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Abstract

Cayley graph is a graph constructed out of a group Γ and a
generating set A ⊆ Γ. When Γ = Zn, the corresponding Cayley
graph is called as a circulant graph and denoted by Cir(n, A).
In this paper, we attempt to find the total domination number
of Cir(n, A) for a particular generating set A of Zn and a min-
imum total dominating set of Cir(n, A). Further, it is proved
that Cir(n, A) is 2-total excellent if and only if n = t|A|+ 1 for
some integer t > 0.
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1 Introduction

The concept of Cayley graphs is useful to attempt routing problem in parallel
computing. In parallel computers, more than one processor is inducted and in
order to communicate between processors, a network is essential as a part of the
system. For this purpose, famous Cayley networks viz., ring, torus and hyper-
cube are used[4]. The concept of domination in Cayley graphs has been studied
by various authors and one can refer to [1, 5, 3, 6]. I.J.Dejter and O.Serra[1]
have obtained efficient dominating sets for Cayley graphs constructed on per-
mutation groups. The efficient domination number for vertex transitive graphs
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have been obtained by J.Huang and J-M.Xu[3] whereas J.Lee[5] has obtained
a necessary and sufficient condition for the existence of independent perfect
domination sets in Cayley graphs. N.Obradovič, J.Peters and G.Ružić[6] have
studied the efficient dominating sets in circulant graphs with two chord lengths.
Tamizh Chelvam and Rani[7, 8, 9] have obtained domination parameters such
as domination, independent domination, total domination and connected dom-
ination for some classes of circulant graphs.

Let Γ be a group with e as the identity element of Γ. A generating set
of Γ is a subset A such that every element of Γ can be expressed as a prod-
uct of finitely many elements of A. Assume that e /∈ A and a ∈ A implies
a−1 ∈ A. The Cayley graph is defined by G = (V,E), where V (G) = Γ and
E(G) = {(x, xa)/x ∈ V (G), a ∈ A} and it is denoted by Cay(Γ, A). Since A
is a generating set of Γ, Cay(Γ, A) is a connected regular graph of degree |A|.
When Γ = Zn, the Cayley graph Cay(Γ, A) is called as a circulant graph and
denoted by Cir(n,A), where A is a generating set of Zn.

Let G = (V,E) be a graph. The open neighbourhood N(v) of a vertex
v ∈ V (G), is the set of all vertices which are adjacent to v. The closed neigh-
bourhood of v is defined by N [v] = N(v) ∪ {v}. For a set S ⊆ V , the open
neighbourhood N(S) is defined to be ∪

v∈S
N(v), and the closed neighbourhood

of S is defined by N [S] = N(S) ∪ S [2]. A set S ⊆ V of vertices in a graph
G = (V,E), is called a total dominating set of G if N(S) = V (G). The total
domination number γt(G) of a graph G, is the minimum cardinality of a total
dominating set in G and a corresponding total dominating set is called a γt-set
of G [2]. A graph G is said to be total excellent if for each vertex v ∈ V (G),
there exists a γt-set Dt such that v ∈ Dt. A graph G is said to be k-total
excellent if for every subset S ⊆ V (G) with |S| = k, there exists a γt-set Dt

such that S ⊆ Dt.
Throughout this paper, n(≥ 3) is a positive integer, Zn = {0, 1, 2, . . . , n−

1}, m = bn−1
2
c and k is an integer such that 1 ≤ k ≤ m. The set A ⊂ Zn, is

taken as A = {m,n−m,m−1, n− (m−1), . . . ,m− (k−1), n− (m− (k−1))}
when n is odd, and A = {n

2
,m, n−m,m− 1, n− (m− 1), . . . ,m− (k− 1), n−

(m − (k − 1))} when n is even. Since A contains at least two consecutive
integers, A is a generating set of Zn. Hereafter, + stands for addition modulo
n in Zn.

2 Total Domination

In this section, we obtain the value of the total domination number and a
corresponding γt-set for G = Cir(n,A), where A = {m,n−m,m−1, n− (m−
1), . . . ,m − (k − 1), n − (m − (k − 1))} when n is odd, and A = {n

2
,m, n −

m,m− 1, n− (m− 1), . . . ,m− (k − 1), n− (m− (k − 1))} when n is even.
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Lemma 2.1 Let n(≥ 3) be an odd integer, m = n−1
2

and G = Cir(n,A),
where A = {m,n−m,m− 1, n− (m− 1), . . . ,m− (k− 1), n− (m− (k− 1))}
with 1 ≤ k ≤ m. Then γt(G) = d n

2k
e.

Proof. Let ` = d n
2k
e. Since G is 2k-regular, from the definition of the total

domination number, it follows that d n
2k
e ≤ γt(G). Let x = m + k + 1 and

Dt = {x, x+ 2k, x+ 2(2k), . . . , x+ (`− 1)2k}. One may note at this moment
that some of the elements of Dt exceed n and hence addition modulo n is
operated. Note that, |Dt| = `. Since ` = d n

2k
e, n = (`−1)2k+j for some j with

1 ≤ j ≤ 2k. Thus V (G) can be partitioned into ` intervals I1 = [1, 2k], I2 =
[2k + 1, 2(2k)], I3 = [2(2k) + 1, 3(2k)], . . . , I`−1 = [(`− 2)2k + 1, (`− 1)2k] and
I` = [(` − 1)2k + 1, n(= 0)]. Note that, |Ii| = 2k for all i with 1 ≤ i ≤ ` − 1
and 1 ≤ |I`| ≤ 2k. Since n −m = m + 1, one can write the generating set A
as A = {m− (k − 1),m− (k − 2), . . . ,m,m+ 1, . . . ,m+ k}.

For any i with 0 ≤ i ≤ `−2, we have x+i(2k) ∈ Dt and Ii+1 = [i(2k)+1, (i+
1)2k]. Since (x+ i(2k))+(m−(k−1)) ≡ i(2k)+1 (mod n) and A is a set of 2k
consecutive integers with least element m−(k−1), we have N(x+i(2k)) = Ii+1.
Also, (x + (` − 1)(2k)) + (m − (k − 1)) ≡ (` − 1)(2k) + 1 (mod n) and so
I` ⊆ N(x+ (`− 1)2k). Hence, N(Dt) = N({x, x+ 2k, x+ 2(2k), . . . , x+ (`−
1)2k}) ⊆ I1 ∪ I2 ∪ . . . ∪ I` = V (G) and so Dt is a total dominating set of G.
Thus γt(G) ≤ d n

2k
e and so γt(G) = d n

2k
e.

Lemma 2.2 Let n(≥ 3) be an even integer, m = bn−1
2
c and G = Cir(n,A),

where A = {n
2
,m, n−m,m−1, n− (m−1), . . . ,m− (k−1), n− (m− (k−1))}

with 1 ≤ k ≤ m. Then γt(G) = d n
2k+1
e.

Proof. As |A| = 2k+1, let ` = d n
|A|e = d n

2k+1
e. Since n is even and m = bn−1

2
c,

we have m = n
2
− 1. Since n

2
= m + 1 and n−m = m + 2, one can write the

generating set A as A = {m−(k−1),m−(k−2), . . . ,m,m+1, . . . ,m+k+1}.
Since G is a 2k+ 1-regular graph, we have d n

2k+1
e ≤ γt(G). Let x = m+ k+ 2

and Dt = {x, x+(2k+1), x+2(2k+1), . . . , x+(`−1)(2k+1)}. By partitioning
the vertices of G into ` intervals I1 = [1, 2k + 1], I2 = [(2k + 1) + 1, 2(2k +
1)], . . . , I`−1 = [(`−2)(2k+1)+1, (`−1)(2k+1)] and I` = [(`−1)(2k+1)+1, n(=
0)], one can prove the remaining part of the proof as in the proof of Lemma 2.1.

Remark 2.3 In the above theorem, each interval (except I`) contains ex-
actly 2k + 1 vertices and 1 ≤ |I`| ≤ 2k + 1. From this, one can find that
the vertices 1, 2, . . . , (2k + 1)− j are dominated by both x(= m + k + 2) and
x + (` − 1)(2k + 1), and they are the only vertices dominated twice by the
vertices of Dt, specified in Lemma 2.2.

Remark 2.4 Since the elements of V (G) are group elements, Dt + v is a
γt-set for all v ∈ V (G). This implies that G is total excellent. In particular,
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D
′′
t = Dt + (n − x) = {0, (2k + 1), 2(2k + 1), . . . , (` − 1)(2k + 1)} when n

is even and D
′
t = Dt + (n − x) = {0, 2k, 2(2k), . . . , (` − 1)2k} when n is

odd, are also γt-sets of G = Cir(n,A) with respective to the generating sets
{n

2
,m, n − m,m − 1, n − (m − 1), . . . ,m − (k − 1), n − (m − (k − 1))} and

{m,n−m,m− 1, n− (m− 1), . . . ,m− (k− 1), n− (m− (k− 1))} respectively.

3 2-Total Excellent Circulant Graphs

In this section, 2-total excellent circulant graphs are characterized.

Lemma 3.1 Let n(≥ 3) be an odd integer, m = n−1
2

and G = Cir(n,A),
where A = {m,n−m,m− 1, n− (m− 1), . . . ,m− (k− 1), n− (m− (k− 1))}
with 1 ≤ k ≤ m. If n = t(2k) + 1 for some integer t > 0, then G is 2-total
excellent.

Proof. Let ` = d n
2k
e = t + 1 and x = m + k + 1. Then by Lemma 2.1,

γt(G) = `. Further, Dt = {x, x + 2k, x + 2(2k), . . . , x + (` − 1)2k} is a γt-
set of G. Actually, the vertex x + i(2k) ∈ Dt dominate all the vertices in
the interval Ii+1 = [i(2k) + 1, (i + 1)(2k)] for all i with 0 ≤ i ≤ ` − 1 and
V (G) = I1 ∪ I2 ∪ . . . ∪ I`. Note that, the interval I` contains only one element
n = 0 = t(2k) + 1. Since the cancellation law is valid for the elements of
Zn = V (G), to prove G is 2-total excellent, it is enough if we prove that for
any d ∈ V (G)(d 6= x), there exists a γt-set D1 such that {x, d} ⊆ D1.

Let d(6= x) ∈ V (G). If d ∈ Dt, then nothing to prove. On the other hand
d /∈ Dt. Since x + (` − 1)2k + 1 ≡ x(mod n), there exist no element between
x+ (`− 1)2k and x. Thus d lies between x+ i(2k) and x+ (i+ 1)2k for some i
with 0 ≤ i ≤ `−2. From this, d = x+ i(2k)+j for some j with 1 ≤ j ≤ 2k−1.

Having i fixed, consider the set D1 = {x, x+ 2k, x+ 2(2k), . . . , x+ i(2k), d,
x+ (i+ 1)2k + 1, x+ (i+ 2)2k + 1, . . . , x+ (`− 2)2k + 1}. Clearly, |D1| = `.
Now, one can partition the vertices of G into (`−1) intervals J1 = [1, 2k], J2 =
[2k + 1, 2(2k)], . . . , Ji = [(i − 1)2k + 1, i(2k)], Ji+1 = [i(2k) + 1, (i + 1)2k +
1], Ji+2 = [(i + 1)2k + 2, (i + 2)2k + 1], . . . , J`−1 = [(` − 2)(2k) + 2, n(= 0)].
Except Ji+1, all Jj’s contains exactly 2k elements and |Ji+1| = 2k + 1. As in
Lemma 2.1, the vertex x+ g(2k) ∈ D1 dominate all the vertices in the interval
Jg+1 for 0 ≤ g ≤ i − 1. Also, the vertex x + i(2k) dominate all the elements
between i(2k) + 1 and (i+ 1)2k.

Consider the element m + k − j + 1. If j = k, then m + k − j + 1 =
m + 1 ∈ A. If j < k, then 1 ≤ k − j ≤ k − 1 ⇒ 1 ≤ k − j + 1 ≤ k. Since
m + 1,m + 2, . . . ,m + k ∈ A, we have m + (k − j + 1) ∈ A. If j > k, then
1 ≤ j−k ≤ k−1⇒ 0 ≤ j−k−1 ≤ k−2. Since m,m−1,m−2, . . . ,m−(k−1) ∈
A, we have m − (j − k − 1) ∈ A. Thus in all cases, m + k − j + 1 ∈ A and
d+ (m+ k− j + 1) = (x+ i(2k) + j) + (m+ k− j + 1) ≡ (m+ k+ 1 + i(2k) +
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m+k+1)(mod n) ≡ (2m+1+(i+1)2k+1)(mod n) ≡ ((i+1)2k+1)(mod n).
This means that d dominates the vertex (i + 1)2k + 1. Hence, the vertices
x+ i(2k) and d together dominate all the vertices in the interval Ji+1.

Also, for g with i + 1 ≤ g ≤ ` − 2, we have x + g(2k) + 1 ∈ D1 and
N(x + g(2k) + 1) = [g(2k) + 2, (g + 1)(2k) + 1] = Jg+1. This means that
Ji+2, Ji+3, . . . , J`−1 are also dominated by D1. Hence, G is 2-total excellent.

Theorem 3.2 Let n(≥ 3) be an odd integer, m = n−1
2

and G = Cir(n,A),
where A = {m,n−m,m−1, n−(m−1), . . . ,m−(k−1), n−(m−(k−1))} with
1 ≤ k ≤ m. If n = t(2k) + j for some integers t(> 0) and j with 1 ≤ j ≤ 2k,
then G is 2-total excellent if and only if j = 1.

Proof. Suppose j = 1. Then n = t(2k) + 1 and hence by Lemma 3.1, G is
2-total excellent.

Conversely, assume that G is 2-total excellent. Suppose j 6= 1. Then
n = t(2k) + j for some j with 1 < j ≤ 2k. Consider the two vertices x and
x + 1, where x = m + k + 1. Since G is 2-total excellent, there exists a γt-set
Dt such that {x, x + 1} ⊆ Dt. Then by Lemma 2.1, |Dt| = ` = d n

2k
e and

` = t + 1. Also, the vertex x dominate all the vertices in the interval [1, 2k]
and hence x+ 1 dominate all the vertices in the interval [2, 2k + 1]. Thus the
two vertices x and x+1 together dominate exactly 2k+1 vertices of G. Since G
is a 2k-regular graph, the remaining `− 2 vertices of Dt can dominate at most
(`− 2)2k vertices. Hence, Dt can dominate at most (`− 2)2k+ 2k+ 1 vertices
whereas (` − 2)2k + 2k + 1 = (` − 1)2k + 1 = t(2k) + 1 < n, a contradiction
to Dt is a total dominating set. Hence, j = 1.

Lemma 3.3 Let n(≥ 3) be an even integer, m = bn−1
2
c and G = Cir(n,A),

where A = {n
2
,m, n−m,m−1, n− (m−1), . . . ,m− (k−1), n− (m− (k−1))}

with 1 ≤ k ≤ m. If n = t(2k+1)+1 for some integer t(> 0), then G is 2-total
excellent.

Proof. Let ` = d n
2k+1
e = t + 1 and x = m + k + 2. By Lemma 2.2, γt(G) =

d n
2k+1
e and Dt = {x, x+(2k+1), x+2(2k+1), . . . , x+(`−1)(2k+1)} is a γt-set

of G. From the proof of the Lemma 2.2, the vertex x+i(2k+1) ∈ Dt dominate
all the vertices in the interval Ii+1 = [i(2k+1)+1, (i+1)(2k+1)] for all i with
0 ≤ i ≤ `− 1 and V (G) = I1 ∪ I2 ∪ . . .∪ I`. Note that, the interval I` contains
exactly one vertex n(= 0). To prove the result, it is enough to prove that for
given d ∈ V (G)(d 6= x), there exists a γt-set D1 such that {x, d} ⊆ D1.

Let d(6= x) ∈ V (G). If d ∈ Dt, then nothing to prove. Otherwise, d
lies between x + i(2k + 1) and x + (i + 1)(2k + 1) for some 0 ≤ i ≤ ` − 2.
Since x + (` − 1)(2k + 1) + 1 ≡ x(mod n), there exist no element between
x + (` − 1)(2k + 1) and x. Hence, d = x + i(2k + 1) + j for some j with
1 ≤ j ≤ 2k. As in the proof of Lemma 3.1, one can prove that D1 = {x, x +
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(2k+ 1), . . . , x+ i(2k+ 1), d, x+ (i+ 1)(2k+ 1) + 1, . . . , x+ (`−2)(2k+ 1) + 1}
is a γt-set.

Theorem 3.4 Let n(≥ 3) be an even integer, m = bn−1
2
c and G = Cir(n,

A), where A = {n
2
,m, n−m,m−1, n−(m−1), . . . ,m−(k−1), n−(m−(k−1))}

with 1 ≤ k ≤ m. If n = t(2k + 1) + j for some integers t(> 0) and j with
1 ≤ j ≤ 2k + 1, then G is 2-total excellent if and only if j = 1.

Proof. Suppose j = 1. Then n = t(2k + 1) + 1 and hence by Lemma 3.3, G
is 2-total excellent.

Conversely, letG be 2-total excellent. Suppose j 6= 1. Then n = t(2k+1)+j
for some integer j with 1 < j ≤ 2k+ 1. Consider the two vertices x and x+ 1,
where x = m+k+2. As in the proof of Theorem 3.2, one can prove that there
exist no γt-set Dt such that {x, x+ 1} ⊆ Dt.

Lemma 3.5 Let n(≥ 3) be an odd integer, m = n−1
2

and G = Cir(n,A),
where A = {m,n−m,m− 1, n− (m− 1), . . . ,m− (k− 1), n− (m− (k− 1))}
with 1 ≤ k ≤ m. Then G is not q-total excellent for q ≥ 3.

Proof. Consider the three consecutive integers x, x + 1 and x + 2, where
x = m+ k + 1. Suppose there exists a γt-set Dt such that {x, x+ 1, x+ 2} ⊆
Dt. Then by Lemma 2.1, |Dt| = ` = d n

2k
e and n = (` − 1)2k + j for some

integer j with 1 ≤ j ≤ 2k. As in Lemma 2.1, x dominate all the vertices in
the interval [1, 2k] and hence the vertices x + 1, x + 2 dominate the intervals
[2, 2k + 1], [3, 2k + 2] respectively. This means that the three vertices x, x+ 1
and x + 2 together dominate exactly 2k + 2 vertices of G. Therefore, the
remaining ` − 3 vertices of Dt can dominate at most (` − 3)2k vertices of G
and so Dt can dominate at most (` − 3)2k + 2k + 2 vertices of G whereas
(`− 3)2k + 2k + 2 = (`− 2)2k + 2 < (`− 1)2k + j = n, a contradiction to Dt

is a total dominating set. Therefore, G is not 3-total excellent and hence G is
not q-total excellent for all q ≥ 3.

Remark 3.6 In similar to the proof of Lemma 3.5, one can prove the fol-
lowing Lemma. In fact one can take x = m+ k + 2 and proceed as above.

Lemma 3.7 Let n(≥ 3) be an even integer, m = bn−1
2
c and G = Cir(n,A),

where A = {n
2
,m, n−m,m−1, n− (m−1), . . . ,m− (k−1), n− (m− (k−1))}

with 1 ≤ k ≤ m. Then G is not q-total excellent for q ≥ 3.

4 Open Problems

The domination numbers for two circulant graphs constructed out of the same
group, may not be equal even when the number of elements in the correspond-
ing generating sets are same. For example, γ(Cir(10, {1, 2, 8, 9})) = 2 and
γ(Cir(10, {1, 4, 6, 9})) = 3.
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1. Find the total domination number for an arbitrary circulant graph.

2. Find a γt-set for an arbitrary circulant graph.

3. Find bounds for domination number as well as total domination number
for circulant graphs.

ACKNOWLEDGMENTS. The work reported here is supported by the
Project SR/S4/MS : 328/06, awarded to the first author by the Department
of Science and Technology, Government of India, New Delhi.

References

[1] I.J. Dejter and O. Serra, “Efficient dominating sets in Cayley graphs”,
Discrete Applied Mathematics, Vol.129, (2003), pp.319-328.

[2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domi-
nation in Graphs, Marcel Dekker, (2000).

[3] Jia Huang and Jun-Ming Xu, “The bondage numbers and efficient dom-
inations of vertex-transitive graphs”, Discrete Mathematics, Vol.308,
(2008), pp.571-582.

[4] S. Lakshmivarahan and S.K. Dhall, “Ring, torus and hypercube archi-
tectures/ algorithms for parallel computing”, Parallel Computing, Vol.25,
(1999), pp.1877-1906.

[5] J. Lee, “Independent perfect domination sets in Cayley graphs”, Journal
of Graph Theory, Vol.37, No.4, (2001), pp.213-219.

[6] N. Obradović, J. Peters and Goran Ružić, “Efficient domination in cir-
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