Int. J. Open Problems Compt. Math., Vol. 4, No. 2, June 2011 ISSN 1998-6262; Copyright © ICSRS Publication, 2011 www.i-csrs.org

On Certain Class of Harmonic Univalent Functions Defined By Generalized Derivative Operator

Maslina Darus

School of Mathematical Sciences, Faculty of Science and Technology University Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia e mail: maslina@ukm.my (corresponding author)

N. D. Sangle

Department of Mathematics, Annasaheb Dange College of Engineering, Ashta, Sangli, (M.S) India 416 301. e mail: navneet sangle@rediffmail.com

Abstract

A complex-valued functions that are univalent and sense preserving in the unit disk U can be written in the form $f(z) = h(z) + \overline{g(z)}$, where h(z) and g(z) are analytic in U. In [7], authors introduced the operator $D_{m,\lambda}^n$ which defined by convolution involving the polylogarithms functions. Using this operator, we introduce the class $SHP_{\lambda}(\alpha,\beta,n,m,k)$ by generalized derivative operator of harmonic univalent functions. We give sufficient coefficient conditions for normalized harmonic functions in the class $SHP_{\lambda}(\alpha,\beta,n,m,k)$. These conditions are also shown to be necessary when the coefficients are negative. This leads to distortion bounds and extreme points.

2000 AMS subject classification: Primary 30C45, Secondary 30C50.

Keywords: Univalent functions, Harmonic functions, Derivative operator, Convex combinations, Distortion bounds

1. Introduction

Let U denote the open unit disk and S_H denote the class of all complex valued harmonic, sense preserving univalent functions f(z) in U normalized by f(0) = 0, $f_z(0) = 1$. Each $f(z) \in S_H$ can be expressed as

$$f(z) = h(z) + \overline{g(z)}$$
 where

$$h(z) = z + \sum_{k=2}^{\infty} a_k z^k$$
, $g(z) = \sum_{k=1}^{\infty} b_k z^k$, $|b_1| < 1$

are analytic in U. A necessary and sufficient condition for f(z) to be locally univalent and sense preserving in U is that |h'(z)| > |g'(z)| in U. Clunie and Sheil-Small studied S_H together with some geometric subclasses of S_H .

A function of the form (1.1) is harmonic starlike [8] for |z| = r < 1, if

$$\frac{\partial}{\partial \theta} \left(\arg \left(f(re^{i\theta}) \right) \right) = \operatorname{Re} \left\{ \frac{zh'(z) - \overline{zg'(z)}}{h(z) + \overline{g(z)}} \right\} > 0,$$

Silverman [9], proved that the coefficient conditions

$$\sum_{k=2}^{\infty} k(|a_k| + |b_k|) \le 1 \quad and \quad \sum_{k=2}^{\infty} k^2(|a_k| + |b_k|) \le 1$$

are necessary and sufficient conditions for functions $f(z) = h(z) + \overline{g(z)}$ to be harmonic starlike with negative coefficient and harmonic convex with negative coefficient respectively. Different authors in [1, 2, 4, 5, 6,7,12], studied S_H together with some geometric subclasses of S_H .

For $f(z) = h(z) + \overline{g(z)}$ given by (1.1), we define the derivative operator introduced by Shaqsi and Darus [7] of f(z) as

$$D_{m,\lambda}^{n} f(z) = D_{m,\lambda}^{n} h(z) + (-1)^{n} D_{m,\lambda}^{n} g(z)$$
(1.2)

where

$$D_{m,\lambda}^{n}h(z) = z + \sum_{k=2}^{\infty} \left[1 + (k-1)\lambda\right]^{n} C(m,k) a_{k} z^{k},$$

$$D_{m,\lambda}^{n}g(z) = \sum_{k=1}^{\infty} \left[1 + (k-1)\lambda\right]^{n} C(m,k) b_{k} z^{k}, \quad |b_{1}| < 1, \quad C(m,k) = \binom{k+m-1}{m}.$$

Let $SHP_{\lambda}(\alpha, \beta, n, m, k)$ denote the family of harmonic functions f(z) of the form (1.1) such that

$$\operatorname{Re}\left\{\left(1-\alpha\right)\frac{D_{m,\lambda}^{n}h(z)+\left(-1\right)^{n}\overline{D_{m,\lambda}^{n}g(z)}}{z}+\alpha\left[D_{m,\lambda}^{n}h(z)+\left(-1\right)^{n}\overline{D_{m,\lambda}^{n}g(z)}\right]'\right\} \geq \beta \tag{1.3}$$

where $D_{m,\lambda}^n h(z)$, $D_{m,\lambda}^n g(z)$ is defined by (1.2).

If the co-analytic part of $f(z) = h(z) + \overline{g(z)}$ is identically zero, n=0 and m=0 then the family $SHP_{\lambda}(\alpha, \beta, n, m, k)$ turns out to be the class $F_{\lambda}(\alpha)$ introduced by Bhoosnurmath and Swamy [2] for the analytic case.

We further denote by $THP_{\lambda}(\alpha, \beta, n, m, k)$ the subclass of $SHP_{\lambda}(\alpha, \beta, n, m, k)$ such that the functions h(z) and g(z) in $f(z) = h(z) + \overline{g(z)}$ are of the form

$$h(z) = z - \sum_{k=2}^{\infty} a_k z^k , \quad g(z) = (-1)^n \sum_{k=1}^{\infty} b_k z^k , |b_1| < 1$$
 (1.4)

It is clear that the class $THP_{\lambda}(\alpha, \beta, n, m, k)$ includes a variety of well-known subclasses of S_H .

In this paper, we will give the sufficient condition for functions $f(z) = h(z) + \overline{g(z)}$ where h(z) and g(z) given by (1.1) to be in the class $SHP_{\lambda}(\alpha, \beta, n, m, k)$ and it is shown that the coefficient condition is also necessary for the functions in the class $THP_{\lambda}(\alpha, \beta, n, m, k)$. Coefficient bounds, Distortion bounds, extreme points, convolution conditions, convex combination of this class are obtained.

2. Main Results

We begin by proving some sharp coefficient inequality contained in the following theorem

Theorem 1. Let $f(z) = h(z) + \overline{g(z)}$ be given by (1.1) furthermore, let

$$\sum_{k=1}^{\infty} \left[1 + (k-1)\lambda \right]^{n} \left(1 - \alpha + k\alpha \right) C(m,k) \left(\left| a_{k} \right| + \left| b_{k} \right| \right) \le 2 - \beta, \tag{2.1}$$

where $a_1 = 1$, λ , $\alpha \ge 0$, $\lambda + \alpha \ge 1$, $0 \le \beta < 1$.

Then f(z) is harmonic univalent, sense preserving in U and $f(z) \in SHP_{\lambda}(\alpha, \beta, n, m, k)$.

Proof: For $|z_1| \le |z_2| < 1$, we have by equation (2.1)

$$\begin{split} \left| f(z_{1}) - f(z_{2}) \right| &\geq \left| h(z_{1}) - h(z_{2}) \right| - \left| g(z_{1}) - g(z_{2}) \right| \\ &\geq \left| z_{1} - z_{2} \right| \left(1 - \sum_{k=2}^{\infty} k \left| a_{k} \right| \left| z_{2} \right|^{k-1} - \sum_{k=1}^{\infty} k \left| b_{k} \right| \left| z_{2} \right|^{k-1} \right) \\ &= \left| z_{1} - z_{2} \right| \left(1 - \sum_{k=2}^{\infty} k \left(\left| a_{k} \right| + \left| b_{k} \right| \right) \left| z_{2} \right|^{k-1} + \left| b_{1} \right| \right) \\ &\geq \left| z_{1} - z_{2} \right| \left(1 - \sum_{k=2}^{\infty} k \left(\left| a_{k} \right| + \left| b_{k} \right| \right) + \left| b_{1} \right| \right) \quad by \left| z_{2} \right| < 1 \\ &\geq \left| z_{1} - z_{2} \right| \left(1 - \sum_{k=2}^{\infty} \left[1 + \left(k - 1 \right) \lambda \right]^{n} \left(1 - \alpha + k\alpha \right) C(m, k) \left(\left| a_{k} \right| + \left| b_{k} \right| \right) + \left| b_{1} \right| \right) \\ &\geq \left| z_{1} - z_{2} \right| \left(1 - \left| 1 - \beta - \left| b_{1} \right| + \left| b_{1} \right| \right) \right) = \beta \left(z_{1} - z_{2} \right) \geq 0. \end{split}$$

Hence, f(z) is univalent in U. f(z) is sense preserving in U. This is because

$$|h'(z)| \ge 1 - \sum_{k=2}^{\infty} k |a_k| |z|^{k-1}$$

$$> 1 - \sum_{k=2}^{\infty} k |a_k|$$

$$> 1 - \sum_{k=2}^{\infty} \left[1 + (k-1)\lambda \right]^{n} \left(1 - \alpha + k\alpha \right) C(m,k) |a_{k}|$$

$$\ge \beta + \sum_{k=1}^{\infty} \left[1 + (k-1)\lambda \right]^{n} \left(1 - \alpha + k\alpha \right) C(m,k) |b_{k}|$$

$$\ge \sum_{k=1}^{\infty} \left[1 + (k-1)\lambda \right]^{n} \left(1 - \alpha + k\alpha \right) C(m,k) |b_{k}| |z|^{k-1}$$

$$> \sum_{k=1}^{\infty} k |b_{k}| |z|^{k-1} \ge |g'(z)|.$$

Now, we show that $f(z) \in SHP_{\lambda}(\alpha, \beta, n, m, k)$. Using the fact that $\text{Re } w \ge \beta$ if and only if $|1 - \beta + w| \ge |1 + \beta - w|$, it suffices to show that

$$\left| 1 - \beta + \left(1 - \alpha \right) \frac{D_{m,\lambda}^{n} h(z) + (-1)^{n} \overline{D_{m,\lambda}^{n} g(z)}}{z} + \alpha \left[D_{m,\lambda}^{n} h(z) + (-1)^{n} \overline{D_{m,\lambda}^{n} g(z)} \right]' \right| \\
- \left| 1 + \beta - \left(1 - \alpha \right) \frac{D_{m,\lambda}^{n} h(z) + (-1)^{n} \overline{D_{m,\lambda}^{n} g(z)}}{z} - \alpha \left[D_{m,\lambda}^{n} h(z) + (-1)^{n} \overline{D_{m,\lambda}^{n} g(z)} \right]' \right| \ge 0 \qquad (2.2)$$

$$= \left| 2 - \beta + \sum_{k=2}^{\infty} \left[1 + (k-1)\lambda \right]^{n} (1 - \alpha + k\alpha) C(m,k) a_{k} z^{k-1} + (-1)^{n} \sum_{k=1}^{\infty} \left[1 + (k-1)\lambda \right]^{n} (1 - \alpha + k\alpha) C(m,k) b_{k} z^{k-1} \right| \\
- \left| \beta - \sum_{k=2}^{\infty} \left[1 + (k-1)\lambda \right]^{n} (1 - \alpha + k\alpha) C(m,k) a_{k} z^{k-1} - (-1)^{n} \sum_{k=1}^{\infty} \left[1 + (k-1)\lambda \right]^{n} (1 - \alpha + k\alpha) C(m,k) b_{k} z^{k-1} \right| \\
\ge 2 \left[\left(1 - \beta \right) - \sum_{k=2}^{\infty} \left[1 + (k-1)\lambda \right]^{n} (1 - \alpha + k\alpha) C(m,k) |a_{k}| |z|^{k-1} \right] \\
- \sum_{k=1}^{\infty} \left[1 + (k-1)\lambda \right]^{n} (1 - \alpha + k\alpha) C(m,k) |b_{k}| |z|^{k-1} \right] \\
> 2 \left[\left(1 - \beta \right) - \sum_{k=2}^{\infty} \left[1 + (k-1)\lambda \right]^{n} (1 - \alpha + k\alpha) C(m,k) |a_{k}| \right] \\
+ \sum_{k=1}^{\infty} \left[1 + (k-1)\lambda \right]^{n} (1 - \alpha + k\alpha) C(m,k) |b_{k}| \right] > 0.$$

This last expression is non-negative by (2.1) and so the proof is complete. The harmonic mappings

$$f(z) = z + \sum_{k=2}^{\infty} \frac{1 - \beta}{\left[1 + (k-1)\lambda\right]^{n} (1 - \alpha + k\alpha)C(m,k)} x_{k}z^{k} + \sum_{k=1}^{\infty} \frac{1 - \beta}{\left[1 + (k-1)\lambda\right]^{n} (1 - \alpha + k\alpha)C(m,k)} y_{k}z^{k}$$
(2.3)

where $\sum_{k=2}^{\infty} |x_k| + \sum_{k=1}^{\infty} |y_k| = 1$ show that the coefficient bound given by (2.1) is sharp.

The functions of the form (2.3) are in $SHP_{\lambda}(\alpha, \beta, n, m, k)$ because $\sum_{k=1}^{\infty} \left[1 + (k-1)\lambda\right]^n \left(1 - \alpha + k\alpha\right) C(m, k) \left(\left|a_k\right| + \left|b_k\right|\right) = 1 + \left(1 - \beta\right) \left(\sum_{k=2}^{\infty} \left|x_k\right| + \sum_{k=1}^{\infty} \left|y_k\right|\right) = 2 - \beta.$

Theorem 2. Let $f(z) = h(z) + \overline{g(z)}$ be given by (1.4), then $f(z) \in THP_{\lambda}(\alpha, \beta, n, m, k)$. If and only if

$$\sum_{k=1}^{\infty} \left[1 + (k-1)\lambda \right]^n \left(1 - \alpha + k\alpha \right) C(m,k) \left(\left| a_k \right| + \left| b_k \right| \right) \le 2 - \beta, \tag{2.4}$$

where $a_1 = 1$, λ , $\alpha \ge 0$, $\lambda + \alpha \ge 1$, $0 \le \beta < 1$

Proof: The 'if part' follows from Theorem 1 upon noting that the functions h(z) and g(z) in $f(z) \in SHP_{\lambda}(\alpha, \beta, n, m, k)$ are of the form (1.4), then $f(z) \in THP_{\lambda}(\alpha, \beta, n, m, k)$.

For the 'only if' part, we show that if $f(z) \in THP_{\lambda}(\alpha, \beta, n, m, k)$ then the condition (2.4) holds. Note that a necessary and sufficient condition for $f(z) = h(z) + \overline{g(z)}$ given by (1.4) be in $THP_{\lambda}(\alpha, \beta, n, m, k)$ is that

$$\operatorname{Re}\left\{\left(1-\alpha\right)\frac{D_{m,\lambda}^{n}h(z)+\left(-1\right)^{n}\overline{D_{m,\lambda}^{n}g(z)}}{z}+\alpha\left[D_{m,\lambda}^{n}h(z)+\left(-1\right)^{n}\overline{D_{m,\lambda}^{n}g(z)}\right]'\right\}>\beta$$

or, equivalently

$$\operatorname{Re}\left\{1-\sum_{k=2}^{\infty}1+(k-1)\lambda\right]^{n}(1-\alpha+k\alpha)C(mk)|a_{k}|z^{k-1}-\sum_{k=1}^{\infty}1+(k-1)\lambda\right]^{n}(1-\alpha+k\alpha)C(mk)|b_{k}|z^{k-1}\right\}>\beta.$$

If we choose z to be real and $z \rightarrow 1^-$, we get

$$1 - \sum_{k=2}^{\infty} \left[1 + (k-1)\lambda \right]^{n} \left(1 - \alpha + k\alpha \right) C(m,k) |a_{k}| - \sum_{k=1}^{\infty} \left[1 + (k-1)\lambda \right]^{n} \left(1 - \alpha + k\alpha \right) C(m,k) |b_{k}| \ge \beta$$

this is precisely the assertion of (2.4).

Theorem 3. If $f(z) \in THP_{\lambda}(\alpha, \beta, n, m, k)$, $\lambda, \alpha \ge 0, \lambda + \alpha \ge 1$, $0 \le \beta < 1$, |z| = r < 1, then

$$|f(z)| \le (1+|b_1|)r + \frac{1}{(1+\lambda)^n (1+\alpha)(m+1)} (1-|b_1|-\beta)r^2$$

$$|f(z)| \ge (1-|b_1|)r - \frac{1}{(1+\lambda)^n (1+\alpha)(m+1)} (1-|b_1|-\beta)r^2$$
(2.5)

Proof: Let $f(z) \in THP_{\lambda}(\alpha, \beta, n, m, k)$. Taking the absolute value of f(z) we obtain

$$\begin{split} \left| f(z) \right| &\leq \left(1 + \left| b_{1} \right| \right) r + \sum_{k=2}^{\infty} \left(\left| a_{k} \right| + \left| b_{k} \right| \right) r^{k} , \\ &\leq \left(1 + \left| b_{1} \right| \right) r + \sum_{k=2}^{\infty} \left(\left| a_{k} \right| + \left| b_{k} \right| \right) r^{2} , \qquad |z| = r < 1 \\ &\leq \left(1 + \left| b_{1} \right| \right) r + \frac{1}{\left(1 + \lambda \right)^{n} \left(1 + \alpha \right) \left(m + 1 \right)} \left(\sum_{k=2}^{\infty} \left(1 + \lambda \right)^{n} \left(1 + \alpha \right) \left(m + 1 \right) \left(\left| a_{k} \right| + \left| b_{k} \right| \right) \right) r^{2} \\ &\leq \left(1 + \left| b_{1} \right| \right) r + \frac{1}{\left(1 + \lambda \right)^{n} \left(1 + \alpha \right) \left(m + 1 \right)} \left(\sum_{k=2}^{\infty} \left[1 + \left(k - 1 \right) \lambda \right]^{n} \left(1 - \alpha + k\alpha \right) C\left(m, k \right) \left(\left| a_{k} \right| + \left| b_{k} \right| \right) \right) r^{2} \\ &\leq \left(1 + \left| b_{1} \right| \right) r + \frac{1}{\left(1 + \lambda \right)^{n} \left(1 + \alpha \right) \left(m + 1 \right)} \left(1 - \left| b_{1} \right| - \beta \right) r^{2} \end{split}$$

and

$$\begin{split} & \left| f(z) \right| \geq \left(1 - \left| b_{1} \right| \right) r - \sum_{k=2}^{\infty} \left(\left| a_{k} \right| + \left| b_{k} \right| \right) r^{k} , \\ & \geq \left(1 - \left| b_{1} \right| \right) r - \sum_{k=2}^{\infty} \left(\left| a_{k} \right| + \left| b_{k} \right| \right) r^{2} , \qquad |z| = r < 1 \\ & \geq \left(1 - \left| b_{1} \right| \right) r - \frac{1}{\left(1 + \lambda \right)^{n} \left(1 + \alpha \right) \left(m + 1 \right)} \left(\sum_{k=2}^{\infty} \left(1 + \lambda \right)^{n} \left(1 + \alpha \right) \left(m + 1 \right) \left(\left| a_{k} \right| + \left| b_{k} \right| \right) \right) r^{2} \\ & \geq \left(1 - \left| b_{1} \right| \right) r - \frac{1}{\left(1 + \lambda \right)^{n} \left(1 + \alpha \right) \left(m + 1 \right)} \left(\sum_{k=2}^{\infty} \left[1 + \left(k - 1 \right) \lambda \right]^{n} \left(1 - \alpha + k\alpha \right) C(m, k) \left(\left| a_{k} \right| + \left| b_{k} \right| \right) \right) r^{2} \\ & \geq \left(1 - \left| b_{1} \right| \right) r - \frac{1}{\left(1 + \lambda \right)^{n} \left(1 + \alpha \right) \left(m + 1 \right)} \left(1 - \left| b_{1} \right| - \beta \right) r^{2} . \end{split}$$

The bounds given in Theorem 3. For the functions $f(z) = h(z) + \overline{g(z)}$ of the form (1.4) also hold for functions of the form (1.1) if the coefficient condition (2.1) satisfied the functions

$$f(z) = z + |b_1|^{\frac{1}{z}} - \frac{1}{(1+\lambda)^n (1+\alpha)(m+1)} (1-|b_1|-\beta)^{\frac{1}{z}^2}$$
and
$$f(z) = z - |b_1|^{\frac{1}{z}} - \frac{1}{(1+\lambda)^n (1+\alpha)(m+1)} (1-|b_1|-\beta)^{\frac{1}{z}^2}.$$

For $|b_1| \le 1 - \beta$ shows that the bounds given in Theorem 3 are sharp.

The following result follows from the left hand inequality in Theorem 3.

Corollary 1. If $f(z) \in THP_{\lambda}(\alpha, \beta, n, m, k)$. Then

$$\left\{w: \left|w\right| < \frac{\left(1+\lambda\right)^n \left(1+\alpha\right) \left(m+1\right) + \beta-1}{\left(1+\lambda\right)^n \left(1+\alpha\right) \left(m+1\right)} + \frac{1-\left(1+\lambda\right)^n \left(1+\alpha\right) \left(m+1\right)}{\left(1+\lambda\right)^n \left(1+\alpha\right) \left(m+1\right)} \left|b_1\right|\right\} \subset f(U).$$

Next, we determine the extreme points of the closed convex hulls of $THP_{\lambda}(\alpha,\beta,n,m,k)$, denoted by $clcoTHP_{\lambda}(\alpha,\beta,n,m,k)$.

Theorem 4. A function $f(z) \in clcoTHP_{\lambda}(\alpha, \beta, n, m, k)$, if and only if

$$f(z) = \sum_{k=1}^{\infty} (\mu_k h_k + \eta_k g_k)$$

$$h_1(z) = z$$
where
$$h_k(z) = z - \frac{1 - \beta}{\left[1 + (k-1)\lambda\right]^n (1 - \alpha + k\alpha)C(m,k)} z^k, \quad k = 2,3,...$$

$$g_k(z) = z - \frac{1 - \beta}{\left[1 + (k-1)\lambda\right]^n (1 - \alpha + k\alpha)C(m,k)} z^k, \quad k = 1,2,3,...$$

$$\sum_{k=1}^{\infty} (\mu_k + \eta_k) = 1, \quad \mu_k \ge 0 \quad and \quad \eta_k \ge 0.$$

In particular, the extreme points of $THP_{\lambda}(\alpha, \beta, n, m, k)$ are $\{h_k\}$ and $\{g_k\}$.

Proof: For the functions f(z) of the form (2.6), we have

$$f(z) = \sum_{k=1}^{\infty} (\mu_k h_k + \eta_k g_k)$$

$$= \sum_{k=1}^{\infty} (\mu_k + \eta_k) z - \sum_{k=2}^{\infty} \frac{1 - \beta}{\left[1 + (k-1)\lambda\right]^n (1 - \alpha + k\alpha) C(m, k)} \mu_k z^k$$

$$+ (-1)^n \sum_{k=1}^{\infty} \frac{1 - \beta}{\left[1 + (k-1)\lambda\right]^n (1 - \alpha + k\alpha) C(m, k)} \eta_k z^k$$

then

$$\sum_{k=2}^{\infty} \frac{\left[1+\left(k-1\right)\lambda\right]^{n} \left(1-\alpha+k\alpha\right) C(m,k)}{1-\beta} \left(\frac{1-\beta}{\left[1+\left(k-1\right)\lambda\right]^{n} \left(1-\alpha+k\alpha\right) C(m,k)} \mu_{k}\right) + \sum_{k=1}^{\infty} \frac{\left[1+\left(k-1\right)\lambda\right]^{n} \left(1-\alpha+k\alpha\right) C(m,k)}{1-\beta} \left(\frac{1-\beta}{\left[1+\left(k-1\right)\lambda\right]^{n} \left(1-\alpha+k\alpha\right) C(m,k)} \eta_{k}\right) \\ = \sum_{k=2}^{\infty} \mu_{k} + \sum_{k=1}^{\infty} \eta_{k} = 1-\mu_{1} \le 1$$

and so $f(z) \in clcoTHP_{\lambda}(\alpha, \beta, n, m, k)$.

Conversely, suppose that $f(z) \in clcoTHP_{\lambda}(\alpha, \beta, n, m, k)$. Set

$$\mu_k = \frac{\left[1 + \left(k - 1\right)\lambda\right]^n \left(1 - \alpha + k\alpha\right)C(m, k)}{1 - \beta} \left|a_k\right|, \ k = 2, 3, \dots$$

and

$$\eta_{k} = \frac{\left[1 + \left(k - 1\right)\lambda\right]^{n} \left(1 - \alpha + k\alpha\right) C(m, k)}{1 - \beta} \left|b_{k}\right|, \ k = 1, 2, 3, \dots$$

Then note that by Theorem 2, $0 \le \mu_k \le 1$ (k = 2, 3, ...), and $0 \le \eta_k \le 1$ (k = 1, 2, 3, ...).

We define $\mu_1 = 1 - \sum_{k=2}^{\infty} \mu_k + \sum_{k=1}^{\infty} \eta_k$ and note that, by Theorem 2, $\mu_1 \ge 0$.

Consequently, we obtain

$$f(z) = \sum_{k=1}^{\infty} (\mu_k h_k + \eta_k g_k)$$

as required. Using Theorem 2 it is easily seen that $THP_{\lambda}(\alpha, \beta, n, m, k)$, is convex and closed, so $clcoTHP_{\lambda}(\alpha, \beta, n, m, k) = THP_{\lambda}(\alpha, \beta, n, m, k)$. Then the statement of Theorem 4 is really for $f(z) \in THP_{\lambda}(\alpha, \beta, n, m, k)$.

Theorem 5. Each member of $THP_{\lambda}(\alpha, \beta, n, m, k)(\alpha \ge 0, \lambda + \alpha \ge 1, 0 \le \beta < 1)$ maps U on to a starlike domain.

Proof: We only need to show that if $f(z) \in THP_{\lambda}(\alpha, \beta, n, m, k)$, then

$$\operatorname{Re}\left\{\frac{zh'(z)-\overline{zg'(z)}}{h(z)+\overline{g(z)}}\right\} > 0.$$

Using the fact that $\operatorname{Re} w > 0$ if and only if |1+w| > |1-w|, it suffices to show that

$$\begin{split} & \left| h(z) + \overline{g(z)} + zh'(z) - \overline{zg'(z)} \right| - \left| h(z) + \overline{g(z)} + zh'(z) + \overline{zg'(z)} \right| \\ & = \left| 2z - \sum_{k=2}^{\infty} (k+1) |a_k| z^k + \sum_{k=1}^{\infty} (k-1) |b_k| z^{-k} \right| - \left| \sum_{k=2}^{\infty} (k-1) |a_k| z^k - \sum_{k=1}^{\infty} (k+1) |b_k| z^{-k} \right| \\ & \geq 2|z| - \left| \sum_{k=2}^{\infty} (k+1) |a_k| z^k - \sum_{k=1}^{\infty} (k-1) |b_k| z^{-k} \right| - \left| \sum_{k=2}^{\infty} (k-1) |a_k| z^k - \sum_{k=1}^{\infty} (k+1) |b_k| z^{-k} \right| \\ & \geq 2|z| \left\{ 1 - \left(\sum_{k=2}^{\infty} k |a_k| |z|^{k-1} + \sum_{k=1}^{\infty} k |b_k| |z|^{k-1} \right) \right\} \\ & > 2|z| \left\{ 1 - \left(\sum_{k=2}^{\infty} \left[1 + (k-1)\lambda \right]^n (1 - \alpha + k\alpha) C(m,k) |a_k| + \sum_{k=1}^{\infty} \left[1 + (k-1)\lambda \right]^n (1 - \alpha + k\alpha) C(m,k) |b_k| \right) \right\} \\ & \geq 2|z| \left[1 - (1 - \beta) \right] \\ & = 2|z| \beta \geq 0 \end{split}$$

Theorem 6. If $f(z) \in THP_{\lambda}(\alpha, \beta, n, m, k)(\alpha \ge 0, \lambda + \alpha \ge 1, 0 \le \beta < 1)$, then f(z) is convex in the disc

$$|z| < \min_{k} \left[\frac{1 - \beta - |b_1|}{k} \right]^{\frac{1}{k} - 1}, \quad k = 2, 3, ..., \quad 1 - \beta > |b_1|$$

Proof: Let $f(z) \in THP_{\lambda}(\alpha, \beta, n, m, k)$ and let r be fixed such that 0 < r < 1, then If $r^{-1}f(rz) \in THP_{\lambda}(\alpha, \beta, n, m, k)$ and have

$$\sum_{k=2}^{\infty} k^{2} (|a_{k}| + |b_{k}|) r^{k-1} = \sum_{k=2}^{\infty} k (|a_{k}| + |b_{k}|) (k r^{k-1})$$

if

$$\leq \sum_{k=2}^{\infty} \left[1 + (k-1)\lambda \right]^{n} \left(1 - \alpha + k\alpha \right) C(m,k) \left(\left| a_{k} \right| + \left| b_{k} \right| \right) \left(k r^{k-1} \right)$$

$$\leq 1 - \beta - \left| b_{1} \right|.$$
Provided $k r^{k-1} \leq 1 - \beta - \left| b_{1} \right|$, which is true

$$r \le \min_{k} \left[\frac{1 - \beta - |b_1|}{k} \right]^{\frac{1}{k} - 1}, \quad k = 2, 3, ..., \quad 1 - \beta > |b_1|.$$

Following Ruscheweyh [6], we call the set

$$N_{\delta}f(z) = \left\{ F : F(z) = z - \sum_{k=2}^{\infty} |A_k| z^k - \sum_{k=1}^{\infty} |B_k|^{-k} \text{ and } \sum_{k=1}^{\infty} k(|a_k - A_k| + |b_k - B_k|) \le \delta \right\}$$
 (2.7)

as the δ -neighbourhood of f(z). From (2.7) we obtain

$$\sum_{k=1}^{\infty} k(|a_k - A_k| + |b_k - B_k|) = |b_1 - B_1| + \sum_{k=2}^{\infty} k(|a_k - A_k| + |b_k - B_k|) \le \delta.$$
 (2.8)

Theorem 7. Let $f(z) \in THP_{\lambda}(\alpha, \beta, n, m, k) (\alpha \ge 0, \lambda + \alpha \ge 1, 0 \le \beta < 1)$ and $\delta \le \beta$. If $F \in N_{\delta}(f)$, then F is a harmonic starlike function.

Proof: Let
$$F(z) = z - \sum_{k=2}^{\infty} |A_k| z^k - \sum_{k=1}^{\infty} |B_k| z^k \in N_{\delta} f(z)$$
, we have

$$\sum_{k=2}^{\infty} k(|A_k| + |B_k|) + |B_1| \le \sum_{k=2}^{\infty} k(|a_k - A_k| + |b_k - B_k|) + \sum_{k=2}^{\infty} k(|a_k| + |b_k|) + |B_1 - b_1| + |b_1|$$

$$\leq \sum_{k=2}^{\infty} \left[1 + \left(k - 1 \right) \lambda \right]^{n} \left(1 - \alpha + k\alpha \right) C(m, k) \left(\left| a_{k} - A_{k} \right| + \left| b_{k} - B_{k} \right| \right) + \left| B_{1} - b_{1} \right| + \left| b_{1} \right| \right)$$

$$+ \sum_{k=2}^{\infty} \left[1 + \left(k - 1 \right) \lambda \right]^{n} \left(1 - \alpha + k\alpha \right) C(m, k) \left(\left| a_{k} \right| + \left| b_{k} \right| \right)$$

$$\leq \delta + \left| b_{1} \right| + \left(1 - \beta - \left| b_{1} \right| \right) \leq 1.$$

Hence, F(z) is a harmonic starlike function.

For our next theorem, we need to define the convolution of two harmonic functions. For harmonic functions of the form

$$f(z) = z - \sum_{k=2}^{\infty} |a_k| z^k - \sum_{k=1}^{\infty} |b_k| z^k$$

and

$$F(z) = z - \sum_{k=2}^{\infty} |A_k| z^k - \sum_{k=1}^{\infty} |B_k| z^k$$

we define the convolution of two harmonic functions f(z) and F(z) as

$$(f * F)(z) = f(z) * F(z) = z - \sum_{k=2}^{\infty} |a_k| |A_k| z^k - \sum_{k=1}^{\infty} |b_k| |B_k| z^k.$$
 (2.9)

Using this definition, we show that the class $THP_{\lambda}(\alpha, \beta, n, m, k)$ is closed under convolution.

Theorem 8. For $0 \le \alpha_1 \le \alpha_2$, $0 \le \beta_1 \le \beta_2 < 1$, $\lambda + \alpha \ge 1$, let

$$f(z) \in THP_{\lambda}(\alpha_2, \beta_2, n, m, k)$$
 and $F(z) \in THP_{\lambda}(\alpha_1, \beta_1, n, m, k)$.

Then
$$(f * F)(z) \in THP_{\lambda}(\alpha_2, \beta_2, n, m, k) \subset THP_{\lambda}(\alpha_1, \beta_1, n, m, k)$$
.

Proof: Let $f(z) = z - \sum_{k=2}^{\infty} |a_k| z^k - \sum_{k=1}^{\infty} |b_k| z^k$ be in $THP_{\lambda}(\alpha_2, \beta_2, n, m, k)$ and

$$F(z) = z - \sum_{k=2}^{\infty} |A_k| z^k - \sum_{k=1}^{\infty} |B_k| \overline{z}^k \text{ be in } THP_{\lambda} (\alpha_1, \beta_1, n, m, k).$$

Then the convolution (f * F) is given by (2.9). We wish to show that the coefficient of (f * F) satisfies the required condition given in Theorem 2.

For $F(z) \in THP_{\lambda}(\alpha_1, \beta_1, n, m, k)$ we note that $|A_k| < 1$ and $|B_k| < 1$. Now, for the convolution function f * F, we obtain

$$\sum_{k=2}^{\infty} \frac{\left[1+\left(k-1\right)\lambda\right]^{n} \left(1-\alpha_{1}+k\alpha_{1}\right) C(m,k)}{1-\beta_{1}} \left|a_{k}\right| \left|A_{k}\right| + \sum_{k=1}^{\infty} \frac{\left[1+\left(k-1\right)\lambda\right]^{n} \left(1-\alpha_{1}+k\alpha_{1}\right) C(m,k)}{1-\beta_{1}} \left|b_{k}\right| B_{k}$$

$$\leq \sum_{k=2}^{\infty} \frac{\left[1+\left(k-1\right)\lambda\right]^{n} \left(1-\alpha_{1}+k\alpha_{1}\right) C(m,k)}{1-\beta_{1}} \left|a_{k}\right| + \sum_{k=1}^{\infty} \frac{\left[1+\left(k-1\right)\lambda\right]^{n} \left(1-\alpha_{1}+k\alpha_{1}\right) C(m,k)}{1-\beta_{1}} \left|b_{k}\right|$$

$$\leq \sum_{k=2}^{\infty} \frac{\left[1+\left(k-1\right)\lambda\right]^{n} \left(1-\alpha_{2}+k\alpha_{2}\right) C(m,k)}{1-\beta_{2}} \left|a_{k}\right| + \sum_{k=1}^{\infty} \frac{\left[1+\left(k-1\right)\lambda\right]^{n} \left(1-\alpha_{2}+k\alpha_{2}\right) C(m,k)}{1-\beta_{2}} \left|b_{k}\right| \leq 1.$$

Since $0 \le \alpha_1 \le \alpha_2$, $0 \le \beta_1 \le \beta_2 < 1$, $\lambda + \alpha \ge 1$ and $f(z)THP_{\lambda}(\alpha_2, \beta_2, n, m, k)$, thus $(f * F)(z) \in THP_{\lambda}(\alpha_2, \beta_2, n, m, k) \subset THP_{\lambda}(\alpha_1, \beta_1, n, m, k)$.

Note that some other related work using different types of operators can be found in ([14]-[16]).

Acknowledgement: The work here is partially supported by UKM-ST-06-FRGS0244-2010.

REFERENCES

- [1] O. P. Ahuja and J. M. Jahangiri, Planar harmonic univalent and related mapping, *J. Ineq. Pure App. Math.* **6**(4), (2005), 1-18.
- [2] S. S. Bhoosnurmath and S. R. Swamy, Certain classes of analytic functions with negative coefficient, *Indian J. Math.* **27**, (1985), 89-98.
- [3] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acd. Aci. Fenn. Ser. A I Math, 9, (1984), 3-25.
- [4] J. M. Jahangiri, Harmonic functions starlike in the unit disc, *J. Math. Anal. Appl*, **235**, (1999), 470-477.
- [5] F.M. Al-Oboudi, On univalent functions defined by generalized Salagean operator, *IJMMS*, **27**,(2004), 1429-1436.
- [6] S. Ruscheweyh., Neighbourhood of univalent functions, *Proc. Amer. Math. Soc.*, **81**, (1981), 521-527.
- [7] K. Al-Shaqsi and M. Darus, Differential Sandwich theorems with generalised derivative operator, *Inter. J. Comp. Math. Sci.*, **2**, (2)(2008), 75-78.
- [8] T. Sheil-Small, Constants for planer Harmonic mappings, *J. London Math. Soc.*, **42**(2),1990, 237-248.

- [9] H. Silverman, Harmonic univalent functions with negative coefficients, *J. Math. Anal. and Appl,* **220**, (1998), 283-289.
- [10] H. Silverman and E. M. Silvia, Subclasses of harmonic univalent functions, *New Zealand J. Math*, **28**, (1999), 275-284.
- [11] G. S. Salagean, Subclass of univalent Functions, *Complex Analysis-Fifth Romanian -Finish seminar*, *Burcharest*, **1**,(1983),362-372.
- [12] S. Yalcin, On certain harmonic univalent functions defined by Salagean derivative, *Soochow Journal of Math.* **31**(3), (2005), 321-331.
- [13] S. Yalcin M. Ozturk and M. Yamankaradeniz, On the subclass of Salagean-type harmonic univalent functions, *J. Ineq. Pure Appl. Math.* **8**(2), (2007), Art. 54.
- [14] K. Al-Shaqsi, M. Darus and O.A. Fadipe-Joseph, A new subclass of Salagean-type harmonic univalent functions, *Abstract and Applied Analysis*, **2010** (2010), Article ID 821531, 12 pages
- [15] K. Al-Shaqsi and M. Darus, Differential Subordination and Superordination with Multiplier Transformation *International Journal of Open Problems in Computer Science and Mathematics*. **2**(1) (2009), 1-18.
- [16] G. Murugusundaramoorthy, Certain Subclasses of Starlike Harmonic Functions Associated With a Convolution Structure, *Int. J. Open Problems Complex Analysis*, **2**(1) (2010), 1-13.