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Abstract

The author uses some methods of categorical algebra in order to state the
properties that optimal languages must satisfy for allowing efficient algorithm
construction. Likewise, the universal-language concept is introduced. By virtue
of its properties, any universal language can work fine as a bridge between each
couple of natural languages in translation algorithms. It is worth pointing out,
that this is only an introductory paper suggesting a wide class of open problems,
and the same nature of these problems prevent us from solving them in a single
paper.
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1 Introduction

Consider the roman numeral system Rom = {I, V,X, L, C,D,M} to denote
integer sets. Using Rom-notation in order to compute sums, products, roots,
etc. involves an unnecessary complexity. Indeed, it is a good idea to perform
some subroutine translating every roman integer to a binary one, and then
computing algorithms can work with binary digits. This translation allows to
perform more efficient algorithms. This circumstance arises from the existence
of a morphism family f1 : Z → Z2, f2 : Z→ Z4. . . fn : Z → Z2n from any
binary integer into the number represented by their tail. For instance, the

1 Mathematical Subject classification: 94A99,18B35
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following equivalences

1001100101 ≡ 101( mod 2)

1001100101 ≡ 101( mod 22)

1001100101 ≡ 101( mod 23)

induced by these kind of morphisms, can be obtained removing the first dig-
its in the word 1001100101. Indeed, in order to build algorithms, not only
programming languages matter, but also the structure of those languages rep-
resenting the involved real world objects and actions are also essential in effi-
cient algorithm construction. Computer science has been enriched by means
of different programming languages together with several languages denoting
document structures like XML. However, an efficient language to denote real
world objects and actions only for members of numeric sets and logical connec-
tives are available, for instance the binary numeral system. This paper aims
to investigate the algebraic structure of efficient languages, in order to denote
real world objects and actions, by means of which efficient algorithms can be
defined, in particular, translation algorithms between natural languages.

Since algorithms work over words of some alphabet, it is more effective to
deal with a language such that each word equivalence corresponds to a log-
ical one between the represented objects, that is to say, the map µ sending
each word into the corresponding denoted object, must preserve the involved
algebraic language-structures as much as possible. Unfortunately, natural lan-
guages do not fit into this model, because they are the result of arbitrary
conventions.

It is easy to see, why the underlying language in any algorithm matters. For
instance, the English syntactic rule imposing a gerund after a preposition can
be deduced by observing the phrases “while reading” and “of knowing”, when-
ever the meaning of these phrases are known, because there is a conceptual
equivalence between “while” and “of”, since both are prepositions. However,
there is no algebraic equivalence between both words, both being regarded as
members of the free-monoid generated by the involved alphabet. By contrast,
suppose that there is a language P in which the prepositions “while” and
“of” are denoted by the words “xxp” and “xsp”, respectively, and the gerunds
“reading” and “knowing” by the words “xxvg” and “xwvg”, besides, the con-
cept “gerund” is denoted in P as “vg”. There is the word-equivalence between
“xxp” and “xsp” consisting of having the same last letter “p”; and there is also
a similar equivalence between “xxvg” and “xwvg”. In addition, the concept
of “gerund” containing both words “xxvg” and “xwvg”, as particular cases, is
denoted by the letters “vg” determining such an equivalence. In general, to
know that both English words “of” and “while“ are prepositions, it is required
to know their meanings, however an algorithm knows nothing about the mean-
ing of the words it deals with. By contrast, in the artificial language P , an
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algorithm can classify both words ”xsp“ and ”xxp“ as prepositions, without
knowing their meanings, observing the only final letter ”p“. This is why effi-
cient algorithms can be only performed using artificial languages such that the
map sending words and sentences into their meanings preserves the underlying
algebraic structures. In next sections, this kind of languages are defined ac-
curately and described as coherent languages. In addition, basic concepts and
methods are introduced too. To this end, a conceptual system ΩP will be de-
fined, this being structured by means of a transitive-reflexive relation denoted
as �. For every couple of concepts X and Y , the relation X � Y means Y
to be an abstraction of X. Analogously, a language algebra L equipped with
another transitive-reflexive relation v will be defined too. For every couple of
words w1 and w2 in L, the relation w1 v w2 holds provided that w2 is the tail
of w1. The underlying set of L consists of a set of words Dic(L) together with
a collection Sen(L) of word-sequences, that is to say, sentences.

Morphisms between both algebraic constructions (L,v) and (ΩP,�) are
preserving-structure maps. These structures lead to the definition of the
concepts of applied dictionary and applied language as follows. A 5-tuple
(Dic(L),v,ΩP,�,M) is an applied dictionary, provided that (ΩP �) is a con-
ceptual system and (Dic(L),v) is a language algebra. In addition,M⊆ L×ΩP

is a binary relation satisfying the following property. For every word w ∈ L
and each concept O ∈ ΩP, the relation (w,O) ∈ M is true if and only if w
denotes O. Thus, if M is a mapping, then it sends each word w of L into
its meaning. In this case, the map-image uniqueness implies L to be unam-
biguous. The concept of applied language is obtained by extension, that is
to say, extending the mapping M to word-sequences or sentences. An unam-
biguous applied language is coherent provided that M is a morphism. As we
shall show, coherent applied languages are the adequate devices for efficient
algorithm construction.

In the last sections, we investigate the problem of efficient translation al-
gorithms between couples of natural and artificial languages by means of an
intermediate one L0. To this end, it is a good method each language L to be
equipped with a translating algorithm between L0 and L, and then L0 works
as a bridge between each couple of natural languages. Such a strategy is widely
accepted among programming languages, like Java, in which it is used the in-
termediate one commonly referred to as Java bytecode, in order to translate
applications among different operating systems.

One of our main results will show, that if T denotes a functor sending each
object LP , consisting of word-sequences and patterns of a language L, into the
collection T(LP ) of its sentences, then there is a language L0, determined by

means of a structured arrow L0

iL0−−→ T(L0,P ) satisfying some universal property.
Such a language L0 is unique up to isomorphisms. Since L0 is determined by a
universal property, then it is justified to describe it as universal language. As
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a consequence, any universal language, defined in a wide class, is syntax-free
and can be built in a coherent way. In addition, L0 satisfies each property of
any other language lying in the same category, whenever it is preserved under
morphisms. It is just by virtue of these properties that a universal language
is a good choice to work as intermediate among natural languages and among
artificial ones too. We will detail some language optimization method by means
of which it is possible to discern what are the structure properties that the best
language must satisfy for each purpose. The same method shows that optimal
languages are universal too.

Finally, it is worth mentioning, that this paper is intended as an introduc-
tory one suggesting new open problems to be solved, which will be proposed
in the last section.

2 Conceptual algebra

Languages we are dealing with are partial free monoids each member of which
is equipped with a meaning. Since the meaning of a word w is nothing but the
concept c denoted by w, there is a map f sending w into c. We say a language
to be coherent provided that f preserves the involved algebraic structure. To
define preserving-structure maps between languages and conceptual systems, it
is required a conceptual algebra. In [8] it is introduced a conceptual system and
algebra of analogies, the definition of each of its objects consists of predicates
lying in a class P being stable under conjunctions and disjunctions. Morphisms
between two concepts X and Y are transitive and reflexive relations, denoted

as
N

�; where N is a subclass of P. However, for our purposes it is sufficient a

particular case, consisting of the subcategory such that, for every
N

�, the class
N coincides with P. Thus, since there is no confusion, the transitive-reflexive

relation
N

�, will be denoted, simply, as �, which it is defined in the following
paragraphs, hence this paper is self-contained.

Let P denote a class of predicates being stable under conjunctions and
disjunctions. Assume, as an axiom, that P contains at least one tautology.
With these assumptions, say X to be a P-defined object, provided that there
is a predicate DefX(O) ∈ P specifying X, that is to say, for every object Y ,
the relation DefX(Y ) = True, implies X = Y . Of course, DefX(X) = True.
To denote this fact, we shall say DefX(O) to be a deductive definition for X.

Definition 2.1 For every couple of P-defined objects X and Y , the object
Y is an abstraction of X, and X a concretion of Y , if and only if there is a
predicate p(O) ∈ P satisfying the following relation

DefX(O)⇔ (DefY (O) ∧ p(O))
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for every P-defined object O.

For example, consider the defined objects ”triangle“ and ”polygon“ to-
gether with the predicate

p(O) = “O contains three and only three angles”

Indeed,

Def“triangle”(O)⇔ (Def“polygon”(O) ∧ p(O))

therefore, the concept of “polygon” is an abstraction of the “triangle” notion.
Henceforth, to denote Y to be an abstraction of X write X � Y , therefore

in the preceding example we can write “triangle” � “polygon”.

Lemma 2.2 The relation � is reflexive and transitive.

Proof. On the one hand, since p(X) can be a tautology, then for every
defined object X it is true that X � X, hence the relation � is reflexive. On
the other hand, both relations X � Y and Y � Z imply the existence of two
predicates p1(O) and p2(O) such that, for every P-defined object O,

DefX(O)⇔ DefY (O) ∧ p1(O) (1)

DefY (O)⇔ DefZ(O) ∧ p2(O) (2)

therefore,

DefX(O)⇔ DefZ(O) ∧ (p1(O) ∧ p2(O)) (3)

Since by assumption P is stable under conjunctions, then (p1(O) ∧ p2(O))
belongs to P; hence, X � Z and the lemma follows.

Now, denoting as ΩP the class of all P-defined objects, the pair (ΩP,�) is
a category such that for every couple of objects X and Y the corresponding
hom-set hom(X, Y ) either is empty or it is the singleton {X � Y }, that is to
say, X → Y if and only if X � Y .

Let ΩP(X) denote the predicate “X is a P-defined object”. From now on,
assume ΩP(X) ∈ P, hence the concept of P-defined object is also a P-defined
one. Henceforth, denote such an object as ΩgP. Since, by definition, every
P-defined object satisfies the predicate ΩP(X), then for every X ∈ ΩP the
relation

DefX(X)⇔
(
DefΩP

(X) ∧DefX(X)
)

= ΩP(X) ∧DefX(X)

holds; therefore

∀X ∈ ΩP : X � ΩgP (4)
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It is a known fact [1], that in any category associated to a preordered set
(ΩP,�), for every set-family X = {Xi | i = 1, 2 . . . n} there is the co-product

Xg =
∐

0<i≤n

Xi

whenever there is an element ΩgP satisfying (4). From now on, denote such a
co-product by means of the binary operator g, that is to say,

Xg =
∐

0<i≤n

Xi = X1 gX2 g · · ·gXn

Since by definition, for every i ≤ n there is the relation Xi � Xg, say Xg to
be the abstraction of the set X. Likewise, say the Xi to be concretions of Xg.

When two P-defined objects X and Y satisfy some predicate p(x), this
fact can be regarded as an analogy between them. If p(x) is equivalent to
the definition DefZ(x) of some object Z, obviously both relations X � Z and
Y � Z hold. Thus, the existence of the co-product X g Y implies an analogy
between X and Y . By the nature of co-product concept, this is just, the
strongest analogy that can be found between both objects.

Using a lighter notation we can state the following. Let X, Y and Z be
three P-defined objects and p(O) a predicate in P being equivalent to the
definition DefZ(O) of Z. If both relations X � Z and Y � Z hold, we shall

denote this circumstance writing X
p(x)
= Y .

It is not difficult to see,
p(x)
= to be an equivalence relation, because � is

reflexive and transitive. The symmetry of
p(x)
= is consequence of the required

logical conjunction (X � Z)∧(Y � Z) which is also a symmetric formula. Such
an equivalence denotes some analogy between X and Z. Since, by assumption,

p(x) is equivalent to DefZ(x), both notations X
p(x)
= Y and X

DefZ(x)
Y

are adequate.
Abstractions, concretions together with analogies are the elements struc-

turing the conceptual algebra we are dealing with. Since both natural and
artificial languages are used to denote concepts, language algebra will be in-
vestigated in the next section.

3 Language algebra

Languages we are dealing with are structured sets consisting of word sequences.
Thus, the members of a language L are words of a partial free-monoid gener-
ated by any finite alphabet A. Henceforth, assume as an axiom every language
to contain the empty word ∅. The set of all words of any language L will be
denoted as Dic (L), and it will be termed as the dictionary of L. In any dic-
tionary Dic (L) we define a reflexive and transitive relation v as follows.
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Definition 3.1 For every pair of non-empty words w = a1a2 . . . an and
b = b1b2 . . . bm of a language L, the relation w v v is true if and only if n ≥ m,
besides, aj+1aj+2 . . . aj+m = b1b2 . . . bm; where j = n − m. In addition, if ∅
denotes the empty-word, then ∀w ∈
mathrmDic(L) : w v ∅.

Lemma 3.2 The relation v is reflexive and transitive.

Proof. By definition ∅ v ∅. If w = a1a2 . . . an is any nonempty word,
since ∀i ≤ n : ai = ai then the relation w v w holds; therefore v is reflexive.
To see that v is also transitive, consider three nonempty words w = a1a2 . . . an,
v = b1b2 . . . bm and u = c1c2 . . . ck and suppose that w v v and v v u. By
definition, we have that

aj+1aj+2 . . . aj+m = b1b2 . . . bm (5)

br+1br+2 . . . br+k = c1c2 . . . ck (6)

where j = n − m and r = m − k. From the preceding relations it follows
that at+1at+2 . . . at+m = c1c2 . . . ck for t = n− k, hence w v u, and the lemma
follows.

According to the preceding lemma, the pair (Dic (L) ,v) is a category such
that for every couple of words w and v, the set hom(w, v) either is empty or it
is the singleton {w v v}. From now on, to avoid exceptions we shall consider
that every word ends with the empty letter sequence ∅; consequently, for every
word w the relation w v ∅ holds. As in the conceptual systems defined above,
for every couple of words w and v, both relations w v u and v v u can be
interpreted as an analogy between w and v, for any word u. Henceforth, denote
such an analogy as w

u
= v.

Definition 3.3 An applied dictionary is a 5-tuple (Dic(L),v,ΩP,�,M),
such that (Dic(L),v) is a dictionary in a language L, (ΩP,�) is a concep-
tual system and M ⊆ Dic(L) × ΩP a binary relation satisfying the following
property. If w is a word of Dic(L) and O ∈ ΩP a P-defined object, then
(w,O) ∈M if and only if the meaning assigned to w is O ∈ ΩP

Definition 3.4 An applied dictionary (Dic(L),v,ΩP,�,M) is unambigu-
ous, provided that M is a mapping.

It is worth noticing, that according to the former definition, in any unambigu-
ous dictionary each word has only a meaning.

Definition 3.5 A dictionary (Dic(L),v,ΩP,�,M) is algebraically coher-
ent provided that M preserves both structures of (L,v) and (ΩP,�).
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Disambiguation of any ambiguous applied dictionary can be performed
enriching each word with attributes. Attributes can be adjectives or key-
words restricting the meaning of any word, together with those terms de-
noting the context under which each word occurs. For instance, “English”,
“Hamlet”, “preposition”, “polite”, “verb”, “ironic”, “buzzword”, “jargon”,
“future”,“plural”, etc. can be word attributes. Denote word attributes adding
symbols to any word and using the symbol “@” to separate each word from its
attributes. For example, the word “staff” can be equipped with both attributes
“noun” and “verb”, hence “staff@noun” and “staff@verb” are disambiguations
of this word. From now on, we are supposing that all applied dictionaries we
are dealing with, are unambiguous.

Dictionaries form a category Dic each object of which is an applied dic-
tionary and morphisms between two objects (Dic (L∞) ,v,ΩP,�,M1) and
(Dic (L∈) ,v,ΩP,�,M2) are all maps f : L1 → L2 preserving meanings, that
is to say, f is a morphism provided that

∀w ∈ L1 : M1(w) =M2 (f(w)) (7)

From now on, assume that any dictionary only contains words in singular and
infinitive tense; consequently plurals and other verb tenses will be denoted by
means of attributes. In fact, dictionaries of natural languages are performed
in this way, and attributes are contained in definitions implicitly.

Lemma 3.6 For every Dic-morphism f : L1 → L2 and for each pair
(w1, w2) lying in L1 × L1 the following statements hold.

1. If M (f(w1))gM (f(w2)), then this is equal to M(w1)gM(w2).

2. The relationM(w1)�M(w2) holds if and only ifM(f(w1))�M(f(w2)).

3. For every predicate p(x), there is the analogy M(w1)
p(x) M(w2) if

and only if M (f(w1))
p(x) M (f(w2)) .

Proof. By definition, each of the relations �, g and
p(x)

depends only
upon the meaning of the involved symbols, and morphisms preserve meanings.

3.1 Efficient algorithms

Consider a family F of maps the domain and co-domain of each of which is a
set X. Suppose that there is a family of abstractions

A = {X � Aij | i ∈ I, j ∈ Ji}
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where both Ji and I are countable index sets, for every index i. Since each

analogy
Def(Aij)

is an equivalence relation, then there are the corresponding

quotient sets. If for short we denote each
Def(Aij)

as Rij, then the correspond-
ing quotient set family is Q = {X/Rij | (i, j) ∈ I × Ji}. These assumptions
lead to state the following axiom.

Axiom 3.7 For every i ∈ I, there is a mapping ρi : X → Ji such that

x =
⋂
i∈I

[x]Riρi(x) (8)

where [x]Riρi(x) denotes the Rij-equivalence class containing x.

Lemma 3.8 If a set X satisfies Axiom 3.7 with respect to a family of analo-
gies Rij, then there is a coherent language to denote the members of X.

Proof. By hypothesis, for every i ∈ I there is the map ρi : X → Ji
satisfying (8). If for each i ∈ I, Ai is an alphabet equipollent to Ji, then there
is a bijectionM : Ji → Ai and each member α of Ai denotes a memberM(α)
of Ji. Likewise, if I = {1, 2 . . . k}, then for every i ∈ I each member αiρi(x)

of Ai can denote the equivalence-class [x]Riρi(x) ; therefore, taking into account
(8), the word αkρkxα(k−1)ρ(k−1)

(x) . . . α1ρ1(x) can denote x in a coherent way,
because each letter represents an equivalence class, and by virtue of (8),

x =M(αkρk(x)) ∩M(α(k−1)ρ(k−1)(x)) ∩ · · ·M(α1ρ1(x))

Thus, using the alphabet A = ∪i∈IAi the members of X can be denoted
by k-letter words. Likewise, every n-letter word αnjnα(n−1)jn−1 . . . α1j1 , with
n ≤ k, denotes the equivalence class intersection M(αnjn) ∩M(α(n−1)j(n−1)

) ∩
· · ·M(α1j1), Accordingly, for every pair of words w1 = αkjkα(k−1)jk−1

. . . α1j1

and w2 = βkjkβ(k−1)jk−1
. . . β1j1 , if for some n ≤ k it is true that

u = αnjnα(n−1)jn−1 . . . α1j1 = βnjnβ(n−1)jn−1
. . . β1j1

the following relations are true

w1 v u (9)

w2 v u (10)

w1
u
= w2 (11)

(12)

and, analogously, let Z =M(αnjn) ∩M(α(n−1)j(n−1)
) ∩ · · ·M(α1j1),

M(w1) � Z (13)

M(w2) � Z (14)

M(w1)
DefZ(x)M(w2) (15)
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therefore the map M preserves both structures.
In the following examples we describe some instances of coherent languages

based upon some well-known equivalences of number theory.
Example. Consider the set of natural numbers X = {0, 1, 2 . . . 29}. Let

p1 = 2, p2 = 3 and p3 = 5 the three first primes, and let Ji = {1, 2 . . . pi|i ∈ I}
for I = {1, 2, 3}. Consider the family of predicates

P = {pij(x) = (x ≡ j mod (pi)) |i ∈ I, j < i}

Let J1 = {02, 12} be the alphabet each member of which j2 denotes the
equivalence class j2 = {x ∈ X|x ≡ j mod (2)}; likewise each member j3 of
J2 = {03, 13, 23} denotes the equivalence class j3 = {x ∈ X|x ≡ j mod (3)},
and each member j5 of the alphabet {05, 15, 25, 35, 45} denotes the equivalence
class j5 = {x ∈ X|x ≡ j mod (5)}. With these assumptions each three-letter
word denotes a member of X, for example, denoting as M the map sending
each word into its meaning, we have that

3 =M(350312) (16)

4 =M(451302) (17)

13 =M(351312) (18)

because 3 ≡ 1( mod 2), 3 ≡ 0( mod 3), 3 ≡ 3( mod 5) etc.
Now, let A = J1∪J2∪J3, it is not difficult to see, that the applied dictionary

Dic(L) = (A,v, X ⊂ ΩP,�,M) is coherent, because each word denotes an
equivalence-class. In addition, it does not matter the order in which each letter
occurs in each word. To see this fact, let z stand for the concept of member of
X being divisible by both 2 and 3, that is to say, z =M(0302). The definition
Def(z) is equivalent to p10(x) ∧ p20. Indeed, for every j5 ∈ J3, the relation
M(j50302) � M(0302) holds, because the definition of j50302 is equivalent to
p5j(x) ∧ p30(x) ∧ p20(x) and

p5j(x) ∧ p30(x) ∧ p20(x)⇔ Defz(x) ∧ p5j(x) = (p30(x) ∧ p20(x)) ∧ p5j(x)

The proof for any other pair of words is similar.
Now, say a map f : X → X in F to be compatible with an applied

dictionary (A,v, X ⊂ ΩP,�,M), provided that it preserves the equivalence
classes denoted by its words; consequently there is a family of maps Ff =
{fi : Ai → Ai | i ∈ I} such that for every x ∈ X, if w1w2 . . . wk is the word
denoting x then

f(x) =
⋂
i∈I

M (fi(wi))

The language defined in the example above, allows to construct efficient
algorithms in order to evaluate polynomials in integer rings. The following
example illustrates this fact.
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Example. Consider the set X in the preceding example and the map
f(x) = x2 + 4. Since f(x) preserves the equivalence classes “≡ mod (p)”, the
corresponding quotient maps f1 : Z2 → Z2, f2 : Z3 → Z3 and f3 : Z5 → Z5 can
be defined also by means of the polynomials f1(x) = x2, f2(x) = x2 + 13 and
f3(x) = x2+45, respectively. To compute f(3) we can evaluate each of the maps
f1(12) = 12, f2(03) = 13 and f3(35) = 35 obtaining f(3) = M(351312) = 13,
consequently f(3) = 13.

An algorithm to compute a map can consists of a hash-table and a searching
algorithm by means of which each value x of its argument can be found in the
first column, and in the same row, but in the second column the corresponding
value of f(x) can be obtained. Now, a table to compute a map f(x) being
compatible with the applied dictionary defined in the former example, must
contain 30 rows. By contrast, a table to compute f1 : Z2 → Z2 is a two-row
one; a table to compute f2 can consist of 3 rows, and f3 can be computed
through a table containing 5 rows. Thus, the three maps f1, f2 and f3 can
be computed with a table of 2 + 3 + 5 = 10 rows, while to compute f it is
required a table of size 30. Likewise, each integer n can be represented as a
word wp . . . w5w3w2 such that (wp, . . . w5, w3, w2) ∈ Zp × · · ·Z5 × Z3 × Z2. To
represent integers such a language is algebraically coherent; however, in order
to represent real number sets it is not, because the structure of R involves the
concept of limit and the standard topology.

In general, algorithms can be split into maps, therefore using coherent
languages it is possible to perform more efficient algorithms for those maps
being compatible with the analogy relations of their domains. To this end,
each algorithm must contain a translation one to denote each defined object
by means of a coherent language. Accordingly, efficient translation systems
must be investigated, which can be also applied to perform translations among
natural languages. Next sections are devoted to this topic.

4 Applied languages

An applied language is a 6-tuple L = (Dic (L) , Sen (L) ,�,ΩP,v, µ); where
Dic (L) is an applied dictionary; Sen (L) is a set of sentences, that is to say,
finite word sequences in Dic (L) having a meaning; both � and v are the
relations defined above; and µ : Sen (L)→ ΩP is a map sending each sentence
into its meaning. From now on, we are assuming that each word is enriched
with attributes in order to avoid any ambiguity. Likewise, since each word of
an applied dictionary has a meaning, we assume as an axiom that each word
is also a one-word sentence; consequently Dic (L) ⊆ Sen (L), for any language.

The class of all applied languages form a category AppLng the morphisms
of which are all maps between sentence sets preserving both meanings and
attributes. Thus, for every couple of applied languages L1 and L2, a map
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f : Sen(L1)→ Sen(L2) is a morphism, provided that each sentence s ∈ Sen(L1)
has the same meaning as its image f(s) ∈ Sen(L2). In addition, the attribute
family of s is a subset of the attributes of f(s). Since we are assuming the
relation Dic (L) ⊆ Sen (L), then L0 = (Dic (L) ,Dic (L) ,�,ΩP,v, µ0) is a
sub-language of L = (Dic (L) , Sen (L) ,�,ΩP,v, µ) and the inclusion map
iL0 : L0 → L a morphism; where µ0 = µ|Dic(L) denotes the restriction of µ to
Dic (L).

Disregarding idioms, the meaning of each sentence w1w2 . . . wn, is built from
the meanings of the words in a subset {wr1 , wr2 . . . wrk} of {w1, w2 . . . wn}, with
k ≤ n, by means of some procedure P . For instance, in the English sentence
s =“he does not write”, the meaning depends only on the words “he” and
“write”, while the words “does” and “not” form the structure of this sentence.
To see this fact, consider the sentence “she does not read”. The later has
the same structure as s, but the meaning depends on the words “she” and
“read”. In fact, the sentence structure “f(x, y) = x does not y” works as a
map sending the values of x and y into the meaning of the underlying sentence.
Of course, this map f(x, y) is nothing but an English pattern. From this view-
point, a language is a collection of words and maps, that is to say, patterns,
and each pattern determines a procedure by means of which the meaning of
each sentence in its image must be built. Henceforth, say such a procedure to
be a meaning-constructor.

The concept of continuity can be applied to patterns as follows. A pat-
tern f(x1, x2 . . . xn) is continuous, provided that for every couple of n-tuples
(x1, x2 . . . xn) and (y1, y2 . . . yn), if both f(x1, x2 . . . xn) and f(y1, y2 . . . yn) are
sentences, then for every n-tuple (z1, z2 . . . zn) the statement

∀i ≤ n : xi � zi � yi

implies f(z1, z2 . . . zn) to be a sentence too. In natural languages, continuity
is widely assumed, because substituting a word w in a sentence s by another

one v with an analogous meaning µ(v)
p(x)
= µ(w), in general, it is supposed

the result to be a sentence s′ such that µ(s)
p(x)
= µ(s′). Roughly speaking,

substituting w in s by a word v having a similar meaning, it is obtained a new
sentence having a similar meaning too.

Definition 4.1 Let L = (Dic(L), Sen(L),�,ΩP,v, µ) be an applied lan-
guage. Two sentences s1 = w1w2 . . . wn and s2 = v1v2 . . . vn in Sen(L) are
affine, provided that the following statements hold.

1. There is a nonempty subset I ⊆ {1, 2 . . . n} such that the meaning of s1

can be obtained, by means of some procedure P , from the meaning-set
{µ(wi)|i ∈ I} of all words with index in I.
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2. The meaning of s2 can be obtained by means of the same procedure P
from the meaning-set {µ(vi)|i ∈ I}, besides, for every i = 1, 2 . . . n, the
relation i /∈ I implies wi = vi.

In the former definition, the words with index in I determine the meaning of
each sentence, and this is why we shall term them as essential words in each
affinity. Likewise, we shall term each non-essential word of any affinity as a
structure one.

Lemma 4.2 Affinity is an equivalence relation.

Proof. The former definition remains unaltered interchanging s1 and ss;
therefore both properties symmetry and reflexivity follow from this fact. To
show transitivity, consider that, according to the former definition, two affine
sentences are of the same length. In addition, if s1 and s2 are affine, and so
are s2 and s3, then the index I of the essential words in s1 is the same as the
one for s2, and likewise for s3; consequently s1 and s3 are affine too.

Henceforth, affinity will be denoted by the symbol u, and for every sentence
w, the affine-equivalence-class containing it will be denoted as [w]u.

Definition 4.3 A word sequence u = ur1ur2 . . . urk is a sub-concretion for
a sentence w = w1w2 . . . wn provided that, if {wr1 , wr2 . . . wrk} is the set of
essential words in w, then for each integer m such that 0 < m ≤ k the relation
urm � wrm is true.

Notation. Let I = {1, 2 . . . n} be a finite index set and J = {r1, r2 . . . rk}
a subset of I. Let w = w1w2 . . . wn be a sentence and u = ur1ur2 . . . urk a
sub-concretion for w = w1w2 . . . wn. Henceforth, denote as

w1w2 . . . wn� ur1ur2 . . . urk

the word sequence obtained by substituting each word wrm in w by the corre-
sponding urm in u.

Remark. When in an expression occur some words, say “triangle” and
“pentagon”, it is interpreted that each of them is denoting its meaning. How-
ever, under some contexts they can be considered, simply, as symbol-sequences
disregarding any meaning. Nevertheless, since both symbols � and g are de-
fined for objects or concepts, in expressions like “triangle” g “pentagon” it
must be understood that each word stands for its meaning without using a
map µ denoting it. Since there is no confusion, to improve the readability, in
this section the same symbols w1, w2 . . . will be used in order to denote words
and their meanings when the law g occurs among them.

The following example illustrates these ideas.
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Example. Consider the English sentences “it depends on height”, “it
depends on length”. Both sentences are affine; and so are s1 =“speak out” and
s2=“write out”, but “speak out” and “go out” are not, because the meanings
of both sentences s1 and s2 are built from the meanings of “speak” and “write”,
respectively, enriching them with the notion of “clearness”, while the meaning
of “go out” is built by restricting the meaning of the verb “to go” to the
only direction from the interior to the exterior. In the affinity “speak out” u
“write out” the only structure word is “out”; and the only essential word in
“speak out” is “speak”, while the essential one in “write out” is “write”. It is
worth noticing, the following relations: “speak out” = “write out”�“speak”
and “write out” = “speak out”�“write”.

Let I be a countable index-set of cardinality greater than 1, and A =
{wi,1wi,2 . . . wi,n | i ∈ I} a set of pairwise affine sentences in an applied language

L = (Dic (L) , Sen (L) ,�,ΩP,v, µ)

Let J = {r1, r2 . . . rk} the largest subset of {1, 2 . . . n} such that for every
m ∈ J the word wi,m is essential in each sentence lying in A; hence for each
m ∈ {1, 2 . . . n}, the relation m /∈ J implies wi,m to be a structure word in each
sentence lying in A. These assumptions lead to state the following definition.

Definition 4.4 A word sequence p = u1u2 . . . un is the pattern generated
by A provided, that for every rm ∈ J ,

urm =
∐
i∈I

wi,rm = w1,rm g w2,rm g · · ·

and for every m ∈ I \ J and each i ∈ I, um = wi,m.

It is worth pointing out, that by virtue of (4), for every j in I and each
rm ∈ J , the following relation holds

wj,rm � urm =
∐
i∈I

wi,rm (19)

Of course, translation patterns are obtained comparing sentences having
the same meaning, but lying in two different languages, for instance see [5].
By contrast, our definition of pattern involves a unique language. However,
these kind of patterns are the same as those obtained comparing two lan-
guages. Once two pattern sets are obtained from two different languages,
say Spanish and English, it is easy to state a correspondence among them
assigning each Spanish pattern to the corresponding English one. Such a cor-
respondence can be built because affinities are defined by means of meaning
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constructors, while the correspondence between two patterns of different lan-
guages is implied by the coincidence of their meanings. Thus, the coincidence
of meaning-constructors implies the meaning-equality.

Notice, that we have defined the concept of pattern in affinity classes of
cardinality greater than 1; therefore for every sentence w lying in an affinity
class [w]u of cardinality greater than 1 there is a sub-concretion u for the
pattern p determined by [w]u such that w = p� u.

Definition 4.5 Let w be a sentence of more than one word, if the affinity
class [w]u is a singleton, then w is called an idiom.

The following lemma is a straightforward consequence of the previous def-
inition.

Lemma 4.6 For every applied language L and every sentence w ∈ Sen(L),
one of the following statement holds.

1. The sentence w is an idiom.

2. The sentence w consists only of one word.

3. There is a pattern p and a sub-concretion u such that w = p� u.

Proof. The affinity class [w]u containing w either is a singleton of
contains more than one element. In the first case, either w is an idiom or it
contains only a word. If [w]u is not a singleton, then there is another sentence
v in [w]u and the co-product w g v is a pattern p. If u = w1w2 . . . wn is the
essential word sequence in w, then by definition, w = p� u.

Henceforth, to avoid any loss of generality, for every idiom w we shall
extend the definition of the binary law� writing w = w� u for every word
sequence u. From this view-point, every idiom is an absorbent element for he
law �.

It is worth noticing, that one-word sentences can generate patterns induced
by attributes and generic concepts. For instance, both words

“triangle@geometry” and “pentagon@geometry”

are concretions of “polygon@geometry”, therefore both equalities

“triangle@geometry” = “polygon@geometry”� “triangle@geometry”

and

“pentagon@geometry” = “polygon@geometry”� “pentagon@geometry”

hold.
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Notation. For every applied language L, denote as Ptt(L) the collection
of all patterns and idioms of L.

Example. Consider the English sentences s1 = “The area of a triangle”
and s2 = “The area of a pentagon”. The pattern generated by these sentences
is p = “The area of a polygon”, because “triangle”g“pentagon” = “polygon”.
Since there is no ambiguity, attributes need not be considered; nevertheless the
words of both sentences can be enriched adding the attributes “English” and
“geometry”.

It is worth noticing, that both sentences can be obtained from the pattern
“The area of a polygon” by two sub-concretions, as follows.

“The area of a triangle” = “The area of a polygon”� “triangle”

“The area of a pentagon” = “The area of a polygon”� “pentagon”

Notation. For every pattern or idiom w ∈ Ptt(L) denote as subC(w)
the family of all sub-concretions for w. Likewise, denote as subC [Ptt(L)] the
family of all sub-concretions for a all members of Ptt(L).

Definition 4.7 Let PttSC denote the category the object-class of which is

{Ptt(L)× subC [Ptt(L)] |L ∈ AppLng}

and morphisms between two objects

Ptt(L1)× subC [Ptt(L1)]

and

Ptt(L2)× subC [Ptt(L2)]

are all map-pairs (f, g) such that g : Dic(L1) → Dic(L2) preserves meanings;
in addition, f : Ptt(L1)→ Ptt(L2) satisfies the following condition. For every
pattern w, and each sub-concretion u1u2 . . . uk ∈ subC [Ptt(L1)] both sentences
w� u1u2 . . . uk and f(w)� g(u1)g(u2) . . . g(uk) have the same meaning.

Of course, for every PttSC-object the corresponding identity is id× id.

4.1 Universal languages

Consider the functor T : PttSC → AppLng defined as follows. The image
of every object Ptt(L) × subC [Ptt(L)] under the functor T is the applied
language L. In addition, the functor T sends every PttSC-morphism

(f, g) : Ptt(L1)× subC [Ptt(L1)]→ Ptt(L2)× subC [Ptt(L2)]
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into the AppLng-arrow L1
T(f,g)−−−→ L2, the underlying map of which

T(f, g) : Sen(L1)→ Sen(L2)

is defined as follows. According to Lemma 4.6, for every w ∈ Sen(L1) there are
a pattern v and a sub-concretion u = u1u2 . . . uk for it such that w = v� u,
accordingly T(f, g) sends w = v� u1u2 . . . uk into

T(f, g)(w) = f(v)� g(u1)g(u2) . . . g(uk)

Recall that by virtue of Definition 4.7, both sentences w and T(f, g)(w) have
the same meaning.

Definition 4.8 Let C1 and C2 two categories and T : C1 → C2 a functor.
A structured arrow σ : X → T(Y ) is ↑-universal provided, that for every
C2-morphism f : X → T(Z), there is a unique C1-morphism f ∗ : Z → Y
such that the following triangle commutes.

X

f &&

σ // T(Y )

T(Z)

T(f∗)

OO
(20)

Definition 4.9 Let L be a full subcategory of AppLng. An object

L = (Dic(L), Sen(L),�,ΩP,v, µ)

of L is a universal language in L provided that the inclusion-map

iL0 : L0 → T (Ptt(L)× subC [Ptt(L)])

is ↑-universal; where

L0 = (Dic(L),Dic(L),�,ΩP,v, µ|Dic(L))

The concept of universal language is closely related to the ordinary concept
of universal element of a structured arrow. In the following theorem we show
the main properties.

Theorem 4.10 If L is a universal language in a family L, then the follow-
ing statements are true.

1. Every universal language in L is isomorphic to L, that is to say, universal
languages are unique up to isomorphisms.
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2. Denoting as “syntax” the ordering in which essential words occur in a
pattern, if the family L contains sufficient languages in order to contain
every possible syntax, then L must be a syntax-free language.

3. L satisfies every property of any natural or artificial language in L that
can be preserved under PttSC-morphisms.

Proof.

1. Suppose that there are two ↑-universal arrows

iL0 : L0 → T (Ptt(L)× subC [Ptt(L)])

and
jL0 : L0 → T (Ptt(L′)× subC [Ptt(L′)])

By definition, we have that there are also two morphisms (f1, g1) and
(f2, g2) such that

iL0 = T(f1, g1) ◦ jL0 (21)

jL0 = T(f2, g2) ◦ iL0 (22)

hence, iL0 = T ((f1, g1) ◦ (f2, g2) ◦ ) iL0 , and by virtue of the assumed
uniqueness, (f1, g1) ◦ (f2, g2) = id× id, and statement 1) follows.

2. Let w = w1w2 . . . wn be a pattern in any language L1 lying in L and
wr1wr2 . . . wrk the sequence of essential words in w. Let f : L0 → L1 be
a map sending each word w in L0 into a word f(w) ∈ Dic(L1) having the
same meaning; where L0 =

(
Dic(L),Dic(L),�,ΩP,v, µ|Dic(L)

)
. Since L

is assumed to be universal, then there is a unique morphism

(f ∗, g∗) : (Ptt(L1)× subC [Ptt(L1)])→ (Ptt(L)× subC [Ptt(L)])

such that the following triangle commutes.

L0

iL0 //

f ,,

T (Ptt(L)× SubC[Ptt(L])

T (Ptt(L1)× SubC[Ptt(L1])

T(f∗,g∗)

OO
(23)

Thus, if w is a pattern in a language L1 the essential word-sequence of
which is wr1wr2 . . . wrk , then there is also a pattern f(w) in L such that
g∗(wr1)g

∗(wr2) . . . g
∗(wrk) is the corresponding essential word sequence.

Now, by hypothesis, there are all possible syntax in the languages of
L; accordingly, if Sk is the symmetric group of degree k, then for every
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σ ∈ Sk there is at least one language Lσ such that the pattern wσ,
being equivalent to w, that is to say, determining the same meaning as
both w and f(w), the corresponding essential-word sequence of which is
σ(g∗(wr1))σ(g∗(wr2)) . . . σ(g∗(wrk)); consequently it does not matter the
order in which each word occurs in f ∗(w)� g∗(wr1)g

∗(wr2) . . . g
∗(wrk),

hence L must be a syntax-free language.

3. With the same assumptions as in the preceding statement, if P is a
property of a pattern w and the corresponding essential word sequence
wr1wr2 . . . wrk of any language L1 ∈ L being preserved under (f ∗, g∗),
then the pattern f ∗(w) together with g∗(wr1)g

∗(wr2) . . . g
∗(wrk) satisfy

also such a property P . Thus, since L1 is an arbitrary language in L,
then the universal language L satisfies every property P of any language
in L being preserved under PttSC-morphisms.

4.1.1 Structure of universal languages

As we have just seen above, the most noticeable property of a universal lan-
guage is the lack of any syntax. Thus, if a language L is universal in a family
L, the essential words wr1wr2 . . . wrk in a sentence w = w1w2 . . . wn in L can
occur in any ordering; hence wr1wr2 . . . wrk can be regarded as a word-set in-
stead of a word-sequence. Thus, each sentence w in L can consist of a set of
words s = {w1, w2 . . . wk} together with a subsequence u denoting the proce-
dure by means of which the meaning of w must be built from the meanings
of the members of s. Thus, the sub-sentence u determines also a pattern
u∗ = u1u2 . . . un, which can be regarded as a map u\(u1, u2 . . . un) sending the
n-tuple (u1, u2 . . . un) into the meaning of w; accordingly,

w = u s = u∗� s = u\(w1, w2 . . . wn)

After these ideas, it is clear, that sentences in universal languages are couples
consisting of a word set s together with a sentence u denoting only a procedure
by means of which the meaning of u s must be built from the meanings of
the words of s. Thus, a universal language L must contain a sub-language
Aff(L) each sentence of which denotes a meaning-constructor; therefore any
algorithm to determine affinities can be built easily in universal languages. For
instance, in w = u s, the sentence u belongs to the language Aff(L), therefore
two sentences w1 = u1 s1 and w2 = u2 s2 are affine, whenever u1 = u2 and
affinities can be obtained easily in universal languages.

In general, it is possible to assign a meaning-constructor set to s of cardi-
nality greater than n!, being n the size of s; accordingly universal languages
are more powerful than non-universal ones lying in the same class L. The con-
struction of an efficient sub-language Aff(L) together with the investigation of
its properties are open problems.
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Perhaps the property of being syntax-free, is the most powerful feature in
order to use any universal language as the intermediate device between two
languages L1 and L2 lying in the same class L. To see this fact, consider
that to translate a sentence w from L1 to L2, in any translation algorithm
the syntactic rules of both L1 and L2 must be considered. By contrast, to
translate a sentence w from L1 to w′ ∈ L the only syntax to be considered
is the underlying one of L1; and to translate w′ from L to the corresponding
sentence w′′ of L2 an algorithm need only deal with the syntax of L2.

In addition, since universal languages are artificial, then they can be built
in a coherent way; therefore, in order to obtain abstractions and concretions,
not only affinities, but algorithms for this aim can be also performed in an
efficient way. Finally, taking into account, statement 3) in the former theo-
rem, universal languages satisfy every property of any language in L that are
preserved under morphisms, hence each of these properties remains unaltered
under translations from any language to a universal one. By virtue of this
features, universal languages are the more adequate intermediate for natural
and artificial language translations. If nowadays it is an unthinkable task to
built mathematical algorithms using the roman numeral system in order to
denote real numbers, it is a very plausible hypothesis, that in the future the
use of at least one universal language equipped with a coherent dictionary will
be a necessary device in computer science and artificial intelligence research.

Since universal languages are unique up to isomorphisms, they can be in-
vestigated and developed by different researcher groups and the same language
structure will be obtained. This feature cannot be found in any natural lan-
guage, and this is why the adjective “universal” is adequate beyond the scope
of algebra.

5 Coherent language construction

The construction of coherent languages requires to handle the meaning of
each word in order to determine the relation � between the denoted concepts.
However, it is possible to build algorithms working with sentences of a language
by means of which the relation � can be determined knowing no meaning. To
see this fact, consider any applied language

L = (Dic (L) , Sen (L) ,�,ΩP,v, µ)

and a sentence w = w1w2 . . . wj . . . wn ∈ Sen (L). Suppose that there is a set of
words W = {u1u2 . . . uk} containing wj such that substituting wj in w by any
member of W the obtained word sequence has a meaning, that is, it is again a
sentence, but any other substitution gives rise to a nonsense result. With these
assumptions, if there is a predicate p(x) defining the set W, that is to say, if
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W = {x | p(x)}, then a sentence w1w2 . . . wj . . . wn ∈ Sen (L) is meaningful,
provided that the word occurring in the j-th place belongs to W, accordingly
its meaning satisfies the predicate p(x). Thus, if in some text occurs a sentence
w1w2 . . . wj . . . wn ∈ Sen (L) this fact allows us to know that wj ∈W, besides,
p (µ(wj)). Accordingly, taking into account, that

Wg = µ(u1)g µ(u2)g · · ·g µ(uk)

is the concept defined by the predicate p(x), then for every word w ∈ W
the denoted object µ(w) satisfies the relation µ(w) �Wg. Accordingly, it is
possible to build algorithms in order to determine the relation � among the
represented objects dealing only with words and sentences. To this end it is
only necessary to observe word occurrences in sets of sentences.

Example. Consider the sentences s1 =“teachers know how to write texts”
and s2 = “doctors know how to write texts”. Indeed, each word occurring
in the first position in these sentences denotes a person being able to write
texts. Denoting as “x” any human being that knows how to write any text,
then the following relations are true: µ(“teachers”) � x, µ(“doctors”) � x,
because both concepts denoted by “teacher” and “doctor” are particular cases
of persons knowing how to write texts.

Of course, the more restrictive a sentence is, the more concrete is the mean-
ing of any involved word. Thus, from a sentence collection, selected from any
language L, some classification algorithms can be built in order to arrange his
words in an increasing abstraction level without knowing their meanings, and
by means of such a classification new coherent languages can be built. The
construction of such a kind of algorithms is an open problem.

6 Optimal principle

Consider a set E of algebraic expressions in the ordinary formal language. A
natural equivalence R ⊆ E×E can be stated for those expressions having the
same value; for example, both expressions e1 = x2x3y and e2 = x5y have the
same value, therefore (e1, e2) ∈ R. Now, if an expression e ∈ E contains n
symbols, consider the mapping ν sending e into 1

n
. Thus, ν : E → (0, 1] is the

function sending each expression into the inverse of the number of symbols it
contains; for example, ν(x2x3y) = 1

5
and ν(x5y) = 1

3
. The mapping ν defines

a measure of the simplicity of any expression in E. By means of the map ν
two binary relations can be defined. The first one ≤S compares the simplicity
of two expressions; therefore e1 ≤S e2 if and only if ν(e1) ≤ ν(e2). The second
relation S ⊆ E×E is the equivalence defined as follows: (e1, e2) ∈ S if and only
if ν(e1) = ν(e2). It is easy to see, that both relations e1 ≤S e2 and e2 ≤S e1

imply (e1, e2) ∈ S, for instance, let e1 = x2y and e2 = yx2 both expressions
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are S-equivalent but they are different words. Thus, from the view-point of
the ordinary formal language, both relations e1 ≤S e2 and e2 ≤S e1 need
not imply e1 = e2, but they imply (e1, e2) ∈ S. This circumstance occurs
because of being ≤S reflexive and transitive, it need not be an antisymmetric
relation; consequently, the result of any simplification need not be unique.
Thus, if e1 cannot be simplified the relation e1 ≤S e2 implies (e1, e2) ∈ S,
however, in general, the equality e1 = e2 does not hold; therefore e1 is not a
≤S-maximal element, but it can be regarded as an “optimal” simplification in
the R-equivalence class containing it. After these considerations, we introduce
the concept of “optimal” element, with respect to any transitive and reflexive
relation, as a generalization of maximal concept; hence, with this convention,
“maximal” � “optimal”.

Let E be a set, R ⊆ E × E and S ⊆ E × E two equivalence relations and
≤S⊆ E × E a reflexive and transitive one satisfying the following axioms.

Axiom 6.1 For every couple x and y of members of E, either x ≤S y or
y ≤S x if and only if (x, y) ∈ R.

Axiom 6.2 For every couple x and y in E, if both relations x ≤S y and
y ≤S x hold, then (x, y) ∈ S.

Definition 6.3 Let E be a set, R ⊆ E × E, S ⊆ E × E two equivalence
relations, and ≤S⊆ E × E a transitive and reflexive one satisfying both Ax-
iom 6.1 and Axiom 6.2. A member x of E is ≤S-optimal provided that, for
every y ∈ E, the relation x ≤S y, implies that y ≤S x.

It is worth pointing out, that by virtue of Axiom 6.2, if x is ≤S-optimal,
then the relation x ≤S y, implies that (x, y) ∈ S.

Definition 6.4 Let X and Y be two sets, R and S two equivalence rela-
tions, and ≤S a transitive and reflexive one, defined in X ∪ Y , and satisfying
both Axiom 6.1 and Axiom 6.2. The set Y is a ≤S-optimization of X, provided
that for each (x, y) ∈ X × Y , the relation (x, y) ∈ R implies x ≤S y.

We shall denote this property writing X ≤∗S Y . Likewise, in any category
of structured sets, we shall say an object X to be ≤∗S-optimal provided, that
for every object Y , the relation X ≤∗S Y implies Y ≤∗S X.

Definition 6.5 Let C be a concrete category over Set, and R, S, and ≤S
three binary relations satisfying both Axiom 6.1 and Axiom 6.2, being defined
in the union of all objects of C. A subcategory K of C is directed by ≤S
provided that each hom-set homK(X, Y ) is nonempty if and only if Y is a
≤S-optimization of X.
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Theorem 6.6 (Optimal principle) Let C be a concrete category over
Set, and R, S, and ≤S three binary relations defined in⋃

O∈Obj(C)

O

and satisfying both Axiom 6.1 and Axiom 6.2. Let C1 be a subcategory of C
directed by ≤S , and T : C1 → C2 a functor. With these assumptions, for every
↑-universal arrow O

σ−→ T(X) the object X is ≤∗S-optimal.

Proof. Suppose that there is a C1-object Y such that

X ≤∗S Y (24)

Now, by Definition 6.5 the set homC1(X, Y ) is nonempty; so then there is at
least one morphism g : X → Y , and the composition f = T(g) ◦ σ belongs
to homC2(O,T(Y )). Since σ is assumed to be ↑-universal, the existence of f
implies that there is a unique f ∗ : Y → X such that σ = T(f ∗)◦f , and because
C1 is assumed to be ≤S-directed, then Y ≤∗S X. Finally, taking into account
(24), the object X is ≤∗S-optimal.

In addition to the universal language properties described in Section 4.1.1,
the former theorem enriches the universal language concept with those im-
provements denoted by any transitive and reflexive relation ≤S directing the
category to which it belongs. In particular, R can be the meaning equivalence,
while both ≤S and S can denote suitable improvements for each purpose. Ac-
cordingly, for every family of languages L and each purpose, Theorem 6.6
allows us to determine the properties with respect to which a universal lan-
guage is optimal. Thus, the frequently asked questions: “what is the best pro-
gramming language for some purpose” or “what is the best language to build
efficient algorithms for some object-structure”, in general, can be answered
with the help of the preceding theorem, whenever the considered language
category is directed by a transitive and reflexive relation adequate for the de-
sired aim. Indeed, optimality can be proved with the apodicticity of algebra.
Nevertheless, the research of universal languages can provide us a wide class of
open problems in order to improve algorithm efficiency together with a deeper
knowledge of the algebraic structure of natural intelligence, because human
thought always runs through some language.

7 Open Problems

For a small category L of natural and artificial languages, the object-class of
which is of cardinal n, to perform translations among them it is required a
family of

(
n
2

)
translating algorithms. However, choosing a language L ∈ L
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working as intermediate, n of them are sufficient. Now, the question consists
of determining those properties that L must satisfy, in order to be the better
choice. Both Theorem 4.10 and Theorem 6.6 lead the choice towards any
universal language in L. In any case, to obtain efficient algorithms, algebraic
coherence must be required too.

We also consider auxiliary analogical representations, since in order to de-
note concrete concepts, coherent analogical languages are more adequate than
abstract ones. For example, to denote the triangle concept in a coherent way
the symbol 4 works better than any word. It is worth pointing out, that
we term as analogical languages those representation systems consisting of bi-
dimensional pictures preserving some structure properties of the denoted con-
cepts. Musical notation and chemical formulas can be regarded as instances of
our analogical language concept. Likewise, a didactic video can be regarded as
an analogical explanation of some subject; therefore the involved images form
an analogical language.

By contrast, by virtue of the prefix-suffix machinery, together with the
possibility of performing arbitrary associations, to denote abstract concepts
words and sentences are more efficient. Recall that the relation v is defined
for words and their tails, and the tail of a word can be regarded as a suffix.

After these considerations, we analyze the translation problem among a
category of languages L using an intermediate one L0. As we have shown
above, the better choice can be an algebraically coherent language L0 being
universal in L. Thus, the construction of L0 would be the first step towards a
universal translation project, hence the main problem consists of determining
its properties. On the one hand, the words and alphabet of L0 can be decided
via conventions among researchers; whenever word-structures are defined in a
coherent way. On the other hand, by Theorem 4.10 we know that L0 must
satisfy the following properties.

1. Every universal language is unique up to isomorphisms, besides, it is
syntax-free.

2. Every language L0 being universal in a category L satisfies each property
of every language in L which is preserved under morphisms.

The last property arises from Theorem 4.10, but intuitively was adopted
by L. L. Zamenhof in his invention, the international auxiliary language Es-
peranto. The Zamenhof’s invention is an easy-to-learn and politically neutral
language containing the most noticeable features of several natural languages.
Nevertheless, Theorem 4.10 shows the convenience of this requirement from
an algebraic view-point. These considerations lead to the following problems.
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7.1 Universal Language Problems

As we have just seen, a universal language must be syntax-free and coherent.
On the one hand, disambiguation of a syntax-free language can be performed
by means of a declension-system, this being stronger than the underlying one
in Latin. For instance, consider the phrase “interesting books and old pic-
tures”. The word order matters. However with some suffixes linking nouns
and adjectives, this inconvenient vanishes. To this end, consider the suffixes
“&a”, “&b”. Writing “interesting&a books&a and old&b pictures&b” the
word order does not matter, since the same suffix joins every adjective with
the word to which it is applied.

On the other hand, coherence requires to handle word-analogies. Recall,
that as it is shown in Section 5, word-analogies can be found by observing
word occurrences in sentences of texts written in some language L. These
facts suggest the following problems.

Problem 7.1 For a given natural language, find an algorithm in order to
extract all patterns lying in a sufficient large text.

Problem 7.2 For a given natural language L, find an algorithm A such that
processing texts written in L the algorithm A can build a coherent language L∗

together with the corresponding dictionary or hash-table L� L∗.

Both problems above are very helpful in translating algorithm construction;
but the main problem we are dealing with is the following one.

Problem 7.3 Does there exist any translating algorithm between a universal
language L0 and any natural one L?

This problem requires some explanation. On the one hand, a universal
language is unique, therefore in order to be determined no complementary
conditions are required. On the other hand, translations must be syntactically
correct and coherent. Nowadays, there are several translating algorithms be-
tween couples of natural languages which build incoherent sentences. When we
“say translating algorithm”, it must be understood any procedure as efficient
as a human. In general, a human is able to discern inflections and contexts.
Natural languages are not context-free ones. The former problem requires the
existence of algorithms determining emphasis and context from the observed
phrases. Recall that disambiguations are performed by means of attributes,
therefore attributes in any phrase must be determined too.

Notice, that a human can deduce the meaning of ambiguous sentences, even
incorrect ones. For example, a human can interpret the phrase “a tree-angled
polygon” supposing to be a misspelled instance of the phrase “a three-angled
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polygon”, simply, looking for the smallest modification having a meaning. Fre-
quently, actual translating algorithms build incorrect sentences. For instance,
in an algebraic context, a popular English-to-Spanish translating algorithm re-
turns “el juego tiene un miembro” introducing a sentence containing the word
sequence “the set contains one member”. In fact, the Spanish phrase “El juego
tiene un miembro” means “ the game has a member”. The correct translation
is “el conjunto posee un elemento”. This is why the following problem also
matters.

Problem 7.4 For a given a natural language L1, does there exist an algorithm
discerning whether or not a sentence is correct and coherent?

It is an author’s conjecture, with respect to the former problem, that work-
ing with auxiliary-analogical languages the existence of the required algorithm
can be proved. By contrast, such an algorithm cannot exist for natural lan-
guages which consist of arbitrary conventions, without the help of analogical
representations. Indeed, to know whether or not a sentence is correct it is suf-
ficient to be found out in a reliable text. However, such a method is an endless
one, because combining words one can build infinite sentence-sets. This is why
the required algorithm must work with a family of rules. In general, to apply
a rule it is required to know the meaning of the involved sentences.

For instance, consider an adjective u which cannot be applied to the concept
O denoted by a sentence s = w1w2 . . . wn, unless O satisfies some property P .
Thus, to know whether or not a sentence u s = u w1w2 . . . wn containing s
is correct, it is required to know whether O satisfies P . Consequently, the
algorithm A must be able to determine some property family of O containing
P . Since analogical languages we have defined above preserve some properties
of the denoted objects, then, involving an analogical language A, such an
algorithm could be built. To this end, A must assign a member of A to s
satisfying P .

Perhaps, this problem can be solved using multi-threading languages, that
is to say, a kind of complex languages combining both analogical and abstract
ones in a similar way to musical notation. This can be the aim of further
researches. In fact, human beings work with such a kind of languages. For in-
stance, in a didactic video equipped with a narrating voice, the visual informa-
tion is analogical, while the narration is performed in some natural language.
Likewise, a figure sequence with captions can be regarded as a two-threaded
language. In any case, it is the author’s opinion that restricting our notations
to a partial free-monoid, the problem cannot be solved.
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