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Abstract

A complex-valued functions that are univalent and sense preserving
in the unit disk U can be written in the form f(z) =h(z)+g(z), where
h(z) and g(z) are analytic in U . In [7], authors introduced the

operator D, which defined by convolution involving the

polylogarithms functions. Using this operator, we introduce the class
SHPﬂ(a,,B,n,m,k) by generalized derivative operator of harmonic

univalent functions. We give sufficient coefficient conditions for
normalized harmonic functions in the class SHP, («, #,n,m,k). These

conditions are also shown to be necessary when the coefficients are
negative. This leads to distortion bounds and extreme points.

2000 AMS subject classification: Primary 30C45, Secondary 30C50.

Keywords: Univalent functions, Harmonic functions, Derivative operator,
Convex combinations, Distortion bounds



M. Darus and N.D. Sangle 84

1. Introduction

Let U denote the open unit disk and S,, denote the class of all complex valued
harmonic, sense preserving univalent functions f(z) in U normalized
by f(0)=0, f,(0)=1.Each f(z)eS, can be expressed as

f(z2)=h(2)+9(z2) 1.1)
where

h(z)=z+>a.z*, 9(z)=> bz, |h|<1
2 P}

are analytic in U. A necessary and sufficient condition for f(z) to be locally
univalent and sense preserving in U is that |h'(z)|>|g'(z)| in U. Clunie and

Sheil- Small studied S,, together with some geometric subclasses of S, .

A function of the form (1.1) is harmonic starlike [8] for |z| =r <1, if
i(arg( f (re“g))) _Re)N@)-20'@) [ 0,
00 h(z)+g(z)

Silverman [9], proved that the coefficient conditions

ka(|ak|+|bk|)31 and kaz(|ak|+|bk|)sl
=2 =2

are necessary and sufficient conditions for functions f (z) =h(z)+g(z) to be
harmonic starlike with negative coefficient and harmonic convex with negative
coefficient respectively. Different authors in [1, 2, 4, 5, 6,7,12], studied S,

together with some geometric subclasses of S,,.

For f (z) = h(z) + g(z) given by (1.1), we define the derivative operator introduced
by Shagsi and Darus [7] of f(z)as

Dy, f(2) = D},h(z) +(-1)" D} (2) 1.2)

where
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D7 h(z) =2+ 3 [1+ (K —1)z]nc:(m, K)a, 2",

01,9()= 3 [1+ (k-DZ] CmKI, < C(m,k):(k:]lj.

Let SHP, (&, 8,n,m,k)denote the family of harmonic functions f(z) of the form
(1.1) such that

D;,.h(2) +(=1)"D;,9(2)
z

Re{(l—a) +a[Dnrllﬂh(z) + (1) Dr?wg(z)]} >4 (L3)

where D7 h(z), Dy ,9(z) is defined by (1.2).

If the co-analytic part of f(z)=h(z)+ g(z)is identically zero, n=0 and m=0 then
the family SHP, (o, 8,n,m,k) turns out to be the class F,(«) introduced by
Bhoosnurmath and Swamy [2] for the analytic case.

We further denote by THP, («, 8,n,m,k)the subclass of SHP, («, ,n,m,k)such
that the functions h(z) and g(z) in f(z) =h(z)+ g(z) are of the form

h(z):z—iakzk , g(z):(—l)”ibkzk <1 (1.4)

It is clear that the class THP, («, #,n,m,k) includes a variety of well-known

subclasses of S,,.

In this paper, we will give the sufficient condition for functions
f(z) =h(z)+ g(z) where h(z) and g(z) given by (1.1) to be in the class
SHP, (o, #,n,m,k)and it is shown that the coefficient condition is also necessary
for the functions in the classTHP, («, 8,n,m,k). Coefficient bounds, Distortion

bounds, extreme points, convolution conditions, convex combination of this class
are obtained.
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2. Main Results

We begin by proving some sharp coefficient inequality contained in the following
theorem

Theorem 1. Let f(z) = h(z)+ g(z)be given by (1.1) furthermore, let

© n

D1+ k-DA] (1-a+ka)C(mk)(Ja|+|b|)<2- 5, (2.1)

k=1

where &, =1, L, 20,A+a>1 0< g <1
Then f(z) is harmonic univalent, sense preserving in U and
f(z) € SHP, (&, B,n,m,k).

Proof: For |z|<|z,| <1, we have by equation (2.1)

|f(z) - f(2,)|2|n(z) - h(z,)] - |9(z) - 9(z,)|

22 1Skl et - Skl

“Je -2 -k
2213k (a o ) by <
2|zl—zz|(1—;;[l+(k—l)/1]n(1—a+ka)C(m,k)(|ak|+|bk|)+|b1|j
sl 21 [1- Aol b)) = Az 22) o

Hence, f(z)isunivalentin U. f(z) is sense preserving in U. This is because

>1-S ka2
k=2
>1-Sk[ay|
k=2
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>1—§IL4k—QzT@fa+kayxmxn%|
2ﬁ+§IL4k—giTa—a+mncammmd
zf[qu—gﬂf@fa+kayxmannﬁ4

> k|b |l 2|g'(@)-
k=1
Now, we show that f(z) e SHP, (@, #,n,m,k). Using the fact that Rew> f if
and only if [1- 8 +w|>[L+ 8 —w|, it suffices to show that

1-f+(1-a)

Dr:,lh(z) + (_1)n Dr:,ﬂg(z) e [

)+ (1D 0(@) |
z

—+f-(1-a)

Dgﬂﬂz)+(—D"D£¢9(ﬂ__a[ (2.2)

z

D}, h(z) +(-1)' D} ,9(2) |20

‘ i[u k-1)2] (1-a+ka)C(m,k)a,z" " +(-1)" Z[1+ (k=1)2T (1-ar+ka)C(m, k)b z**

.y - Z[1+ (k-1) ] (1-a+ka)C(m,k)a z"* = (-1)" Z[1+ (k— 1/1] (1- o+ ke )C(m, k)b 2

{@_ B)- > [1+ k-1)2] (1~ +ka)C(m,K)[a |7
—gquk—nz]a—a+mncmmmmm4J
> 2[(l—ﬂ)—k§;[1+(k ~1)A] (1-a+ka)C(m,k)[a|

+ Y [1+(k-1) 4] (1-a+ka)Cm k)b | >0

This last expression is non-negative by (2.1) and so the proof is complete.
The harmonic mappings

0

f(2)= 2+ -5 X2 + nl_ﬁ vZ* (23)
@[ 1+(k-1) A] (1-a+ka) CmK) T 1+(k-1) 4] (1-a+ka)C(mk)
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where >'|x|+ > |y,|=1 show that the coefficient bound given by (2.1) is sharp.
k=2 k=1

The functions of the form (2.3) are in SHP,(a, B,n,mk) because

g[n(k—l)ﬂn(1—a+ka)C(m,k)(|ak|+|bk|)J 1+(1- ﬂ@y |+ g|yk|j= _

Theorem 2. Let f(z) = h(z)+ g(z) be given by (1.4), then

f(z) eTHP, (a, B,n,m,k). If and only if
S [+ (k-1)2] (1- +kar)C(m, k) (Ja | +]p,|) < 2 B,
k=1

(2.4)
where &, =1, 4, 20,A+a2>1,0< <1

Proof: The ‘if part’ follows from Theorem 1 upon noting that the functions
h(z) and g(z) in f(z)eSHP,(a,f,n,mKk) are of the form (1.4), then

f(2) eTHP, (a, B,n,m, k).
For the ‘only if’ part, we show that if f(z)eTHP,(a,3,n,m,k)then the

condition (2.4) holds. Note that a necessary and sufficient condition for
f (z) = h(z) + g(z) given by (1.4) be in THP, (e, 8,n,m,K) is that

Re{(l_ ) DhN(@)+(1'D}.9(2)

z

+a| D} h(2)+(-D"D; m(z)]} p
or, equivalently

{11424 1-ascmbfal STk 2] -4
k=2 \a
If we choose z to be real and z -1, we get

1-ST1+(k-1) AT (1-a-+ka) CmK)|a| - S T1+(k-1) AT (1-a-+ka)) Cm k) > 5

this is precisely the assertion of (2.4).
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Theorem 3. If f(z) eTHP, (a,f,n,m,k), 1, >0,1+a>10< <1, |z]=r<1,

then

1

f(D)|<(1+b]|)r+

@< L+ (1+2) (1+a)(m+1)
1

(1+2) (1+a)(m+1)

(1-Iof-£)r?

|f(z)|2(1—|bl|)r— (1—|bl|—/3)r2 (2.5)

Proof: Let f(z)eTHP,(«,B,n,mKk). Taking the absolute value of f(z) we
obtain

|f(z)|s(l+|b1|)r+§:(|ak|+‘bk‘)rk
<(1+]py|)r + > (|ak +

=2
<(L+|byf)r+

N

bk)rz, |z|:r<1

=~

1
(1+4)" (1+a)(m+1

1 (Z[m (11T (1 +ka)C (m,k)(|ak|+|bk|)]r2

(1+4)" (1+a)(m+1)

[i 1+ 1) (1+a)(m+1)([a |+ |bk|)Jr2

2

<(L+]by)r+

1

< (1+|b1|)r+

(1_|b1|_ 'B) re
and

(1+4)" (1+a)(m+1)
|f(2)|2 (1-|o)r - ki(|ak

(fal+[o.f)r
> (1-b)r -3 (jal +]p,[)r* . Jzl=r<1

k=2

> (=) - (z 1+ )" (L4 o) (m+1) Ja |+ |b|)j

(1+2) I+ a)(m+1)\i=

1
(1+4)" (1+a)(m+1)

> (1-[oy[)r - (Z[H k=14 (1-a+ka)C (mvk)(lak|+|bk|)jr2

1 2
2R S G ey R
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The bounds given in Theorem 3. For the functions f(z) = h(z) + g(z) of the form

(1.4) also hold for functions of the form (1.1) if the coefficient condition (2.1)
satisfied the functions

f(z)=z+[b|z- L

(1+4)" (1+a)(m+1)

(1_|b1|_ﬂ)22
and

f(z)=z—|b1|z—( !

1+ 1) (1+a)(m+1)

For |b1| <1-p shows that the bounds given in Theorem 3 are sharp.

(1-|b|- B) 2%

The following result follows from the left hand inequality in Theorem 3.

Corollary 1. If f(z) eTHP, (a,8,n,m,k). Then

{W:|W| (1) (+a)(m+D)+p-1 1-(1+4) (1+a)(m+1
(1+2)" (1+a)(m+1) (1+2)" (1+a)(m+1)

)Ibll}c f).

Next, we determine the extreme points of the closed convex hulls of
THP, («, 8,n,m,k), denoted by clcoTHP, (a, 8,n,m,k).

Theorem 4. A function f(z)eclcoTHP, («, 8,n,m,k), if and only if

f(2)= 3 (shy +7,9,) (2.:6)
h(z)=z
where hk (2)=z- 1-p Zk, k=2,3,..

[1+(k-1)A] (1-a+ka)C(m,k)

9 (2)=12- 1=/ 7, k=123..
[1+(k-1)2] (1-a+ka)C(m,k)

0

> (#+1)=1 w4 >0 and 5, >0,

k=1
In particular, the extreme points of THP, («, 8,n,m,k) are {h,}and {g,}.

Proof: For the functions f(z) of the form (2.6), we have
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f(@) = (uh, +1.9.)

.~ < 1-p K
é(ﬂkmk)z é[u k-1)4] (1-a +ka)C(m, 0" A
N 1- ﬂ —k

-1

+ );[u k — 1/1] (1-a+ka)C(m, k) et
then
Zw:[1+(k—1),1]”(1—a+ka)C(m,k) 1-8 N
par 1-p [1+(k- u] (1-a+ka)C(m, k)
Z[1+ (k- 11] (1-a+ka)C(m,k) 1-B
P 1-p8 [1+(k- 11] 1-a+ka)C(m, k)

:Z,Uk +Z77k =l-p <1
k=2 k=1

and so f (z) e clcoTHP, («, B,n,m,k).

Conversely, suppose that f(z) e clcoTHP, (a £,n,m, k). Set

1+k 1/1 1 a+ka)C(m,k
<L KDATC JCMK) 1 k=23,

1-p

and

[1+(k-1)2] (1-a+ka)C(m,k)
1-p

Then note that by Theorem 2, 0< g, <1(k=2,3,...),and0<7, <1(k=1,2,3,...).

77k: |bk|' k:1,2,3,...

We define 4 =1->" 44, + > 7, and note that, by Theorem 2, z, >0.

k=2 k=1
Consequently, we obtain

()= 2 (b +71.9:)

as required. Using Theorem 2 it is easily seen that THP, («, ,n,m,k), is convex
and closed, so clcoTHP, («, 8,n,m,k)=THP, (&, #,n,m,k). Then the statement
of Theorem 4 is really for f(z) e THP, («, £,n,m,k).
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Theorem 5. Each member of THP,(a,f,n,mk)(a>0,A+a>10<f<1)

maps U on to a starlike domain.
Proof: We only need to show that if f (z) e THP, («, ,n,m,k), then
Re{Zh (2)-2g (z)}>0
h(z)+9(2)
Using the fact that Rew > 0if and only if [1+w| >[1—w], it suffices to show that

Ih(2)+9(2)+ 2h'(2) - zg'(z)\-\h(z)+ﬁ+ 2h'(2) + zg'(z)\
iz (k+1)[a2*

z k+1 |ak|z —Z k— l|bK|z
k=1

22 [ Scals b
bz

22a[1-(1-9)]

=2|7/4=0

>2|-

;(k—l)laKlzk—

k=1

[1+(k-1) 2] (1-a+ke) C(m, k)|ak|+2[1+ k-1) 2] (1-a+ke) C(m, k)|q|j}

Theorem 6. If f(z) eTHP, (a, B,n,m,k)(a>0,A+a>1,0< S <1), then f(z)is
convex in the disc

Hea
|Z|<mkin{%—lbll}k . k=23, 1-4>b|

Proof: Let f(z) e THP, (o, 8,n,m,k) and let r be fixed such thatO<r <1, then If
rf(rz) eTHP, («, 8,n,m,k) and have

0

> (= Sk + ) (k)

k=2
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<Si[1+ (k-1 2] (t-avka)Cm k) 3+ (r)

<1-B-|.

Provided krt <1-g-|b, which is true if
a k[T

rgmkin[#hq . k=23, 1-B8>.

Following Ruscheweyh [6 ], we call the set
Nﬁf(z):{F F(2)=2-Y|A|z*->B,|z" and Zk(|q—ﬂ|+|Q—Bk|)s§} 2.7)
k=2 k=1 k=1

as the ¢ -neighbourhood of f(z). From (2.7) we obtain

Sk ([a, - A+|b —Bk|)=|bl—Bl|+Zk(|ak A+, -B]) <. (2.8)

Theorem 7. Let f(z)eTHP,(a,f,n,mk)(¢>0,1+a>10<4<1) and
S<B. If FeNg(f), then Fisaharmonic starlike function.

Proof: LetF(z) =z —i|Ak| z* —Z.O:|Bk|2k eN, f(z), we have
k=2 k=1

;k(|Ak|+|Bk|)+|Bl|S;k(|ak ~Al+b, —Bk|)+kZ:; k(|Jay |+ bi])+|B, ~b +[b]

< i[lJr(k—1)1]“(1—a+ka)C(m,k)(|ak — AJ+]b,—B])+|B,~ | +[o,|

+:ZZ[1+(k—1),1]” (1-ar+ka)C(m, k) (|a,|+ b))

<5+|b|+(1-B-[o])<1.
Hence, F(z) isa harmonic starlike function.

For our next theorem, we need to define the convolution of two harmonic
functions. For harmonic functions of the form
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fz)=2->la]z =D b |2"
k=1

and

F(z):z—k2|/3,(|zk _kZ|Bk |2
=2 =1

we define the convolution of two harmonic functions f(z)and F(z)as
(t*F)@)=f@*F@) =2- [a||Alz* - |n]B.|Z". (2.9)
k=2 k=1

Using this definition, we show that the class THP, («, #,n,m,k)is closed under
convolution.

Theorem 8. ForO<o, <a,, 0< B, <3, <1, A+a 21, let
f(z) eTHP, (a,, B,,n,m,k)and F(z) e THP, (e, 4,,n,m,k).
Then( f *F)(z) eTHP, (a,, £,,n,m k) c THP, (e, ,,n,m, k).

Proof: Let f(z)= z—i|ak|zk —i|bk |2" be in THP, (o, ,,n,m,k)and
k=2 k=1

F@)=2-Y|A

Then the convolution(f*F) is given by (2.9). We wish to show that the

2 ~Y|B,[Z* bein THP, (a, 5,0 m.k).
k=1

coefficient of( f *F) satisfies the required condition given in Theorem 2.

For F(z) eTHP, (o, ,n,mk) we note that|A|<1 and|B,|<1. Now, for the
convolution function f *F , we obtain

= [1+(k=1) 2] (1-a +key ) C(m, k) = [1+(k=1) 2] (1-a +key ) C(m, k)
S aa)oni, ) s L ara/dn, )

[1+(k-1) 2] (1- 0y +kay ) C(m,k)

<3 a a+.

[1+(k-1) 2] (1- e +key ) C(m,k)
-4

b
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= [1+(k-1) 4] (1~ +ka ) C(m,K)

5 [1+(k-1) 4] (1-a, +ka, ) C(m,k)
= 1-4

1-5

IIZ o<1

Since 0<e, <a,, 0<B,<B,<1, A+a>1and f(z)THP,(a,,5,,n,m,k), thus
(f*F)(2) eTHP, (@, f,,n,m,k) c THP, (e, £, n,m, k).

Note that some other related work using different types of operators can be found
in ([14]-[16]).
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