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Abstract 

 
     The main purpose of this research is to solve Boundary Value 
Problems (BVPs) with  an infinite number of boundary conditions. 
A new algorithm has been designed and developed for solving this 
type of  problems. This algorithm is consisting of three stages: the 
first stage is dealing with finding the infinite boundary values; the 
second stage is deeling with finding the value of ( )ay ′  using one 
of the most famous interpolation methods (namely; the Spline 
method); and the third stage is dealing with  solving the problem by 
using the wavelet method. We have considered two test examples to 
prove the robustness and effectiveness of the modified suggested 
algorithm. 
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1    Introduction 
  
In solving Ordinary Differential Equations (ODEs) by using Haar wavelet related 
method, Chen and Hsiao [4] had derived an operational matrix of integration  
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based on Haar wavelet. Lepik [19, 20, 21] had solved higher order as well as 
nonlinear ODEs and some nonlinear evolution equations by Haar wavelet method. 
The wavelet algorithms for solving PDE are based on the Galerkin techniques or 
on the collocation method. Evidently all attempts to simplify the wavelet solutions 
for PDE are welcome. One possibility for this is to make use of the Haar wavelet 
family. Haar wavelets (which are Daubechies of order 1) consists of piecewise 
constant functions and are therefore the simplest orthonormal wavelets with a 
compact support. A drawback of the Haar  wavelets is their discontinuity. Since 
the derivatives do not exist in the breaking points it is not possible to apply the 
Haar wavelets for solving PDE directly. There are two possibilities, for getting out 
of this situation. One way is to regularize the Haar wavelets with interpolating 
splines (e.g. B-splines or Deslaurier-Dabuc interpolating wavelets). This approach 
has been applied by Cattani [3] but the regularization process considerably 
complicates the solution and the main advantage of the Haar wavelets-the 
simplicity gets to some extent lost. The other way is to make use of the integral 
method, which was proposed by Chen and Hsiao [4]. The previous work in 
system analysis via Haar wavelets was led by Chen and Hsiao [7] who first 
derived a Haar operational  matrix for the integrals of the Haar function vector 
and put the  application for the Haar analysis into the dynamical systems. Then, 
the pioneer work in state analysis of linear time delayed systems via Haar 
wavelets was laid down by Hsiao [5] who first proposed a Haar product matrix 
and a coefficient matrix. Hsiao and Wang proposed a key idea to transform the 
time varying function and its product with states into a Haar product matrix [9]. 

 
2 Preliminaries 
 
2.1 Numerical solutions of Boundary Value Problems (BVP): 

 
The well-known numerical method for solving BVPs in  ODEs  are: 
 i) Finite different method .  ii) Shooting method.  iii) Collocation method. 
 
 Finite differences method is based on dividing the given interval of the 
independent variables by nodes and then approximating the differential equation 
by a given finite difference formulas at each node. This will produce a set of 
algebraic equations, mostly non-linear, which can be solved by Newton iteration 
or one of its alternatives (for more details see [12] and [13]). To get accurate 
results for these methods, we have to increase the number of nodes which will 
produce a greater number of algebraic equations which increase the complexity of 
the solution and takes a lot of computer time. Mostly, the iteration processes at 
the nodes will create noisy data and this noise can be accumulated by iteration 
processes and render the solution meaningless. Shooting methods are probably 
the most popular numerical method for solving BVP. It is a successive 
substitution method based on the idea of guessing the initial condition which 
associate solution satisfies the desired boundary condition. 
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However, any finite-difference algorithm can be considered to solve this "new" 
Initial Value Problem (IVP). For details see [1, 2, 11, 18]. Unfortunately, these 
methods can be quite inefficient as they may often converge quite slowly, or not 
at all, and a wrong guess could substantially increases the computer time. 
Furthermore, the numerical errors can be magnified. The possible difficulties with 
shooting methods are frequently discussed in the literature, see for example [6, 10, 
11, 15]. As an alternative, BVPs can be solved using some projection-based 
method, such as Collocation Method (CM). In particular, those based on Splines 
are commonly used, see for example Varga [8, 14, 16, 22]. In this context CM' 
often have better performance than  other numerical methods, but the choice of 
the collocation points greatly influences the effectiveness of the method. 
Furthermore, if the solution  path exhibit some abrupt changes, the approximation 
could be inaccurate. In numerical analysis, the discovery of compactly supported 
wavelets has proven to be a useful tool for the approximation of functions, 
differential and integral operators. The use of wavelets based algorithms is 
superficially similar to other projection methods, but these algorithms are more 
efficient because of the localization of wavelet bases in both space and frequency 
domain. Therefore, the approximation of a function using wavelets bases may be 
advantageous. 
 
Batiha, et. al. in [23] compared the variational iteration method (VIM) with the 
Adomian decomposition method (ADM) for solving nonlinear integro- 
differential equations. From the computational viewpoint, the VIM  is more 
efficient, convenient and easy to use. El-Hawary, et. al. in [24] describing the  
solving of  the second order neutral delay differential equations (NDDEs) based 
on seventh C3-spline collocation methods with three parameters c1, c2, c3 2 (0, 
1). It is shown that the proposed methods for second order NDDEs possess a 
convergence rate of order seven if : 

1 − c1 − c2 − c3 + c1c2 + c1c3 + c2c3 − 2c1c2c3 <= 0. 
Numerical results illustrating the behavior of the methods when faced with some 
difficult problems are presented and the numerical results are compared to those 
obtained by other methods. 

 
3  Haar Wavelets. 

 
The Haar wavelet function was introduced by Alfred Haar in 1910 in the form of 
a regular pulse pair . After that many other wavelet functions were generated and 
introduced. Those include the Shannon, Daubechies and Legendry wavelets. 
Among those forms, Haar wavelets have the simplest orthonormal series with 
compact support. 
 
3.1 Haar Functions. 
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The basic and simplest form of Haar wavelet is the Haar scaling function that 
appears in the form of a square wave over the interval  
t ε [a, b] as expressed in (1) and illustrated in the first subplot of Fig1. 
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                   Fig. 1 Graph of Haar function 
 
The Haar mother wavelet is the first level Haar wavelet and its graph is given in 
the second subplot of Fig.1. This mother wavelet can also be written as the linear 
combination of the Haar scaling function with translation and compression to half 
of its original interval 
 
                      φ1(t) = φ0(2t)− φ0(2t − 1)                                                 (3) 
Similarly, the other levels of wavelets can all be generated from φ1(t) by the 
operations of translation and compression. For example, the third subplot in Fig.1 
is formed by compression φ1(t) to left half of its original interval and the forth 
subplot is the same as the third one plus translating to the right side by 1/2. In 
general, we can write out the Haar wavelet family as 

     
                                   

                               (4) 
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Here m is the level of the wavelet, we assume the maximum level resolution is 
integer J , then m equals to 2j (j = 0, 1, . . . , J ); the translation parameter  k = 0, 
1, . . . , m − 1. The series index number i is defined by m and k and i = m + k. For 
any fixed level m, there are m series of φi to fill the interval [0, 1) corresponding 
to that level and for a provided J , the index number i can reach the maximum 
value M = 2J+1 when including all levels of wavelets. Each Haar wavelet is 
composed of a couple of constant steps of opposite sign during its subinterval and 
is zero else where. Therefore, they have the following relationship: 

                  
           

                                           (5) 
 

                                
This relationship shows that Haar wavelets are orthogonal to each other and 
therefore constitute an orthogonal basis. This allows us to transform any function 
square integral on the interval time [0, 1) into Haar  wavelets series. 
 
4  A new algorithm with three different stages 
 
In this part of the research we develop a new algorithm consisting of three stages; 
the first stage "A" finds the infinite  number of boundary condition y(∞), the 
second stage "B" calculating the value of y'(a)  after finding an approximate value 
to ∞ , and the third stage "C" solves the BVPs using the wavelet method. The 
details of the new algorithm is a follows:  
 
Stage A : 
Let  us consider a two point BVP (this will not affect the generality of the method) 

( )yyxf
dx

yd ′= ,,2

2

  ,  ( )bax ,∈     
The boundary conditions  
( ) Aay =   
( ) By =∞  

Step 1 : we change the second condition when  
( ) By →∞  

      ∞→b  
Then ( ) Bby N =  

( )hNab N 1++=  
Let ε  be an small arbitrary value.  
Step 2 : we use the finite difference method as  
Let ( )xff nn =  ,     ( )xgg nn =  
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(6) 

Step 3 : we substitute 1,3,2,1 += Nn …   in equation (6) to get  
( ) 1

2
011

2
2 2 ghyyfhy +−+=  

and Ay =0   , By n =+ 1  
( ) 1

2
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22 ghAyfhB +−+=  

1
2

1
2
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Step 4 if 

( ) ( )
ε<−

+ yy N

n

N

n

1  , is satisfied stop  

Else  
Step 5 :  Take the n  values which we obtained in step 1 and substitute in step 2.  

Stage  B : 
Let  us consider a two point BVP (this will not affect the generality of the method) 

( )yyxfy ′=′′ ,, ,    ( ) Aay = , ( ) Bby = , ( )bax ,=                      (7) 
The above problem can be reduced to the following system  
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To integrate system (7) in the interval ( )ba ,  we need a value of ( )ay 2  which is 
unknown  
Step 1: estimate a value 0S  for ( )ay 2  and integrate the system (7) in the 
interval ( )ba , , to get ( ) 01 mby = . 
Step 2: estimate another different value 1S  for ( )ay 2  and integrate the system 
(7) in the interval ( )ba , , to get ( ) 11 mby = and so on. 

Step n: estimate another different value ns  for ( )ay 2  and integrate the system 
(7) in the interval ( )ba , , to get ( ) nmby =1 . 
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Hence we will get the following table of data: 
Table (1) 

ns  … 1s0s  ( )aysT 20 ==

nm  … 1m0m  ( )bymP 10 ==  

 
Then by using the Spline technique, we can find the value of ( )ay2  corresponding 

to ( )by1  by  
( ) ( ) ( )( ) +Δ/−−+Δ/−+= 0

2
10000 SmPmPSmBSBP  

( )( ) ( ) 0
2

110 SmBmBmB n Δ/−−−+ −……  
and the approximate value of ( )ay1  corresponding to ( ) Bby =1  will be 

( ) ( )BPay =2 . [12,17]. 
 
Stage C: (Wavelet method): we now list outline of stage C as: 

Step 1:  Let ( )( ) ( )∑
−

=

=
1

1

m

i
ii

n xhaxy  

where h  is Haar matrix and ia  is the wavelet coefficients ( )im 22=  
Step 2: obtain appropriate V  order of ( )xy  by using  

( )( ) ( ) ( ) ( )yy VVnm

i
iVni

V
AXxZax
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0

1
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, !
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Step 3: replace ( )( )xy n  and all the value of ( )( )xy V  into the problem.  

Step 4:  calculate the wavelet coefficients ai .  
Step 5: obtain a numerical solution of ( )xy .   
The results may be formulated in a matrix form. Now we discuses Z  matrix in 
the following form: 

 

 

 

 

 

 

 

 

Fig (2): Designation of matrix Z  
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where ( )jm 22=  

represent element which needed to be count 

represent element with the same value in same level. 
So we use the following algorithm for counting the elements which are required 

( )
( )( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−⎟⎟

⎠
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⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −+ α

α

αα
12212

22
11 kckmc
mi L

  

where jL ,,1,0 …=  (Level of Haar wavelet) [3] 

Vn −=α , ABc −=  

( )L
mk
22

,,2,1 …=   ,  .  

 
5   Numerical applications  
Problem (1): 

We have the following BVP 
xeyy −−=′′ 2  with boundary conditions ( ) 10 =y

   ,   ( ) 0=∞y . The exact solution for this problem is ( ) xexy −= . 

Solution: 

 
1. For stage A: 
 
We take 5.0=h  and 1810 −=ε  

nx
n

nnn ey
h

yyy −−+ =+
−+− 22

2
11  

2
11 25.05.02

n

nnnn eyyyy
−

−+ =+−+−  
2

111 25.05.2
n

nn eyyy
−

−+ −−=                                (9) 
Substituted …,3,2,1=n  in equation (9) to obtain  

2
1

012 25.05.2
−

−−= eyyy  
2
1

12 25.015.2
−

−−= eyy  
by substituted 02 =y  we obtain  

46065.01 =y  
1

123 25.05.2 −−−= eyyy  
substituted 03 =y  to obtain 
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56591.01 =y  

But 
8104606.05659.0 −</−  

So we continue to obtain 

5.0
120 262144

0101625968.9
262144

010125968.9
524288

0116650387.3 −+
−

++
= eeeyey  

             25.11
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+
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     45.335.2
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357913941 −−−− −−−− eeee  

    5.665.555.4

256
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4096
1398101 −−−−− −−−−− eeeee

 

                      5.995.885.77

4
1

8
5

16
21

32
85

64
341

128
1365 −−−−−− −−−−−− eeeeee . 

We continue to 19=n  the second condition became as follows  
( )hnab n 11 ++=+

 
( )2

1
20 1190 ++=b  

( ) 1020 =∴ b  
The boundary condition became as follows ( ) 10 =y ,  ( ) 010 ≅y . 
 
2. Using stage B (Spline method) transform the problem to an  (IVP) 
 

Table (2) 
The initial condition became as follows 

X 3 2 1 0 -1 

Y 1.9607 1.4706 0.9804 0.4902 0.0000 

( ) 10 =y  , ( ) 10 −=′y  
So by using stage B (spline methods) the problem became as follows 

xeyy −−=′′ 2  
( ) 10 =y  , ( ) 10 −=′y  

3. By using stage C (wavelet) we solve the above problem as: 
2=u   , 0=V  , 2=α  

Step 1 : ( )∑
−

=
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i
ii xhay  
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=
−+=
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!
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Step 3 : ( ) ( ) xexyxy −−=−′′ 2  
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∑

 
Step 4 : we solve this linear system to obtain wavelet coefficients ai . 
Step 5 : after calculating ai  we subtitled in step 2 to obtain the numerical 
solution for ( )xy . 
 

Table (3) 
Numerical solution for problem (1) 

Error y-Exact y-Numerical X 
0.00038 1.00000 1.00038 0.0000 
0.00000 0.99740 0.99740 0.6667 
0.00015 0.99481 0.99495 1.3333 
0.00003 0.99222 0.99219 2.0000 
0.00020 0.98964 0.98984 2.6667 
0.00008 0.98706 0.98698 3.3333 
0.00012 0.98450 0.98438 4.0000 
0.00017 0.98194 0.98177 4.6667 
0.00008 0.97938 0.97947 5.3333 
0.00027 0.97684 0.97656 6.0000 
0.00034 0.97429 0.97396 6.6667 
0.00041 0.97176 0.97135 7.3333 
0.00048 0.96923 0.96875 8.0000 
0.00057 0.96671 0.96615 8.6667 
0.00066 0.96420 0.96354 9.3333 
0.00075 0.96169 0.96094 10.0000 
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Fig(3):Comparison between numerical solution and exact 
solution of  problem(1). 

Problem (2) 
  
Now,  have the following BVP 84 −=′′ yy  with boundary conditions 
( ) 40 =y  , ( ) 2=∞y .   The exact solution for this problem is:  
( ) 22 2 += − xexy  

 
Solution : 
 
By using stage A  
We take 5.0=h  and 810 −=ε  by solving it in the same way on problem (1) we 
obtain 21=n  the second condition will be as follows  
( ) ( )hnab n 11 ++=+

 
( ) ( )

2
1121022 ∗++=b

 
( ) 1122 =∴ b  

So the boundary conditions became  
( ) 40 =y , ( ) 211 ≅y  

Now will solve this problem by stage B (spline method) and stage C (wavelet 
method). We will get the following numerical solution in table (4).  
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Table (4) 
Numerical solution for problem (2) 

Error y-Exact y-Numerical X 
0.00221 4.00000 4.00221 0.0000 

0.0.00024 3.98857 3.98881 0.7333 
0.00051 3.97721 3.97773 1.4667 
0.00027 3.96592 3.96565 2.2000 
0.00063 3.954469 3.95532 2.9333 
0.00077 3.94352 3.94275 3.6667 
0.00111 3.93242 3.93130 4.4000 
0.00152 3.92138 3.91985 5.1333 
0.00066 3.91040 3.90974 5.8667 
0.00253 3.89949 3.89695 6.6000 
0.00313 3.88864 3.88551 7.3333 
0.00379 3.87785 3.87406 8.0667 
0.00451 3.86712 3.86261 8.8000 
0.00530 3.85645 3.85116 9.5333 
0.00614 3.84585 3.83971 10.2667 
0.00704 3.83530 3.82826 11.0000 

 
 
 
 
 
 
 
 

Fig(4): Comparison between the numerical solutions and 
 exact solutions of  problem (2) 

 
6  Conclusions 
 
In this research, we have developed a new algorithm for solving the BVP with an 
infinite number of boundary conditions using wavelet method. This algorithm 
consists of   three stages; A , B and C. In the first stage  "A" the approximate  
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value of (∞) was found; in the second stage "B" the approximate value of y'(a) 
was found and finally,  in the third stage "C", the new algorithm finds the 
boundary values which are different from the way used in the original paper of 
[17]. Two examples have been taken and a comparison was made between the 
exact solutions and the numerical solutions and our numerical  results were good 
and  acceptable.  
 
5   Open Problem  
 
For this paper we may replace the spline method by either Neural Network 

methods or Fuzzy Neural methods. These will open two new open problems for 

this paper. 
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