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Abstract

Several results asserts that the existence of a suitably-constrained
derivation on a prime near-ring forces the near-ring to be a
ring. Our aim in this paper is to investigate the conditions
for a near-ring to be a commutative ring. Moreover, examples
proving the necessity of the primeness condition are given.
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1 Introduction

A left near-ring is a set N with two operations + and · such that (N, +) is a
group and (N, ·) is a semigroup satisfying the left distributive law x · (y + z) =
x · y +x · z for all x, y, z ∈ N. N is called Zero symmetric left near-rings satisfy
0 ·x = 0 for all x ∈ N (recall that left distributivity yields x ·0 = 0). Through-
out this paper, unless otherwise specified, we will use the word near-ring to
mean zero symmetric left near-ring and denote xy instead of x ·y. An additive
mapping d : N −→ N is said to be a derivation if d(xy) = xd(y) + d(x)y for
all x, y ∈ N, or equivalently, as noted in [7], that d(xy) = d(x)y + xd(y) for all
x, y ∈ N. According to [5], a near-ring N is said to be prime if xNy = 0 for
x, y ∈ N implies x = 0 or y = 0. For any x, y ∈ N as usual [x, y] = xy−yx and
x ◦ y = xy + yx will denote the well-known Lie and Jordan products respec-
tively. The symbol Z(N) will represent the multiplicative center of N, that is,
Z(N) = {x ∈ N | xy = yx for all y ∈ N}.
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There is an increasing body of evidence that prime near-rings with deriva-
tions have ring like behavior, indeed, there are several results (see for example
[2], [3], [4], [5]) asserting that the existence of a suitably-constrained deriva-
tion on a prime near-ring forces the near-ring to be a ring. In this paper we
continue the line of investigation regarding the study of prime near-rings with
derivations. More precisely, we shall prove that a prime near-ring which ad-
mits a nonzero derivation satisfying certain differential identities must be a
commutative ring.

2 Main results

In [6], M. N. Daif and H. E. Bell established that a prime ring R must be
commutative if it admits a derivation d such that either d([x, y]) = [x, y] for
all x, y in K or d([x, y]) = −[x, y] for all x, y in K, where K is a nonzero ideal
of R. Inspired by the results of Bell and Daif, our purpose in this section is to
give conditions under which a near-ring must be a commutative ring.
We begin with the following lemma which is essential in developing the proof
of our main result.

Lemma 2.1 ([3], Theorem 2.1) Let N be a prime near-ring. If N admits a
nonzero derivation d for which d(N) ⊂ Z(N), then N is a commutative ring.

Theorem 2.2 Let N be a prime near-ring. If N admits a nonzero deriva-
tion d such that d([x, y]) = [x, y] for all x, y ∈ N, then N is a commutative
ring.

Proof. Assume that

d([x, y]) = [x, y] for all x, y ∈ N. (1)

Replacing y by xy in (1), because of [x, xy] = x[x, y], we get

x[x, y] = d(x[x, y]) for all x, y ∈ N.

Since d(x[x, y]) = xd([x, y]) + d(x)[x, y], then according to (1) we obtain

x[x, y] = x[x, y] + d(x)[x, y]

and therefore d(x)[x, y] = 0. Hence

d(x)(xy − yx) = 0 for all x, y ∈ N. (2)

Substituting yz for y in (2), we obtain d(x)y(xz − zx) = 0 which leads to

d(x)N(xz − zx) = 0 for all x, z ∈ N. (3)
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Since N is prime, equation (3) reduces to

d(x) = 0 or [x, z] = 0 for all x, z ∈ N. (4)

From (4) it follows that for each fixed x ∈ N we have

d(x) = 0 or x ∈ Z(N). (5)

But x ∈ Z(N) also implies that d(x) ∈ Z(N) and equation (5) forces

d(x) ∈ Z(N) for all x ∈ N. (6)

In the light of (6), d(N) ⊂ Z(N) and using Lemma 2.1 we conclude that N is
a commutative ring. This completes the proof of our theorem.

Remark 1. The hypothesis of Theorem 2.2 may be weakened a bit. Indeed,
one may assume that d([x, y]) = [x, y] for all x, y in some nonzero semigroup
right ideal U . The proof is essentially the same, but it uses Lemma 1.3 (iii) of
[3].

The following example proves that the primeness hypothesis in Theorem 2.2
is necessary even in the case of arbitrary rings.

Example 1. Let R be a commutative ring which is not a zero ring and con-

sider N =

{(
0 0
x y

)
|x, y ∈ R

}
. If we define d : N −→ N by d

(
0 0
x y

)
=

(
0 0
x 0

)
, then it is straightforward to check that d is a nonzero derivation

of N. On the other hand, if a =

(
0 0
r 0

)
, where 0 6= r, then aNa = 0 which

proves that N is not prime. Moreover, d satisfies the condition

d([A,B]) = [A,B] for all A,B ∈ N,

but N is a noncommutative ring.

Theorem 2.3 Let N be a prime near-ring. If N admits a nonzero deriva-
tion d such that d([x, y]) = −[x, y] for all x, y ∈ N, then N is a commutative
ring.

Proof. From
d([x, xy]) = −[x, xy] for all x, y ∈ N

it follows that
d(x[x, y]) = −x[x, y] for all x, y ∈ N.
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Thus

d(x)[x, y] + xd([x, y]) = d(x)[x, y] + x(−[x, y]) = d(x)[x, y]− x[x, y] = −x[x, y]

and therefore
d(x)[x, y] = 0 for all x, y ∈ N.

The rest of the proof is as in the proof of Theorem 2.2.

Remark 2. Note that again the d([x, y]) = −[x, y] hypothesis need only
hold on a nonzero semigroup right ideal.

The conclusion of Theorem 2.2 remains valid if we replace the product [x, y]
by x ◦ y. In fact, we obtain the following result:

Theorem 2.4 Let N be a prime near-ring. If N admits a nonzero deriva-
tion d such that d(x ◦ y) = x ◦ y for all x, y ∈ N, then N is a commutative
ring.

Proof. By the hypotheses, we have

d(x ◦ y) = xy + yx for all x, y ∈ N. (7)

Replacing y by xy in (7), we get

d(x ◦ (xy)) = x2y + xyx for all x, y ∈ N. (8)

Since x ◦ (xy) = x(x ◦ y), then (7) yields d(x ◦ (xy)) = x(x ◦ y) + d(x)(x ◦ y).
Hence equation (8) reduces to

x(x ◦ y) + d(x)(x ◦ y) = x2y + xyx for all x, y ∈ N. (9)

As x2y + xyx = x(x ◦ y), then (9) assures that

d(x)(x ◦ y) = 0 for all x, y ∈ N

which leads to
d(x)xy = −d(x)yx for all x, y ∈ N. (10)

Substituting yz for y in (10), we find that

−d(x)yzx = d(x)xyz = (−d(x)yx)z = d(x)y(−x)z for all x, y, z ∈ N. (11)

Since −d(x)yzx = d(x)yz(−x), then (11) becomes

d(x)yz(−x) = d(x)y(−x)z for all x, y, z ∈ N. (12)
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Taking −x instead of x in (12) gives

d(−x)yzx = d(−x)yxz for all x, y, z ∈ N

so that d(−x)y(zx− xz) = 0 and therefore

d(−x)N [z, x] = 0 for all x, z ∈ N. (13)

By primeness, equation (13) assures that for each x ∈ N, either x ∈ Z(N) or
d(−x) = 0. Accordingly,

d(x) = 0 or [x, z] = 0 for all x, z ∈ N. (14)

Since equation (14) is the same as equation (4), arguing as in the proof of
Theorem 2.2 we conclude that N is a commutative ring.

The following example proves that the primeness hypothesis in Theorem 2.4
is necessary even in the case of arbitrary rings.

Example 2. Let S be any ring. Next, let us consider the ring

N =








0 x y
0 0 0
0 z 0


 |x, y, z ∈ S





. Define a map d : N −→ N such that

d




0 x y
0 0 0
0 z 0


 =




0 x y
0 0 0
0 0 0


 . If we set a =




0 s 0
0 0 0
0 0 0


 with 0 6= s, then

aNa = 0 proving that N is not prime. Moreover, it can be easily seen that d
is a nonzero derivation such that

d(A ◦B) = A ◦B for all A,B ∈ N,

but N is a noncommutative ring.

Theorem 2.5 Let N be a prime near-ring. If N admits a nonzero deriva-
tion d such that d(x◦y) = −(x◦y) for all x, y ∈ N, then N is a commutative
ring.

Proof. Assume that

d(x ◦ y) = −(x ◦ y) for all x, z ∈ N. (15)

Replacing y by xy in (15) we get

d(x(x ◦ y)) = −x(x ◦ y) for all x, y ∈ N. (16)

Since

d(x(x◦y)) = d(x)(x◦y)+xd(x◦y) = d(x)(x◦y)+x(−(x◦y)) = d(x)(x◦y)−x(x◦y)
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then equation (16) reduces to

d(x)(x ◦ y)− x(x ◦ y) = −x(x ◦ y) for all x, y ∈ N,

in such a way that

d(x)(x ◦ y) = 0 for all x, y ∈ N.

Therefore, the rest of the proof is as in the proof of Theorem 2.4.
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