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Abstract

In this paper, we introduce some new generalized difference se-
quence spaces combining lacunary sequence and a sequence of Mod-
uli. We also examine some topological properties and establish some
inclusion relations between these spaces.
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1 Introduction

Let w be the set of all sequences of real or complex numbers and /., ¢ and
co be the linear spaces of bounded, convergent and null sequences r = ()
with complex terms, respectively, normed by

ol = supla

where k € N = {1,2,...}, the set of positive integers.
The difference sequence spaces X (A) was introduced by Kizmaz [9] as

follows:
X(A)={zr=(2p) : Az € X}
for X = l, ¢ or ¢y, where Az = (Axy) = (xp — x4q) for all & € N. The

notion of difference sequence spaces was generalized by Et and Colak [5] as

follows:
X (A™) ={z = (zx) : A"z € X}
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for X = l.,, cor ¢y, wherem € N, (Az) = (z1), (A"x) = (A™ oy, — A™ ).
The sequence spaces X (A™) were further generalized by Et and Esi [6]

to following sequence spaces. Let v = (vy) be any fixed sequence of nonzero

complex numbers. Then

X(AY) = {z = (w) « (Al) € X}

for X = l, c or ¢y, where (AVz;) = (vpxp), (Avzr) = (VpTs — Vp11Zry1) and
(Amzy) = (A™ 1z, — A™ 1z, ) and so that

m , (m
Avml‘k = Z (—1) <’L )Uk+ixk+i-

1=0

A function f : [0,00) — [0, 00) is called a modulus function if

(i) f@t)=0ifft =0,

(ii) f( +u) < f(t) + f(u), Y, u >0,

(iii) f is increasing,

(iv) f is continuous from the right at 0.

Since |f(z) — f(y)| < f(lx —yl|), it follows from condition (iv) that f is
continuous on [0,00). A modulus may be unbounded or bounded.

By a lacunary sequence 6 = (k,);r = 0,1,2,... where ky = 0, we will
mean an increasing sequence of nonnegative integers with &k, — k,_; — oo.
The intervals determined by 6 will be denoted by I, = (k._1, k.| and we let
h. = k. —k._1. The ratio k,/k,_, will be denoted by p,. The space of lacunary
strongly convergent sequences Ny was defined by Freedman et al. [7] as

1
— > |zg — | =0, for some [}.

Ny ={z = (z1) : lim
r h"f’ ]{36[7‘

Bhardwaj and Bala [3] defined the sequence spaces
No AT £.p.Q = {r€w(X): imht 3 [f (q(ATw, — 0)] =0,
r—00 kel,
for some ¢ € X},

No[AT. £.p.Qly = {r€w(X): lmh" X [f (g (ATag)l =0},

k€L,
No[AY, f,p,Ql, = {z € w(X):suph kZ; [f (¢ (ATi))]"* < oo}
for all g € Q.

Also, the sequence spaces defined by lacunary sequence and modulus func-
tion were introduced and studied by Colak [4], Khan and Lohani [8] and many
others.

Let U be the set of all real sequences u = (uy) such that u; > 0 for all
ke N.
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We use the following inequality throughout this paper
|ak + bi[™ < D {|ar™ + [bx]™} (1)

where a; and b, are complex numbers, D = max (1, 2G_1) and H = sup, px <
oo [10].

2 Main Results

Definition 2.1 Let F' = (fy) be a sequence of moduli, p = (px) be a se-
quence of strictly positive real numbers, X be a seminormed space over the
field C of complex numbers with the seminorm q and v € U. By w(X) we
shall denote the space of all sequences defined over X. Now we define the
following sequence spaces:

N (A" Fopqu) = {zew(X):supe 3 g [fe (g (AT < oo},

r hr kel
No (A, Epygu) = {r e w(X): rh—{goh% k;rwe [fi (q (A 2 — £)]PF =0,
for some ¢},
Ny (A7, F.p,qu) = {z€w(X): limhi S g [ (q (AT2p))]P* = 0}

T=0 Ny ke,

For p, = 1 and uy, = 1 for all k € N, we write these spaces as N§° (A", F, q),
Ny (A" F,q) and NJ (A™ F,q).

For fi (x) = x for every k, pr = 1 and uy = 1 for all k£ € N, we write these
spaces as N§° (A", q), Ny (AT, q) and N§ (A", q).

Theorem 2.2 Let F = (f;) be a sequence of moduli. Then N (A™, F,p,q,u) C
Ny (A, F.p,q,u) C Ng° (A", F,p,q,u) and the inclusions are strict.

Proof. The first inclusion is obvious. We establish the second inclusion.
Let © € Ny (A”, F,p,q,u). By definition of modulus function and inequality
(1), we have

ur [ (q (AT 2))[™ < Dug [fr (q (Afz — O)™ + Duy [fie (q (0)]



184 (Qigdem A. Bektag et al.

Now we may choose an integer K, such that ¢(¢) < K,. Hence, we have

ur [fi (q (AT @)™ < Dug [fi (g (A7 2 — 0)]P* + max [1, (K) fi(1)"]

Therefore © € N° (A", F\p, q,u).
To show the inclusions are strict consider the following example.
Let frx(x) =z, pr =1, vp = 1, up = 1 for all k € N, ¢(z) = |z| and
0 = (27). Then, the sequence x = (k™) belongs to Ny (A", F,p, q,u) but does
not belong to N (A™ F,p,q,u) and the sequence z = ((—1)’“) belongs to
N§° (AT F,p,q,u) but does not belong to Ny (A", F,p,q,u). Therefore the
inclusions are strict.

Theorem 2.3 The sets NJ (A™, F,p,q,u), No (A™, F,p,q,u) and
N§° (A" F,p,q,u) are linear spaces over the complex field C.

Proof. Let z,y € NJ(A™ F,p,q,u) and o, 3 € C. Then exists positive
integers N,, and Mz such that |a| < N, and || < Mg. From the definition of
modulus function and A", we have

LS [ (0 (AT (e + By

hr kel

— hi > uk [fr (g (@A zy + BAT yx))]P*

(s kEIT

< D)L S w lfi (g (ATl + D (My)"

1
— U A™ Pk
e i, o elfi (0 (A7)

— 0 as r — oo.

Thus N (A™, F,p,q,u) is a linear space. The others can be treated simi-
larly.

Lemma 2.4 Let F' = (fi) be a sequence of moduli and let 0 < § < 1. Then
for each x> § we have fi (v) < 2fp (1) 'x [11].

Theorem 2.5 Let F' = (fy) be a sequence of moduli. Then

Ny (AT, q) C Ny (A, F,q).
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Proof. Let z € Ny (A, q). Then we have

1
o, =— >, q(Alx; — ) — 0 as r — oo, for some /.

h’"‘ kEI'r

Let € > 0 and choose § with 0 < 6 < 1 such that f; (¢) < ¢ for every ¢t with
0 <t < 4. Then we can write

Ly f@@ars - o)

h"f‘ ICGIT

f@@Ar— )+~ Y fula (AT — 0)

1
he ver, qApa—e<s e ke, q(Apm,—0)>6

1 1
= h_r (hrg) + h_erk (1) 5_1hr90r'

Therefore x € Ny (A", F, q).

Theorem 2.6 Let F' = (f;) be a sequence of moduli, if 1tlimf’“—(t) =~ >0,

t
then
N0 (AZI7Q) = N0 (Avma Fa Q) .

Proof. We need to show that Ny (A", F,q) C Ny (A", q). Let v > 0 and
x € Np (A" F,q). Since v > 0, we have f; (t) > ~t for all £ > 0. Hence we
have

S ila(ATm = 0) 2 1 £ 9 (@(A0n —0) = 51 T (a(ATw— 0).

kel

1

h’T kel r kel

Therefore we have = € Ny (A", q). Hence Ny (A™, F,q) C Ny (A", q). On
the other hand, by Theorem 2.5 we have Ny (AT, q) C Ny (A", F,q). Thus
Ny (Avm> Q) = Ny (ATa F; Q>

Theorem 2.7 Let m > 1 be a fixed integer, then
() Ny (A7 F,p,q,u) C N§ (A}, F,p,q,u),
(i) No (A7, F,p,q,u) C Ny (A, F,p,q,u),
(ii3) Ng° (A7~1, Fop,q,u) C Ng° (A, F,p, q,u)
and the inclusions are strict.
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Proof. The proof of the inclusions follows from the following inequality

L sl @@ra))® < D2 S [ (0 (A7 2))]™
h,» kel, hr kel,
D e [ (g (A7 ")) ]
T k‘elr

To show that the inclusions are strict, let fy () =z, pr =1, v, = 1, up = 1
forall k € N, q(z) = |z|, § = (2") and = (k™). Then x € Nj° (A", F,p,q,u),
but x ¢ Ng°(A™ 1 Fp,qu). If z = (k™), then A™x = (—=1)™m! and
Ay = (1) Hml (k4 2).

Theorem 2.8 Let 0 = (k) be a lacunary sequence. If 1 < liminf, p, <
limsup, p, < 00, then N, (A", F,p,q,u) = Ny (A", F\p,q,u), where

N, (A" F,p,q,u) = {x cw(X): hml En: g [fr (¢ (A, — 0)]PF = O}

n—oom k=1

for some L.

Proof. Let liminf, p, > 1, then there exists 6 > 0 such that p, = kfil >

146 for all » > 1. Furthermore we have Z—: < @ and k;;l < %, for all > 1.
Then we may write

S ulfigAra) = 5 u, [fi (g (A i)™ - hi ;1 wi [fi (g (A:)”

hr i€l

=~

=1

o

T

>

kT’—l _ k7»71 )
7 (krll ; u; [fi (g (M”sw))]’”) :

Now suppose that limsup, p, < oo and let € > 0 be given. Then there
exists jo such that for every i > j

L oo [fi (g (A )P < e

A; =
’ hj i€l

We can also choose a number K > 0 such that A; < K for all j. If
limsup, p, < oo, then there exists a number 5 > 0 such that p, < [ for all r.
Now let n be any integer with k,_; < n < k.. Then
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» 3l (AT a))”

7

< b 3wl (g (AT
= S w i AT et Y wlf (g (AT )

i€l i€ly
= BAE Sulf@@re) + X Sl @rm))

< KNS Y w I (g (AT )P + ek, — ki)ky

j=liel;

= k2 (AL hods + o R Aj Y ek — Ky )k

kr_—ll ( sup Aj) kjo + e(kr — kjo)kr_—ll

1<i<jo

IN

< Kk kj, +¢f.

Thus z € No’ (Avm7F7p7Q7u)'

3 Open Problem

The aim of this paper is to introduce and study the new sequence spaces
N§° (A™ F,p,q,u), Ng (A™, F,p,q,u) and N (A™, F, p, q,u), which arise from
the notions of generalized difference sequence space, lacunary sequence, a se-
quence of Moduli. We propose to study various some topological properties
and establish some inclusion relations between these spaces.

But we didn’t prove inclusion relation Ny (A" p, q,u) C Ng (A", F,p,q,u) .
Therefore it is left as an open problem.
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