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Abstract

In this paper, we introduce a generalization of the well-known
notion of a semihereditary ring which we call a weak semiheredi-
tary ring. We investigate the transfer of the weak semihereditary
properties to trivial ring extensions, localizations, homomorphic
image of rings, and in direct product of rings. For the pullback
constructions, we give example showing that the transfer does not
hold. For amalgamated duplication of a ring along an ideal, we
study the transfer of weak semihereditary properties from a ring
R to a ring R ./ I.

Keywords: semihereditary rings, weak semihereditary rings, coherent rings,
trivial ring extension, localization of rings, homomorphic image of rings, Pull-
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1 Introduction

All rings considered in this paper are commutative with identity elements and
all modules are unital. We use ”local” to refer to (not necessarily Noetherian)
ring with a unique maximal ideal.

Recall, for a ring A and an A-module E, that the ring R := A ∝ E of pairs
(a, e) whose underlying group is A × E with pairwise addition and multipli-
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cation given by (a, e)(b, f) = (ab, af + be) is called trivial ring extension of A
by E (also called the idealization of E over A). For the reader’s convenience,
recall that if I is an ideal of A and E ′ is a submodule of E such that IE ⊆ E ′,
then J := I ∝ E ′ is an ideal of R. Ideals of R need not be of this form (see
[11, Example 2.5]). However, prime (resp., maximal) ideals of R have the form
P ∝ E, where P is a prime (resp., maximal) ideal of A [10, Theorem 25.1(3)].
Considerable works have been concerned with trivial ring extension. Part of
it has been summarized in Glaz’s book [8], and Huckaba’s book (where R is
called the idealization of E by A) [10]. These kind of rings have been use-
ful for solving many open problems and conjectures in both commutative and
noncommutative ring theory.

The amalgamated duplication of R along an ideal I is a ring that is defined
as the following subring with unit element (1, 1) of R×R:
R ./ I = {(r, r + i)|r ∈ R, i ∈ I}.
In the general case, and from the different point of view of pullbacks, by
D’Anna and Fontana [19]. One main difference of this construction, with
respect to the idealization, is that the ring R ./ I can be a reduced ring (and
it is always reduced if R is a domain).

When I2 = 0, the new construction R ./ I coincides with the idealization
R ∝ I. On the other hand, Maimani and Yassemi, in [16], have studied the
diameter and girth of the zero-divisor of the ring R ./ I. See for instance
[19, 18, 16].

In this paper, we introduce and investigate a generalization of a semihered-
itary ring, which we call a weak semihereditary ring. A ring R is called weak
semihereditary if, for every two ideals I ⊆ J of R such that I is finitely gener-
ated, J projective proper ideal, then I is projective (Definition 3.1).

Naturally, every semihereditary ring is a weak semihereditary ring. In
Theorem 4.1(2), we give a sufficient condition to have the converse. Also, in
Theorem 4.1(3), we show that if R is a local total ring of quotients, then R is
weak semihereditary.

We use Theorem 4.1 to study the transfer of the notion of a weak semi-
hereditary ring in particular kind of trivial ring extensions (Corollaries 3.3 and
3.4).

We also use trivial ring extensions to generate suitable examples of weak
semihereditary rings. Namely, in Examples 3.5 and 3.6 , we show, unlike the
classical case, that there is not relation between a weak semihereditary rings
and coherent.
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In Proposition 3.7, we give a condition so that the descent of the notion
of the weak semihereditary rings holds in extensions of rings. Namely, if R be
a subring retract of T with T is a faithfully flat R −module, then T is weak
semihereditary implies that R is weak semihereditary. However, in Example
3.8, we show that the ascent of the notion of the weak semihereditary ring
does not hold in extensions of ring, and so the homomorphic image of a weak
semihereditary ring is not necessarily in general weak semihereditary. And, in
Example 3.9, we use the trivial ring extension to show that the condition “ R
is a subring retract of T with T is a faithfully flat R−module” in Proposition
3.7 cannot be dropped, and namely the localization of a weak semihereditary
ring is not in general weak semihereditary.

In Example 3.10, we show that, in general, the transfer of weak semihered-
itary notion does not hold in pullback constructions.

In Proposition4.2, we prove that if R is a commutative ring and I is a
proper ideal of R. Then if (R,M) is a local total ring of quotients, then R ./ I
is a weak semihereditary ring.

In Theorem 3.13, we study the notion of weak semihereditary rings in di-
rect products of rings.

In Example 3.15, we prove that the direct products of a weak semiheredi-
tary ring is not in general weak semihereditary.

2 Problem Formulations

Recall that a ring R is called semihereditary if every finitely generated ideal
is projective. In this paper, we introduce and investigate a generalization of
a semihereditary ring, which we call a weak semihereditary ring. A ring R is
called weak semihereditary if, for every two ideals I ⊆ J of R such that I is
finitely generated, J projective proper ideal, then I is projective (Definition
3.1).

Question. Let R be a commutative ring. Is R weak semihereditary if and
only if is R semihereditary, in general ?

3 Main Results

Recall that a ring R is called semihereditary if every finitely generated ideal
is projective. In this paper we introduce and investigate the following gener-
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alization of semihereditary rings.

Definition 3.1 A ring R is called weak semihereditary if, for every two
ideals I ⊆ J of R such that I is finitely generated, J projective proper ideal,
then I is projective.

Now, we give a sufficient condition to have equivalence between a semi-
hereditary and weak semihereditary properties, and we show that if R is a
local total ring of quotients, then R is weak semihereditary.

Theorem 3.2 Let R be a ring. Then:

1. If R is a semihereditary ring, then R is a weak semihereditary ring.

2. If R contains a regular element, then R is a weak semihereditary ring if
and only if R is a semihereditary ring.

3. If R is a local total ring of quotients, then R is a weak semihereditary
ring.

Proof.
(1) It is clear that if R is a semihereditary ring, then R is a weak semi-

hereditary ring.

(2) By (1) if R is a semihereditary ring, then R is a weak semihereditary
ring. Conversely, assume that R is a weak semihereditary ring and let I be
a finitely generated proper ideal of R. Let x ∈ R be a regular element of R,
then xI ⊆ xR. Therefore, xI is a projective ideal of R, since R is a weak
semihereditary ring. Hence, I is a projective ideal of R, since xI(∼= I) (since
x is regular), as desired.

(3) Let R be a local total ring of quotients. We claim that R is a weak
semihereditary ring. Deny. Then, there exist I ⊆ J ⊆ M , where M is a
maximal ideal of R, J is a proper projective ideal and I is a non projective
finitely generated ideal of R. Then J is free (since R is local). Then J = xR,
where x is a regular element of R. A contradiction (since R is a total ring
of quotients). Then R is a weak semihereditary ring. And this completes the
proof of the Theorem.

As an application of Theorem 4.1, we give the two following results which
study the transfer of the notion of the weak semihereditary rings, in particular
kind of trivial ring extensions.
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Recall, for a ring A and an A-module E, that the ring R := A ∝ E
of pairs (a, e) whose underlying group is A × E with pairwise addition and
multiplication given by (a, e)(b, f) = (ab, af+be) is called trivial ring extension
of A by E (also called the idealization of E over A).

Corollary 3.3 Let D be a domain, K := qf(D), and R := D ∝ K be the
trivial ring extension of D by K. Then:

1. R is never semihereditary.

2. If D is not a field, then R is never weak semihereditary.

3. If D is a field, then :

(a) R is a weak semihereditary ring .

(b) R is not a semihereditary ring.

Proof.
(1) By [11, Theorem 2.8].

(2) If D is not a field, let d ∈ D\{0} which is not invertible. Then (d, 0)
is a regular element of R, so R is not a weak semihereditary ring by Theorem
4.1(2) (since R is not a semihereditary ring by (2)),

(3) Assume that D is a field, then :

(a) It is clear that R is a local total ring of quotients. Then by Theorem
4.1(3) R is weak semihereditary.

(b) By (1) R is not a semihereditary ring.

Corollary 3.4 Assume that (A,M) is a local ring and E an A-module such
that ME = 0, and let R := A ∝ E be the trivial ring extension of A by E.
Then:

1. R is always weak semihereditary.

2. R is never semihereditary.

Proof.
(1) R is a local total ring of quotients. Then by Theorem 4.1(3) R is a

weak semihereditary ring.
(2) By [11, Theorem 2.6].
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It is well-known that the semihereditary rings are coherent (see, for instance,[8,
20]). Recall that a ring R is coherent if every finitely generated ideal of
R is finitely presented; equivalently, if (0 : a) and I

⋂
J are finitely gen-

erated for every a ∈ R and any two finitely generated ideals I and J of
R (see for instance[3, 8, 20]). Examples of coherent rings are Noetherian
rings, Boolean algebras, von Neumann regular rings, valuation rings, and
Prüfer/semihereditary rings.

The following example shows that a weak semihereditary ring can not be
a coherent ring.

3.5 Let K be a field, R := K ∝ K∞ be the trivial ring extension of K by
K∞. Then :

1. R is a weak semihereditary ring.

2. R is not a coherent ring.

Proof.
(1) By Corollary 3.3(3(a)) R is a weak semihereditary ring.

(2) By [13, Theorem 2.1].

The following example shows that a coherent ring may not be a weak
semihereditary ring.

3.6 Let K be a field and R := K[X, Y ] the polynomial ring, where X and
Y are two indeterminate elements. Then :

1. R is a coherent ring.

2. R is not a weak semihereditary ring.

Proof.
(1) R is Noetherian, then R is a coherent ring.

(2) w.dim(K[X, Y ]) = 2, then R is not a semihereditary ring. Then R is
not a weak semihereditary ring (since R is a domain).

The following result gives condition so that the descent of the notion of a
weak semihereditary rings holds in extensions of rings.
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Proposition 3.7 Let R be a subring retract of T with T is a faithfully flat
R−module, for each ideal I of R, IT 6= T . Then if T is a weak semihereditary
ring, then R is a weak semihereditary ring.

Proof.
Assume that T is a weak semihereditary ring. Let I1 ⊆ I2 be a two ide-

als of R with I2 is proper projective, and I1 is a finitely generated ideal, so
I2

⊗
R T = I2T is a proper projective ideal of T , since T is faithfully flat over

R, and I1
⊗

R T = I1T is a finitely generated ideal of T . On the other hand,
we have I1T ⊆ I2T , then I1T is projective, since T is a weak semihereditary
ring. We claim that I1 is a projective ideal of R. Indeed, for any R-module
N , we have by [5, p.118],

ExtR(I1, N
⊗

R T ) ∼= ExtT (I1
⊗

R T, N
⊗

R T ) = 0

On the other hand, N is a direct summand of N
⊗

R T since R is a direct
summand of T . Therefore, ExtR(I1, N) = 0 for every R-module N . This
means that I1 is a projective ideal of R. , as desired.

The following example shows that the homomorphic image of a weak semi-
hereditary ring is not necessarily in general weak semihereditary.

3.8 Let (A,M) be a non − Prüfer local domain ring, (0 6=:)E is an A −
module, ME = 0 and let R := A ∝ E be the trivial ring extension of A by E.
Then:

1. R is a weak semihereditary ring.

2. A(∼= R/0 ∝ E) is not a weak semihereditary ring.

Proof.
(1) R is a total ring of quotients. And R is local (since A is local). Then

by Theorem 4.1(3) R is a weak semihereditary ring.
(2) Since A ∼= R/(0 ∝ E) with (0 ∝ E) is an ideal of R. We claim that A
is not a weak semihereditary ring. Deny. Then, A is a semihereditary ring,
implies Prüfer, since A is a domain, a contradiction. Then R/(0 ∝ E) is not a
weak semihereditary ring.

We know that the localization of a semihereditary ring is semihereditary.
But the following example shows that the localization of a weak semihereditary
ring is not in general weak semihereditary.
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3.9 Let B = K[[X1, X2, X3]] = K + M be a power series ring over a field
K, where X1, X2 and X3 are indeterminate elements, and M = (X1, X2, X3)
the maximal ideal of B. Let 0 6= E be an B-module such that ME = 0 and let
R := B ∝ E be the trivial ring extension of B by E. Let S be a multiplicative
subset of R given by S = {(X1, 0)n/n ∈ N} and S0 is the multiplicative subset
of B given by S0 = {Xn

1 /n ∈ N}. Then:

1. R is a weak semihereditary ring.

2. S−1R is not a weak semihereditary ring.

Proof.
(1) R is a total ring of quotients. And R is local (since B is local). Then

R is a weak hereditary ring by Theorem 4.1(3).
(2) S−1R = S−1

0 (B ∝ E) = S−1
0 (B) ∝ S−1

0 (E) = S−1
0 (B), since S−1

0 (E) = 0
(X1E ⊆ ME = 0, so S−1

0 X1E = 0, then S−1
0 E = 0). Then, S−1R = S−1

0 B =
(S−1

0 K[[X1]])[[X2, X3]], so wdim(S−1R) = wdim(S−1
0 K[[X1]]) + 2 ≥ 2. Then

S−1R is not a semihereditary ring. Then S−1(R) is not a weak semihereditary
ring, since S−1(R)(∼= S−1

0 (B) is a domain.

The following example shows that, in general, the transfer of a weak semi-
hereditary ring notion does not hold in Pullback constructions. We adopt
the following riding assumptions and notations: T is a domain of the form
T = K + M , where K is a field and M is a non-zero maximal ideal of T ; D is
a subring of K such that qf(D) = K; and R = D + M (For more details, see
[4, 6, 7, 8, 19].

3.10 Let D be a Prüfer domain which is not a field, K = qf(D), and let
the following Pullback:

R = D ∝ K −→ T = K ∝ K
↓ ↓

D ∼= R/0 ∝ K −→ K

T is a weak semihereditary ring (since it is a local total ring of quotient),
D is a Prüfer domain, but R is not weak semihereditary by Corollary 2.3(ii).

Now we study the notion of the weak semihereditary rings in amalgamated
duplication of a ring along an ideal I.
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Proposition 3.11 Let R be a commutative ring and let I be a proper ideal
of R. If (R, M) is a local total ring of quotients, then R ./ I is a weak
semihereditary ring.

Proof.
Since R is a local ring, then R ./ I is a local ring by [17, Corollary 6]. Our

aim is to show that R ./ I is a total ring of quotients. We wish to show that
each element (r, r+ i) of R ./ I is invertible or zero-divisor element. Two cases
are then possible.

Case 1. r 6∈ M . In this case, r is invertible in R and then (r, r+i) 6∈ M ./ I.
Hence, (r, r+i) is invertible in R ./ I (since R ./ I is a local ring, where M ./ I
is a maximal ideal of the local ring R ./ I).

Case 2. r ∈ M , then r is a zero-divisor element of R (since R is a total ring
of quotients, that is, every element is either a unit or a zero divisor). Then by
[16, Proposition 2.2] we have (r, r + i) is zero-divisor element of R ./ I. Then
R ./ I is a local total ring of quotients. Hence R ./ I is a weak semihereditary
ring by Theorem 4.1(3). This completes the proof of the Proposition.

3.12 Let A := Z/(2iZ), where i ≥ 2 be an integer, and let R := A ∝ A the
trivial ring extension of A by A, and let I be a proper ideal of R. Then:

(1) A is a local total ring of quotients with maximal ideal M = 2A by [2,
example 3.6(1)]. In particular, A is a weak semihereditary ring by Theorem
4.1(3).

(2) R is a local total ring of quotients by [2, example 3.6(2)]. In particular,
R is a weak semihereditary ring by Theorem 4.1(3).

(3) R ./ I is a local total ring of quotients by Proposition 4.2. In particular,
R ./ I is a weak semihereditary ring by Theorem 4.1(3).

Now we study the notion of the weak semihereditary rings in direct products
of rings.

Theorem 3.13 Let (Ri)i=1,2,...,n be a family of rings and let R :=
∏n

i=1 Ri.
Then, if R is a weak semihereditary, then Ri for each i = 1, . . . , n.

We need the following Lemma before proving Theorem 3.13.
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Lemma 3.14 ([15, Lemma 2.5]) Let (Ri)i=1,2 be a family of rings and let
Ei an Ri −module for i = 1, 2. Then:

1. E1
∏

E2 is a finitely generated R1
∏

R2 −module if and only if Ei is a
finitely generated Ri −module for i = 1, 2.

2. E1
∏

E2 is a projective R1
∏

R2−module if and only if Ei is a projective
Ri −module for i = 1, 2.

Proof of Theorem 3.13. We prove the result for i = 1, 2, and the Theorem
will be established by induction on n.
Assume that (R1×R2) is a weak semihereditary ring. We wish to show that R1

is weak semihereditary (it is the same for R2). Let I1 ⊆ J1 be two ideals of R1

such that J1 is a projective proper ideal and I1 is a finitely generated ideal of
R1. So I1×R2 is a finitely generated ideal of R1×R2 and J1×R2 is a projective
proper ideal of R1×R2 by Lemma 3.14. And we have I1×R2 ⊆ J1×R2 (since
I1 ⊆ J1), so I1×R2 is projective (since R1×R2 is weak semihereditary), then
I1 is projective by Lemma 3.14. This completes the proof of the Theorem.

We know that the direct products of a semihereditary ring is semihered-
itary. But the following example shows that the direct products of a weak
semihereditary ring is not in general weak semihereditary.

3.15 Let R1 = Z and let R2 = K ∝ K be two rings with K is a field. Then
R1 ×R2 is not weak semihereditary.

Proof.
It is clear that R1 = Z is a semi hereditary ring, so R1 = Z is a weak

semihereditary ring.
R2 = K ∝ K is a non-semihereditary ring weak semihereditary by Corol-

lary 3.3. On the other hand, pZ × (0 ∝ K) ⊆ pZ × R2 with pZ × (0 ∝ K)
is a finitely generated ideal of R1 ×R2 and pZ×R2 is projective proper ideal
of R1 × R2 by Lemma 3.14, but pZ × (0 ∝ K) is not projective of R1 × R2

since (0 ∝ K) is not a projective ideal of R2. Then R1 × R2 is not weak
semihereditary.

4 Conclusion

These are the main results of the paper.

Theorem 4.1 Let R be a ring. Then:

1. If R is a semihereditary ring, then R is a weak semihereditary ring.
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2. If R contains a regular element, then R is a weak semihereditary ring if
and only if R is a semihereditary ring.

3. If R is a local total ring of quotients, then R is a weak semihereditary
ring.

Proposition 4.2 Let R be a commutative ring and let I be a proper ideal of R.
If (R, M) is a local total ring of quotients, then R ./ I is a weak semihereditary
ring.

5 Open Problem

Question. Let R be a commutative ring and let I be a proper ideal of R. Is
R weak semihereditary if and only if is R ./ I weak semihereditary, in general ?
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