigenvalues of A and
B. Then for arbitrary monotonic increasing and convex function f (x), the
inequality

f (det (μA+ (1− μ)B)) ≤ μf (detA) + (1− μ) f (detB)

holds true for all 0 ≤ μ ≤ 1 if one of the following conditions is satisfied:
(i) λi (B) ≥ λi (A) for all i = 1, · · · , n;
(ii) λi (B) ≤ λi (A) for all i = 1, · · · , n.
On the other hand, recall that the classical Hermite-Hadamard inequality

for a real-valued convex function is that:

Theorem 1.5 (Hermite-Hadamard Inequality). If f : I → R is a
convex function, then

f

µ
a+ b

2

¶
≤ 1

b− a

Z b

a

f (x) dx ≤ f (a) + f (b)

2
. (3)

An account on the history of this inequality can be found in [3]. Surveys
on various generalizations and developments can be found in [4] and [5].
In this paper we obtain a new generalization of the Hermite-Hadamard

inequality, and prove that for arbitrary non-negative real-valued integrable
function Φ : I → R, there exist real numbers l, L such that:

f

µ
1

b− a

Z b

a

Φ (x) dx

¶
≤ l ≤ 1

b− a

Z b

a

f ◦ Φ (x) dx ≤ L ≤ f ◦ Φ (a) + f ◦ Φ (b)
2

.

(4)
In fact, we prove the following theorem:

Theorem 1.6. Let f : R → R be a convex function, and Φ : I → R be
a non-negative real-valued integrable function such that f ◦ Φ (x) is also con-
vex. Then for arbitrary n ∈ N, μ0 = 0, μn+1 = 1 and arbitrary 0 ≤ μ1 ≤ · · · ≤
μn ≤ 1, we have

f

µ
1

b− a

Z b

a

Φ (x) dx

¶
≤ l (μ1, · · · , μn) ≤

1

b− a

Z b

a

f ◦Φ (x) dx

≤ L (μ1, · · · , μn) ≤
f ◦ Φ (a) + f ◦ Φ (b)

2
,

where

l (μ1, · · · , μn) =
nP

k=0

¡
μk+1 − μk

¢
f

µ
1

(μk+1−μk)(b−a)

R (1−μk+1)a+μk+1b
(1−μk)a+μkb

Φ (x) dx

¶
and

L (μ1, · · · , μn) =
nP

k=0

¡
μk+1 − μk

¢ f◦Φ((1−μk)a+μkb)+f◦Φ((1−μk+1)a+μk+1b)
2

.
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Corollary 1.7. Let f : R → R be a convex function, and Φ : I → R be
a non-negative real-valued integrable function such that f ◦ Φ (x) is also con-
vex, then for arbitrary n ∈ N, μ0 = 0, μn+1 = 1 and arbitrary 0 ≤ μ1 ≤ · · · ≤
μn ≤ 1, we have

f

µ
1

b− a

Z b

a

Φ (x) dx

¶
≤ sup

0≤μ1≤···≤μn≤1
l (μ1, · · · , μn) ≤

1

b− a

Z b

a

f ◦ Φ (x) dx

≤ sup
0≤μ1≤···≤μn≤1

L (μ1, · · · , μn) ≤
f ◦ Φ (a) + f ◦ Φ (b)

2
,

where l (μ1, · · · , μn) and L (μ1, · · · , μn) are defined in Theorem 1.6.

Then by using Theorem 1.3, 1.4 and 1.6, we derive our main result which is a
new Hermite-Hadamard type inequality for the function g (t) = f (detA (t)) as
follows:

Theorem 1.8. Let A (t) : I → M+
n be a family of positive definite real-

valued matrices with the eigenvalues λi (A(t)), where i = 1, · · · , n, for corre-
sponding t ∈ I. Suppose that for any t1 6= t2 ∈ I and 0 ≤ μ ≤ 1, we have

A (μt1 + (1− μ) t2) ≤ μA (t1) + (1− μ)A (t2) ,

then for n ∈ N, μ0 = 0, μn+1 = 1 and arbitrary 0 ≤ μ1 ≤ · · · ≤ μn ≤ 1, the
inequality

f

µ
1

b− a

Z b

a

detA (t) dt

¶
≤ lA (μ1, · · · , μn) ≤

1

b− a

Z b

a

f (detA (t)) dt

≤ LA (μ1, · · · , μn) ≤
f (detA (a)) + f (detA (b))

2

holds true for arbitrary convex function f : R → R if one of the following
conditions is satisfied:
(i) max

1≤i≤n
λi (A (t1)) ≤ λi (A (t2)) for all i = 1, · · · , n and t1 < t2 ∈ I;

(ii) min
1≤i≤n

λi (A (t1)) ≥ λi (A (t2)) for all i = 1, · · · , n and t1 < t2 ∈ I,

where

lA (μ1, · · · , μn) =
nP

k=0

¡
μk+1 − μk

¢
f

µ
1

(μk+1−μk)(b−a)

R (1−μk+1)a+μk+1b
(1−μk)a+μkb

detA (t) dt

¶
,

LA (μ1, · · · , μn) =
nP

k=0

¡
μk+1 − μk

¢ f(detA((1−μk)a+μkb))+f(detA((1−μk+1)a+μk+1b))
2

.

Theorem 1.9. Let B (t) : I → SMn be a family of non-negative definite
real-valued matrices with the eigenvalues λi (B(t)), where i = 1, · · · , n, for
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corresponding t ∈ I. Suppose that for any t1 6= t2 ∈ I and 0 ≤ μ ≤ 1, we
have B (t1)B (t2) = B (t2)B (t1) and

B (μt1 + (1− μ) t2) ≤ μB (t1) + (1− μ)B (t2) ,

then for n ∈ N, μ0 = 0, μn+1 = 1 and arbitrary 0 ≤ μ1 ≤ · · · ≤ μn ≤ 1, the
inequality

f

µ
1

b− a

Z b

a

detB (t) dt

¶
≤ lB (μ1, · · · , μn) ≤

1

b− a

Z b

a

f (detB (t)) dt

≤ LB (μ1, · · · , μn) ≤
f (detB (a)) + f (detB (b))

2

holds true for arbitrary convex function f : R → R if one of the following
conditions is satisfied:
(i) λi (B (t1)) ≤ λi (B (t2)) for all i = 1, · · · , n and t1 < t2 ∈ I;
(ii) λi (B (t1)) ≥ λi (B (t2)) for all i = 1, · · · , n and t1 < t2 ∈ I,
where

lB (μ1, · · · , μn) =
nP

k=0

¡
μk+1 − μk

¢
f

µ
1

(μk+1−μk)(b−a)

R (1−μk+1)a+μk+1b
(1−μk)a+μkb

detB (t) dt

¶
,

LB (μ1, · · · , μn) =
nP

k=0

¡
μk+1 − μk

¢ f(detB((1−μk)a+μkb))+f(detB((1−μk+1)a+μk+1b))
2

.

Remark 1. It is obvious that there exist many matrix families satisfying
the conditions in Theorem 1.8 and 1.9 such that detA (t) and f (detA (t)) are
both integrable on the interval I.
Moreover by using Theorem 1.8 and 1.9, we can prove that there exist real

numbers lA, LA and lB, LB such that:

Corollary 1.10. Let A (t) : I → M+
n be a family of positive definite real-

valued matrices with the eigenvalues λi (A(t)), where i = 1, · · · , n, for corre-
sponding t ∈ I. Suppose that for any t1 < t2 ∈ I and 0 ≤ μ ≤ 1, we have

A (μt1 + (1− μ) t2) ≤ μA (t1) + (1− μ)A (t2) ,

then for n ∈ N, μ0 = 0, μn+1 = 1 and arbitrary 0 ≤ μ1 ≤ · · · ≤ μn ≤ 1, the
inequality

f

µ
1

b− a

Z b

a

detA (t) dt

¶
≤ sup

0≤μ1≤···≤μn≤1
lA (μ1, · · · , μn)

≤ 1

b− a

Z b

a

f (detA (t)) dt

≤ sup
0≤μ1≤···≤μn≤1

LA (μ1, · · · , μn)

≤ f (detA (a)) + f (detA (b))

2
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holds true for arbitrary convex function f : R → R if one of the following
conditions is satisfied:
(i) max

1≤i≤n
λi (A (t1)) ≤ λi (A (t2)) for all i = 1, · · · , n and t1 < t2 ∈ I;

(ii) min
1≤i≤n

λi (A (t1)) ≥ λi (A (t2)) for all i = 1, · · · , n and t1 < t2 ∈ I,

where lA (μ1, · · · , μn) and LA (μ1, · · · , μn) are defined in Theorem 1.8.

Corollary 1.11. Let B (t) : I → SMn be a family of non-negative definite
real-valued matrices with the eigenvalues λi (B(t)), where i = 1, · · · , n, for
corresponding t ∈ I. Suppose that for any t1 6= t2 ∈ I and 0 ≤ μ ≤ 1, we
have B (t1)B (t2) = B (t2)B (t1) and

B (μt1 + (1− μ) t2) ≤ μB (t1) + (1− μ)B (t2) ,

then for n ∈ N, μ0 = 0, μn+1 = 1 and arbitrary 0 ≤ μ1 ≤ · · · ≤ μn ≤ 1, the
inequality

f

µ
1

b− a

Z b

a

detB (t) dt

¶
≤ sup

0≤μ1≤···≤μn≤1
lB (μ1, · · · , μn)

≤ 1

b− a

Z b

a

f (detB (t)) dt

≤ sup
0≤μ1≤···≤μn≤1

LB (μ1, · · · , μn)

≤ f (detB (a)) + f (detB (b))

2

holds true for arbitrary convex function f : R → R if one of the following
conditions is satisfied:
(i) λi (B (t1)) ≤ λi (B (t2)) for all i = 1, · · · , n and t1 < t2 ∈ I;
(ii) λi (B (t1)) ≥ λi (B (t2)) for all i = 1, · · · , n and t1 < t2 ∈ I,
where lB (μ1, · · · , μn) and LB (μ1, · · · , μn) are defined in Theorem 1.9.

The paper is organized as follows. In section 2, we firstly derive a useful
lemma, by which we prove Theorem 1.3 and 1.4. In section 3, we prove The-
orem 1.6 by using the famous Jensen’s Inequality and directly calculating. In
section 4, based on Theorem 1.3, 1.4 and 1.6, we present the proof of our
main results. In section 5, we give two interesting open problems related to
our paper.

2 Lemmas and Proof of Theorem 1.3 and 1.4

In order to prove Theorem 1.3 and 1.4, we shall need the following lemma:
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Lemma 2.1. If 0 ≤ α, β ≤ 1 satisfying α + β = 1, and μi ≥ νi for
arbitrary 1 ≤ i ≤ n or μi ≤ νi for arbitrary 1 ≤ i ≤ n, then

nY
i=1

(μiα+ νiβ) ≤ α
nY
i=1

μi + β
nY
i=1

νi. (5)

Proof. The approach we use is mathematical induction. Firstly we consider n =
2, since 0 ≤ α, β ≤ 1 and α+ β = 1, we have

(μ1α+ ν1β) (μ2α+ ν2β)

= ((μ1 − ν1)α+ ν1) (μ2 − (μ2 − ν2)β)
= μ2 (μ1 − ν1)α− ν1 (μ2 − ν2)β − (μ1 − ν1) (μ2 − ν2)αβ + μ2ν1
= μ1μ2α+ ν1ν2β − (μ1 − ν1) (μ2 − ν2)αβ.

(6)

It follows from the hypotheses that

(μ1α+ ν1β) (μ2α+ ν2β) ≤ μ1μ2α+ ν1ν2β.

Assume that (5) is true for n = k, we prove that it is also true for n =
k + 1. Since (5) holds for n = k, we have

k+1Y
i=1

(μiα+ νiβ) =
¡
μk+1α+ νk+1β

¢ kY
i=1

(μiα+ νiβ)

≤
¡
μk+1α+ νk+1β

¢Ã
α

kY
i=1

μi + β
kY
i=1

νi

!

As the proof of n = 2 we obtain that

¡
μk+1α+ νk+1β

¢µ
α

kQ
i=1

μi + β
kQ
i=1

νi

¶
=

µ
αμk+1

kQ
i=1

μi + βνk+1
kQ
i=1

νi

¶
− αβ

¡
μk+1 − νk+1

¢µ kQ
i=1

μi −
kQ
i=1

νi

¶ (7)

Since the second term in (7) is non-positive for μi ≥ νi or for μi ≤ νi, it follows
that

k+1Y
i=1

(μiα+ νiβ) ≤ α
k+1Y
i=1

μi + β
k+1Y
i=1

νi

and consequently that inequality (5) holds for n = k + 1.

With the help of Lemma 2.1, we now turn to prove Theorem 1.3 and 1.4.
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Proof of Theorem 1.3. Since f (x) is a convex function, we have

f (μx+ (1− μ) y) ≤ μf (x) + (1− μ) f (y)

for arbitrary x, y ∈ R and 0 ≤ μ ≤ 1. Putting x = detA and y = detB it
follows that

f (μdetA+ (1− μ) detB) ≤ μf (detA) + (1− μ) f (detB) . (8)

On the other hand, it is known from [2] that for the positive definite matrix
A and symmetric matrix B there exists a nonsingular matrix C such that A =
CTC and B = CTΛC, where Λ = diag {λ1, · · · , λn}. The inequality

det (μA+ (1− μ)B) ≤ μdetA+ (1− μ) detB

is then equivalent to

det (μI + (1− μ)Λ) ≤ μ+ (1− μ) detΛ,

where I is the identity matrix. That is
nY
i=1

(μ+ λi (1− μ)) ≤ μ+ (1− μ)
nY
i=1

λi.

It follows from Ostrowski Theorem (see [2]) that for each 1 ≤ i ≤ n, there
exists θi > 0 such that

min
1≤i≤n

λi (A) ≤ θi ≤ max
1≤i≤n

λi (A)

and
λi (B) = θiλi.

Thus we conclude that
λi (B)

max
1≤i≤n

λi (A)
≤ λi ≤

λi (B)

min
1≤i≤n

λi (A)
. (9)

Therefore, if the condition (i) satisfies, we have λi ≥ 1 for arbitrary 1 ≤ i ≤
n, and if the condition (ii) is satisfied, we have λi ≤ 1 for arbitrary 1 ≤ i ≤
n. Then it follows from Lemma 2.1 that

nY
i=1

(μ+ λi (1− μ)) ≤ μ+ (1− μ)
nY
i=1

λi,

which is equivalent to

det (μA+ (1− μ)B) ≤ μ detA+ (1− μ) detB.

Furthermore, since f (x) is a monotonic increasing function, together with (8) we
have

f (det (μA+ (1− μ)B)) ≤ μf (detA) + (1− μ) f (detB) .
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Proof of Theorem 1.4. As the proof of Theorem 1.3, we only need to prove

det (μA+ (1− μ)B) ≤ μdetA+ (1− μ) detB (10)

is also satisfied under the hypotheses of Theorem 1.4. Indeed, since AB =
BA, it is known from [2] that there exists a orthogonal matrix C such that A =
CTΛAC, B = CTΛBC, where ΛA = diag {λ1 (A) , · · · , λn (A)} and ΛB =
diag {λ1 (B) , · · · , λn (B)}. Thus (10) is equivalent to

det (μΛA + (1− μ)ΛB) ≤ μ detΛA + (1− μ) detΛB,

that is

nY
i=1

(μλi (A) + (1− μ)λi (B)) ≤ μ
nY
i=1

λi (A) + (1− μ)
nY
i=1

λi (B).

Therefore, if the condition (i) satisfies, we have λi (A) ≤ λi (B) for arbi-
trary 1 ≤ i ≤ n, and if the condition (ii) is satisfied, we have λi (A) ≥ λi (B) for
arbitrary 1 ≤ i ≤ n. Then it follows from Lemma 2.1 that

nY
i=1

(μλi (A) + (1− μ)λi (B)) ≤ μ
nY
i=1

λi (A) + (1− μ)
nY
i=1

λi (B),

which is equivalent to

det (μA+ (1− μ)B) ≤ μ detA+ (1− μ) detB.

3 Proof of Theorem 1.6

In order to prove Theorem 1.6, we also need some lemmas as follows:

Lemma 3.1. If f : R→ R and Φ : I → R be integrable functions, then we
have

1

b− a

Z b

a

f ◦ Φ (x) dx=
Z 1

0

f ◦ Φ (μa+ (1− μ) b) dμ

=

Z 1

0

f ◦Φ (μb+ (1− μ) a) dμ.

Proof. We could use the change of variables x = μa + (1− μ) b and x =
μb+ (1− μ) a to complete the proof.
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Lemma 3.2. Let f : R→ R be a convex function, and Φ : I → R be a non-
negative real-valued integrable function such that f ◦ Φ (x) is also convex, then
we have

f

µ
1

b− a

Z b

a

Φ (x) dx

¶
≤ 1

b− a

Z b

a

f ◦ Φ (x) dx ≤ f ◦ Φ (a) + f ◦ Φ (b)
2

. (11)

Proof. Observing that the first inequality is actually the famous Jensen’s in-
equality (see [6]), thus we only need to prove the second one. Since f ◦ Φ (x) is
a convex function, we have for arbitrary μ ∈ [0, 1]
f ◦ Φ (μa+ (1− μ) b) + f ◦ Φ ((1− μ) a+ μb)

2
≤ f ◦ Φ (a) + f ◦Φ (b)

2
. (12)

Integrating (12) over [0, 1] and using Lemma 3.1 we have

1

b− a

Z b

a

f ◦ Φ (x) dx ≤ f ◦ Φ (a) + f ◦ Φ (b)
2

.

Remark 2. If f : R → R is a concave function, and Φ : I → R is a
non-negative real-valued integrable function such that f ◦Φ (x) is also con-
cave, then as the proof of Lemma 3.2 we have

f ◦ Φ (a) + f ◦ Φ (b)
2

≤ 1

b− a

Z b

a

f ◦ Φ (x) dx ≤ f

µ
1

b− a

Z b

a

Φ (x) dx

¶
.

With the help of Lemma 3.1 and 3.2, we now turn to prove Theorem 1.6.

Proof of Theorem 1.6. It follows from the hypothesis that f (x) and f ◦ Φ (x) are
both convex functions, therefore by applying Lemma 3.2 we have

f

µ
1

b− a

Z b

a

Φ (x) dx

¶
≤ 1

b− a

Z b

a

f ◦ Φ (x) dx ≤ f ◦ Φ (a) + f ◦ Φ (b)
2

. (13)

By assumption λ0 = 0, so

[a, (1− λ1) a+ λ1b] = [(1− λ0) a+ λ0b, (1− λ1) a+ λ1b] .

Then applying (13) to

[(1− λk) a+ λkb, (1− λk+1) a+ λk+1b] ,

for k = 0, 1, · · · , n we have

f
³

1
(λk+1−λk)(b−a)

R (1−λk+1)a+λk+1b
(1−λk)a+λkb Φ (x) dx

´
≤ 1

(λk+1−λk)(b−a)
R (1−λk+1)a+λk+1b
(1−λk)a+λkb f ◦ Φ (x) dx

≤ f◦Φ((1−λk)a+λkb)+f◦Φ((1−λk+1)a+λk+1b)
2

.

(14)
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Multiplying each term in (14) by corresponding (λk+1 − λk), and adding the
resulting inequalities, we get

nP
k=0

(λk+1 − λk) f
³

1
(λk+1−λk)(b−a)

R (1−λk+1)a+λk+1b
(1−λk)a+λkb Φ (x) dx

´
≤

nP
k=0

1
(b−a)

R (1−λk+1)a+λk+1b
(1−λk)a+λkb f ◦ Φ (x) dx

≤
nP

k=0

(λk+1 − λk)
f◦Φ((1−λk)a+λkb)+f◦Φ((1−λk+1)a+λk+1b)

2
,

that is

l (λ1, · · · , λn) ≤
1

b− a

Z b

a

f ◦ Φ (x) dx ≤ L (λ1, · · · , λn) ,

where l (λ1, · · · , λn) and L (λ1, · · · , λn) are defined in Theorem 1.6.
To prove the remaining two inequalities:

f

µ
1

b− a

Z b

a

Φ (x) dx

¶
≤ l (λ1, · · · , λn)

≤ L (λ1, · · · , λn)

≤ f ◦ Φ (a) + f ◦Φ (b)
2

,

we use the fact f : R → R, f ◦ Φ (x) are both convex functions and observe
that

nP
k=0

(λk+1 − λk) = 1

f
³

1
b−a
R b
a
Φ (x) dx

´
= f

µ
nP

k=0

(λk+1 − λk)
1

(λk+1−λk)(b−a)
R (1−λk+1)a+λk+1b
(1−λk)a+λkb Φ (x) dx

¶
≤

nP
k=0

(λk+1 − λk) f
³

1
(λk+1−λk)(b−a)

R (1−λk+1)a+λk+1b
(1−λk)a+λkb Φ (x) dx

´
≤

nP
k=0

(λk+1 − λk)
f◦Φ((1−λk)a+λkb)+f◦Φ((1−λk+1)a+λk+1b)

2

≤ 1
2

nP
k=0

(((1− λk)− (1− λk+1)) ((1− λk) + (1− λk+1)) f ◦ Φ (a))

+1
2

nP
k=0

(λk+1 − λk) (λk+1 + λk) f ◦ Φ (b)

= 1
2

nP
k=0

¡¡
(1− λk)

2 − (1− λk+1)
2¢ f ◦ Φ (a) + ¡λ2k+1 − λ2k

¢
f ◦ Φ (b)

¢
= f◦Φ(a)+f◦Φ(b)

2
.
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Remark 3. In fact the key point of our proof is Lemma 3.2, thus by the
following inequality in Remark 2:

f ◦ Φ (a) + f ◦ Φ (b)
2

≤ 1

b− a

Z b

a

f ◦ Φ (x) dx ≤ f

µ
1

b− a

Z b

a

Φ (x) dx

¶
,

we have

Theorem 3.3. Let f : R → R be a concave function, and Φ : I → R be
a non-negative real-valued integrable function such that f ◦ Φ (x) is also con-
cave. Then for arbitrary n ∈ N, μ0 = 0, μn+1 = 1 and arbitrary 0 ≤ μ1 ≤ · · · ≤
μn ≤ 1, we have

f ◦ Φ (a) + f ◦ Φ (b)
2

≤ l (μ1, · · · , μn) ≤
1

b− a

Z b

a

f ◦ Φ (x) dx

≤ L (μ1, · · · , μn) ≤ f

µ
1

b− a

Z b

a

Φ (x) dx

¶
,

where

l (μ1, · · · , μn) =
nP

k=0

¡
μk+1 − μk

¢ f◦Φ((1−μk)a+μkb)+f◦Φ((1−μk+1)a+μk+1b)
2

,

L (μ1, · · · , μn) =
nP

k=0

¡
μk+1 − μk

¢
f

µ
1

(μk+1−μk)(b−a)

R (1−μk+1)a+μk+1b
(1−μk)a+μkb

Φ (x) dx

¶
.

Corollary 3.4. Let f : R → R be a concave function, and Φ : I → R be
a non-negative real-valued integrable function such that f ◦ Φ (x) is also con-
cave, then for arbitrary n ∈ N, μ0 = 0, μn+1 = 1 and arbitrary 0 ≤ μ1 ≤ · · · ≤
μn ≤ 1, we have

f ◦ Φ (a) + f ◦ Φ (b)
2

≤ sup
0≤μ1≤···≤μn≤1

l (μ1, · · · , μn) ≤
1

b− a

Z b

a

f ◦ Φ (x) dx

≤ sup
0≤μ1≤···≤μn≤1

L (μ1, · · · , μn) ≤ f

µ
1

b− a

Z b

a

Φ (x) dx

¶
,

where l (μ1, · · · , μn) and L (μ1, · · · , μn) are defined in Theorem 3.3.

4 Proof of the Main Results

In this section, with the help of Theorem 1.3, 1.4 and 1.6, we prove our main
results. We only prove Theorem 1.8, and the proof of Theorem 1.9 is similar.
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Proof of Theorem 1.8. If one of the following conditions is satisfied:
(i) max

1≤i≤n
λi (A (t1)) ≤ λi (A (t2)) for all i = 1, · · · , n and t1 < t2 ∈ I;

(ii) min
1≤i≤n

λi (A (t1)) ≥ λi (A (t2)) for all i = 1, · · · , n and t1 < t2 ∈ I,

then by Theorem 1.3 we have for arbitrary monotonic increasing and convex
function f (x), the inequality

f (det (μA(t1) + (1− μ)A(t2))) ≤ μf (detA(t1)) + (1− μ) f (detA(t2)) (15)

holds for any t1 < t2 ∈ I and 0 ≤ μ ≤ 1. Moreover since for any t1 6= t2 ∈
I and 0 ≤ μ ≤ 1 we have

A (μt1 + (1− μ) t2) ≤ μA (t1) + (1− μ)A (t2) .

Since A (t) : I → M+
n be a family of positive definite real-valued matrices, it

follows that A (μt1 + (1− μ) t2) and μA (t1) + (1− μ)A (t2) are both positive
definite real-valued matrices. By [2] we have that there exists a orthogonal
matrix C such that

A (μt1 + (1− μ) t2) = CTΛA(μt1+(1−μ)t2)C

and
μA (t1) + (1− μ)A (t2) = CTΛμA(t1)+(1−μ)A(t2)C,

where

ΛA(μt1+(1−μ)t2) = diag {λ1 (A (μt1 + (1− μ) t2)) , · · · , λn (A (μt1 + (1− μ) t2))}

and

ΛμA(t1)+(1−μ)A(t2)

= diag {λ1 (μA (t1) + (1− μ)A (t2)) , · · · , λn (μA (t1) + (1− μ)A (t2))} .

Then it follows from

A (μt1 + (1− μ) t2) ≤ μA (t1) + (1− μ)A (t2)

that
CTΛA(μt1+(1−μ)t2)C ≤ CTΛμA(t1)+(1−μ)A(t2)C,

which is equivalent to

λi (A (μt1 + (1− μ) t2)) ≤ λi (μA (t1) + (1− μ)A (t2))
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for any 1 ≤ ß ≤ n. Thus

detA (μt1 + (1− μ) t2) =
nY
i=1

λi (A (μt1 + (1− μ) t2))

≤
nY
i=1

λi (μA (t1) + (1− μ)A (t2))

= det (μA (t1) + (1− μ)A (t2)) .

Since f (x) is monotonic increasing, it follows that

f (detA (μt1 + (1− μ) t2)) ≤ f (det (μA (t1) + (1− μ)A (t2))) .

Then by using (15) we have

f (detA(μt1 + (1− μ) t2)) ≤ μf (detA(t1)) + (1− μ) f (detA(t2))

for any t1 6= t2 ∈ I and 0 ≤ μ ≤ 1, which implies that the function f (detA (t)) is
a convex function of t. Then by using Theorem 1.6 we have

f

µ
1

b− a

Z b

a

detA (t) dt

¶
≤ lA (μ1, · · · , μn) ≤

1

b− a

Z b

a

f (detA (t)) dt

≤ LA (μ1, · · · , μn) ≤
f (detA (a)) + f (detA (b))

2
,

where lA (μ1, · · · , μn) and LA (μ1, · · · , μn) are defined in Theorem 1.8.

Example 4.1. Let a0 = an+1 = 0, a1, · · · an ≥ 0 and suppose that there is

at least one ai such that ai 6= 0. For μk =
kP
i=0

ai

nP
i=0

ai

from Theorem 1.8 we get

lA (μ1, · · · , μn) =
1

nP
k=0

ak

nX
k=0

ak+1f

⎛⎜⎜⎝
nP

k=0

ak

ak+1 (b− a)

Z ck+1

ck

detA (t)

⎞⎟⎟⎠
and

LA (μ1, · · · , μn) =
1

nP
k=0

ak

nX
k=0

ak+1
f ◦ detA (ck) + f ◦ detA (ck+1)

2
,

where ck = (1− μk) a+ μkb.
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5 Open Problem

In this section, we present two interesting open problems related to our pa-
per, one open problem is:

Problem 5.1. Is the inequality

f

µ
1

b− a

Z b

a

detA (t) dt

¶
≤ lA (μ1, · · · , μn) ≤

1

b− a

Z b

a

f (detA (t)) dt

≤ LA (μ1, · · · , μn) ≤
f (detA (a)) + f (detA (b))

2

holds true for some more general matrix families, such as the matrix families
without the hypothesis

A (μt1 + (1− μ) t2) ≤ μA (t1) + (1− μ)A (t2) ,

where lA (μ1, · · · , μn) and LA (μ1, · · · , μn) are defined in Theorem 1.8?

Another open problem is related to Hermite-Hadamard type inequality for
the matrices:

Problem 5.2. Is the inequality

f

µ
1

V ol (Ω)

Z
Ω

detAdVΩ

¶
≤ 1

V ol (Ω)

Z
Ω

f (detA)dVΩ ≤
1

V ol (∂Ω)

Z
∂Ω

f (detA)dV∂Ω

holds true for the subset Ω of the convex set of positive definite matricesM+
n or

non-negative definite matrices SMn, where dVΩ and dV∂Ω respectively denote
the volume elements of Ω and its boundary ∂Ω?
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