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Abstract: Recently, many works have appeared of Fuzzy 

implications over triangular norms and triangular conorms. 

In this paper, we attempt a systematic study of Quantum 

logic Co-implications generated from a t-norm, t-conorm 

and strong negation. Also, some examples as well as 

application are discussed as well. 
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1. Introduction 
 

A Quantum logic (in short, QL) connective plays an important role in computer 

programming [3]. In designing multi-valued logic circuits [7], the concepts of multi-

valued fuzzy functions have been explored [1]. Fuzzy logic and fuzzy sets are basic 

framework when working with vague notions. In fuzzy logic, the classical binary 

negation, conjunction, disjunction and implication are extended to mappings that take 

values in the unit interval respectively. A fuzzy negation operator is normally modeled as 

a fuzzy negation. A fuzzy conjunction operator is normally modeled as a conjunction on 

the unit interval or (more usually) as a triangular norm (in short, t-norm)[16]. A fuzzy 

disjunction operator is normally modeled as a triangular co norm (t-conorm for 

short)[20]. There are many approaches to model a fuzzy implication operator. It can be 

constructed from the other three fuzzy logic operators, or it can be constructed from some 

parameterized generating functions.  
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mailto:elidresy@yahoo.com
mailto:iqbal501@hotmail.com


Quantum Logic Fuzzy Co-implication…                                                                       64 
 

 
 

2. Preliminaries  
 

 We suppose that the reader is customary with the classical results of fuzzy logic 

implications [14],[15], and [18].  

2 .1 Triangular Norm and Triangular Conorm 
 

 The conjunction   in fuzzy logic , it is often modeled as follows :  

 

Definition 2.1. [9] A mapping      : 0,1 0,1 0,1T    is a triangular norm (in short, t-

norm), if for all  , , , 0,1r q z w   the following requirements are satisfied  

( .1)T ( , ) ( , ),T r q T q r                                                                (T is commutative) 

     .2  ,    ,T T r q T z w whenever r z and   ,q w                  ( T is increasing) 

       .3  , ,   , , ,T T r T q z T T r q z                                     (T is associative) 

     .4  ,1   .T T r r                                                                      (T has1 as identity) 

 

Definition 2.2. [13] A mapping      : 0,1 0,1 0,1S    is a triangular conorm (in short, t-

conorm), if for all  , , , 0,1r q z w   the following conditions are satisfied  

(𝑆. 1) 𝑆(𝑟, 𝑞) = 𝑆(𝑞, 𝑟).                                                           (S is commutative) 

(𝑆. 2) 𝑆(𝑟, 𝑞) ≤ 𝑆(𝑧, 𝑤)  whenever  𝑟 ≤ 𝑧 and 𝑞 ≤ 𝑤.            (S is increasing ) 

(𝑆. 3) 𝑆(𝑟, 𝑆(𝑞, 𝑧)) = 𝑆(𝑆(𝑟, 𝑞), 𝑧).                                      (S is associative ) 

(𝑆. 4) 𝑆(𝑟, 0) = 0.                                                                      (S has 0 as identity) 

 

Proposition 2.1. [19] A mapping S is a triangular conorm iff there exists a triangular 

norm T such that    , 1 1 ,1 ,S z w T z w     , 0,1 .z w   In this case S  is called 

the dual t-conorm of .T  

 

The standard examples of t-norm and dual t-conorms are stated in the following :  

t--norm  T  Dual t-conorm (S) 

 , min( , ).M p q p q  

(Minimum t-norm) 

   S , max , .M p q p q  

(Maximum t-conorm) 

( , ) ,p q pq   

(Product t-norm) 
 S , ,M p q p q pq    

(Probabilistic sum t-conorm) 

    if 1,

( , )     if 1,

0    if , [0,1).

p q

W p q q p

p q




 
 

 

(Drastic or weak t-norm) 

 

  if   =1,

,    if   = 1,

1      otherwise.

W

p q

S p q q p




 



 

(Drastic or largest t-conorm) 
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min( , ) if 1,
( , )

0               if 1.

p q p q
N p q

p q

 
 

 
 

(Nilpotent t-norm) 

 
   < 1, max ,  if  

S ,
         0     if   1.

N

p q p q
p q

p q


 

 
 

(Nilpotent   t-conorm) 

( , ) max( 1,0),L p q p q    

(Lukasiewicz  t-norm) 
    S , min ,1 .L p q p q   

(Bounded Sum t-conorm) 

0                   if  0,

( , )
      otherwise. 

p q

H p q pq

p q pq

 


 
  

(Hamacher  t-norm) 

 

   0        if  0,

, 2
    otherwise.

1

H

p q

S p q p q pq

pq

 


  
 

 

(Hamacher  t-conorm) 

( , ) ,    (0,1).
max( , , )

pq
D p q

p q
 


   

(Dubois-Prade  t-norm) 

 

 
   

 

1 1
S , 1 ,

max 1 ,1 ,
D

p q
p q

p q 

 
 

 
 

 0,1 .   (DuboisPrade  t-conorm) 

 

 

2 .2 Negation Function 
 

Definition 2.3. [4] A mapping N from  0,1
 
into  0,1  is a negation function , iff: 

   1. 0 1, 1 =0;N N  

     2. ,  if . , 0,1 . N p N q p q p q                                         (Monototonicity) 

     A negation function is strict , iff: 

1. ( ) is continuous;N p  

 2. ( ) ( ), if  . , 0,1 .N p N q p q p q     

     A strict negation function is strong or volutive ,  iff:  

    1. , 0,1 .N N p p p    

     A negation function is weak, iff N is not strong. 

 

Example 2.1.[15] The strong negation   1 ,CN p p  strict negation but not strong 

  21 ,kN p p   weaker negations  
1

1 if = 0,

0 if > 0.
D

p
N p

p

 
  
 

, and strongest negations 

 
2

1 if 1,
.

0 if = 1.
D

p
N p

p

  
  
 

 

 

Definition 2.4. [9] Let  be a t-normT and S be a t-conorm. A mapping ,T SN N  from 

 0,1 into  0,1   defined by: 
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        sup 0,1 : , 0  , for every 0,1 ,TN p r T p r p   

        inf 0,1 : , 1 , for every 0,1 ,SN p r S p r p     

are called the natural negation of T and ,S respectively. 

 

3. Fuzzy Implications 
 

In classical logic all assertions are either true or false (i.e have truth values 1 or 0 

respectively). In case of fuzzy logic the truth value may be any value in the interval 

[0 , 1]. Connected with fuzzy logic is the notion of fuzzy sets. Classical set is given by it's 

characteristic function with values 0 and 1. Likewise, a fuzzy set is given by it's 

membership function with values from interval [0. 1]. 

  In the following they are four ways to define an implication in the Boolean 

lattice (L,∧,∨,¬): 

(1) 𝑝 ⇒ 𝑞 ≡ ¬𝑝 ∨ 𝑞.                                              (S-Implication, see [13] and [20]) 

(2) 𝑝 ⇒ 𝑞 ≡ 𝑚𝑎𝑥{𝑡 ∈ 𝐿 | 𝑟 ∧ 𝑡  ≤ 𝑞} .                (R-Implication, see  [12] and [14]) 

(3) 𝑝 ⇒ 𝑞 ≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞).                                     (Quantum logic, see  [14] and [20]) 

(4)  𝑝 ⇒ 𝑞 ≡ 𝑞 ∨ (¬𝑝 ∧ ¬𝑞).                                 (D-Implication, see  [14] and [20]) 

where  𝑝. 𝑞 ∈ 𝐿. 

A fuzzy implication 𝐼  is an extension of the implication operator in the classical 

binary logic. So I must satisfy at least the boundary conditions 

𝐼1:  𝐼(0,0) = 𝐼(0,1) = 𝐼(1,1) = 1 and 𝐼(1,0) = 0. 

Besides 𝐼1, there are several other potential axioms for 𝐼  to satisfy in different 

theories and applications, among which the most important ones are (notice that 𝐹𝐼5 is a 

part of 𝐼1): [14] 

(𝐹𝐼. 1) (∀𝑥₁, 𝑥₂, 𝑦 ∈ [0,1])(𝑥₁ < 𝑥₂) → 𝐼(𝑥₁, 𝑦) ≥ 𝐼(𝑥2, 𝑦)). 

(𝐹𝐼. 2) (∀(𝑥, 𝑦₁, 𝑦₂) ∈ [0,1])(𝑦₁ < 𝑦₂) → 𝐼(𝑥₁, 𝑦) ≤ 𝐼(𝑥2, 𝑦)), 

(𝐹𝐼. 3)  (∀𝑥 ∈ [0,1])(𝐼(0, 𝑥) = 1), 

(𝐹𝐼. 4) (∀𝑥 ∈ [0,1])(𝐼(𝑥, 1) = 1), 

(𝐹𝐼. 5) 𝐼(1,0) = 0, 

(𝐹𝐼. 6) (∀𝑥 ∈ [0,1])(𝐼(1, 𝑥) = 𝑥), 
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(𝐹𝐼. 7)  (∀(𝑥, 𝑦, 𝑧) ∈ [0,1]) (𝐼(𝑥, 𝐼(𝑦, 𝑧)) = 𝐼(𝑦, 𝐼(𝑥, 𝑧))) , 

(𝐹𝐼. 8) (∀(𝑥, 𝑦) ∈ [0,1])(𝐼(𝑥, 𝑦) = 1 → 𝑥 ≤ 𝑦), 

(𝐹𝐼. 9) (∀𝑥 ∈ [0,1])(𝑁(𝑥) = 𝐼(𝑥, 0)),  is a strong fuzzy negation(𝑆𝑁). 

(𝐹𝐼. 10) .  (∀(𝑥, 𝑦) ∈ [0,1]2)(𝐼(𝑥, 𝑦) ≥ 𝑦), 

(𝐹𝐼. 11) . (∀𝑥 ∈ [0,1])(𝐼(𝑥, 𝑥) = 1), 

(𝐹𝐼. 12)  (∀𝑥, 𝑦 ∈ [0,1])(𝐼(𝑥, 𝑦) = 𝐼(𝑁(𝑦), 𝑁(𝑥))), where𝑁 is a strong fuzzy negation. 

Definition 3.1.
 
[9] A function      : 0,1 0,1 0,1I    is called an  ,S N implication if 

there exists a t conorm S and a fuzzy negation N  such that : 

      , , , , 0,1I x y S N x y x y   

 

Definition 3.2. [9] Let a left-continuous t-norm. Then, the residual implication or R-

implication derived from is given by: 

𝐼𝑇(𝑥, 𝑦) = 𝑠𝑢𝑝{𝑧 ∈ [0,1]\𝑇(𝑧, 𝑥) ≤ 𝑦} for every 𝑥, 𝑦 ∈ [0,1]. 

 

4. QL-Implication 
 

 A QL-implication is generated from a strong fuzzy negation, a t-conorm and a t-

norm, getting idea from the equivalency in classical binary logic: 

𝑟 ⇒ 𝑞 ≡ (¬𝑟 ∨ (𝑟 ∧ 𝑞)), ∀ 𝑟, 𝑞 ∈ [0,1]. 

Let S be a t-conorm, N be a strong fuzzy negation and T be a t-norm.  A QL-

implication is defined by: 

𝐼(𝑝. 𝑞) = 𝑆(𝑁(𝑝), 𝑇(𝑝, 𝑞)), ∀𝑝, 𝑞 ∈ [0,1]. 

Table 4.1. 

Name Formula of 𝐼(𝑥. 𝑦) S-
implication 

R-
implication 

QL-
implication 

Kleen-Dienes 𝐼𝑏 𝐼𝑏 = max (1 − 𝑥, 𝑦) 1 0 1 

Lukasiewicz 𝐼𝐿 𝐼𝐿(𝑥, 𝑦) = min(1 − 𝑥 + 𝑦, 1) 1 1 1 

 

Least strickt 𝐼𝐿𝑅 
I𝐿𝑅(𝑥.𝑦) = {

𝑦          if  𝑥 = 1.
1        otherwise.

 
 

1 

 

1 

 

1 

Reichenbrach 𝐼𝑟 𝐼𝑟(𝑥, 𝑦) = 1 − 𝑥 + 𝑥𝑦 1 0 1 

Early Zadeh 𝐼𝑚 𝐼𝑚(𝑥. 𝑦) = 𝑀𝑎𝑥(1 − 𝑥, 𝑚𝑖𝑛(𝑥. 𝑦)) 0 0 1 

Klir and Yuan 𝐼𝑝 𝐼𝑝(𝑥, 𝑦) = 1 − 𝑥 + 𝑥2𝑦 0 0 1 
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Table 4.1 lists the popular fuzzy implications in the literature, which belong to the 

classes S- implications, R- implications or QL-implications. For the intersections of S-

implications, R- implications and QL-implications, we refer to [13], [14], and [20]. 

QL-implications satisfy less axioms than S-implications and R-implications 

generated from t-norms. First we see which axioms a QL-implication satisfies [15].  

        A QL-implication I generated from a t-conorm S, a strong fuzzy negation N and a t-

norm T satisfies: 

(𝐹𝐼. 2) (∀𝑥, 𝑦1, 𝑦₂ ∈ [0,1])(𝑦₁ < 𝑦₂) → 𝐼(𝑥1, 𝑦) ≤ 𝐼(𝑥2, 𝑦)); 

(𝐹𝐼. 3)  (∀𝑥 ∈ [0,1])(𝐼(0, 𝑥) = 1); 

(𝐹𝐼. 5)  𝐼(1,0) = 0; 

(𝐹𝐼. 6) (∀𝑥 ∈ [0,1])(𝐼(1, 𝑥) = 𝑥); 

(𝐹𝐼. 9) (∀𝑥 ∈ [0,1])(𝑁(𝑥) = 𝐼(𝑥, 0)), is a strong fuzzy negation(𝑆𝑁); 

 The most strict implication 𝐼𝑀  given in Table 4.1 also satisfies (𝐹𝐼. 2), (𝐹𝐼. 3),

(𝐹𝐼. 5), (𝐹𝐼. 6) and (𝐹𝐼. 9) (because it is an S-implication). We prove that 𝐼𝑀 is not a QL-

implication, Assume 𝐼𝑀 to be a QL-implication. Then there exist a t-conorm S, a strong 

fuzzy negation N and a t-norm T such that: 

𝐼𝑀(𝑝, 𝑞) = 𝑆(𝑁(𝑝), 𝑇(𝑝, 𝑞)) = 𝑆𝑀(𝑁1𝑏(𝑝), 𝑞), ∀𝑝, 𝑞 ∈ [0,1]. 

Take 𝑞 = 0, we have 𝑁(𝑝) = 𝑁1𝑏(𝑝).  So 

𝐼𝑀(𝑝, 𝑞) = 𝑆(𝑁1𝑏(𝑝), 𝑇(𝑝, 𝑞)) = {
1,               if    𝑝 = 0.

 𝑇(𝑝, 𝑞),     otherwise.
 

So we obtain 𝑇(𝑝, 𝑞) = 𝑞,  for all 𝑝 > 0 . If we take 𝑥₀ = 0.1 and 𝑦₀ = 0.2 , 

then 𝑇(𝑥₀, 𝑦₀) = 0.2 while  𝑇(𝑥₀, 𝑦₀) = 0.1, which means that 𝑇 does not satisfy (𝑇. 3). 

So  𝑇 is not a t-norm, which is a contradiction with the assumption. Thus 𝐼𝑀 is not a QL-

implication. 

Hence 𝑎: [0.1]×[0.1] → [0.1] mapping satisfying (𝐹𝐼. 2), (𝐹𝐼. 3), (𝐹𝐼. 5),  (𝐹𝐼. 6) 

 and(𝐹𝐼. 9) is not always a QL-implication. 

Proposition 4.1. [17] Let S be a t-conorm, 𝑇 be a t-norm and 𝑁 be a strong negation, then 

S(p. N(p)) = 1 is satisfied ∀p ∈ [0.1] for the QL-implication 𝐼(𝑝, 𝑞) = S(N(p), T(p, q)) 

and also satisfy (FI. 1), (FI. 7), (FI. 8) or (FI. 12). 
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5 QL-Coimplication 

 This section will be devoted to introduce the concept of QL-Coimplication. The 

relation between classical logic and fuzzy logic as well as some examples are also 

discussed. 

Definition 5.1.[17] A mapping   𝐽: [0,1]×[0,1] → [0,1] is a fuzzy co-implication if, for 

all  𝑝, 𝑞, 𝑟 ∈ [0,1], the following conditions are satisfied: 

(𝐽. 1): 𝐽(1,1) = 𝐽(1,0) = 𝐽(0,0) = 0 and 𝐽(0,1) = 1. 

(𝐽. 2): 𝐽(𝑝, 𝑞) ≥ 𝐽(𝑟, 𝑞) 𝑖𝑓 𝑝 ≤ 𝑟. 

(𝐽. 3): 𝐽(𝑝, 𝑞) ≤ 𝐽(𝑝, 𝑟) 𝑖𝑓 𝑞 ≤ 𝑟. 

The set of all fuzzy co-implications is denoted by 𝐶𝑜 − Ϝ𝐼. 

 From the previous definition we can deduce that for each fuzzy co-implication 

𝐽(1, 𝑞) = 𝐽(𝑝, 0) = 0  for each 𝑝. 𝑞 ∈ [0,1]. Moreover, 𝐽   satisfies also the normality 

condition   𝐽(𝑝, 𝑝) = 0. 

Lemma 5.1. [6] If a function 𝐽: [0,1]2 → [0,1] satisfies (𝐼. 1)and (𝐼. 2), then the map 

𝑁𝐽: [0,1] → [0,1] defined by: 

𝑁𝐽(𝑝) = 𝐽(𝑝, 1). ∀𝑝 ∈ [0,1]  

is a fuzzy negation. 

If 𝐽 is a fuzzy co-implication, then the function  𝑁𝐽 is called the natural negation of 

𝐽. In the following we list a few of the most important properties of fuzzy co-implication. 

They are generalizations of the corresponding properties of the classical implication. 

Definition 5.2.[11]A fuzzy implication J is said to satisfy 

(i) The left neutrality property if 

𝐽(0, 𝑏) = 𝑏.  ∀ 𝑏 ∈ [0,1];                                            (Co-NP) 

(ii) The exchange principle, if 

𝐽(𝑎, 𝐽(𝑏, 𝑐)) = 𝐽(𝑏, 𝐽(𝑎, 𝑐)), ∀𝑎, 𝑏, 𝑐 ∈ [0,1] ;               (Co-EP) 

(iii) The identity principle, if 
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𝐽(𝑎, 𝑎) = 0, ∀𝑎 ∈ [0,1] ;                                               (Co-IP) 

(iv) The ordering property, if 

𝐽(𝑎, 𝑏) = 0 ⇔ 𝑎 ≥ 𝑏, ∀𝑎, 𝑏 ∈ [0,1].                              (Co-OP) 

In 2016 Jebril introduce the definition of (𝑇, 𝑁) co-implication and residual co-

implication ( *R -implication) in dual Heting  algebra. [9]  

 

Definition 5.3. [9] A mapping J from  
2

0,1 into  0,1 is called an ( , )T N  co-implication 

if there exists a t-norm T  and a fuzzy negation N  such that  

, ( , ) ( , ( )),T NJ p q T q N p , [0,1].p q   

 

Definition 5.4. [9] Let S is the t-conorm of right continuous T. Then, the residual co-

implication ( *R -implication) derived from ,S is 

        , = inf 0,1 \ , , , 0,1 .SJ p q r S r p q p q     *R  

 

       Fuzzy co-implications are extensions of the Boolean co-implication ( p⇍q) meaning 

that p is not  necessary for q. In classical logic, the operator `⇏' (material co-implication) 

is generated by Boolean  negation `¬′ and conjunction ` ∧ ′ 

𝑞 ⇏ 𝑝 ≡ ((𝑝 ∨ 𝑞) ∧ ¬𝑝). 

       In the following table 5.5, we can see the truth table for the classical co-implication. 

Table 5.5 

𝑝 𝑞 𝑝 ⇒ 𝑞 (𝑝 ∨ 𝑞) ¬𝑝 (𝑝 ∨ 𝑞) ∧ ¬𝑝 𝑞 ⇏ 𝑝 

0 0 1 0 1 0 0 

0 1 1 1 1 1 1 

1 0 0 1 0 0 0 

1 1 1 1 0 0 0 

 

Definition5.5. A function 𝐽: [0.1]×[0.1] → [0.1] is called an QL-Coimplication if there 

exists a t-norm T and a fuzzy  negation N such that : 

𝐽(𝑝, 𝑞) = 𝑇(𝑆(𝑝, 𝑞), 𝑁(𝑝)),   ∀𝑝, 𝑞 ∈ [0.1]. 

    If 𝑁 is a strong negation, then 𝐽 is called a strong QL-Coimplication, If 𝑁 is not strong 

negation then J is called non-strong QL-Coimplication. Moreover, if an QL-

Coimplication is generated from T,S and N, then we will denote this by𝐽𝑇.𝑆.𝑁  . A relation 

between fuzzy negations and (𝑆, 𝑁) implication is given in the next proposition. 
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Proposition 5.1.Let  𝐽𝑇.𝑆.𝑁 be an QL implication, then 𝑁𝐽𝑇.𝑆.𝑁
= 𝑁. 

Proof: For any 𝑥 ∈ [0.1] we have 

𝐽𝑇,𝑆,𝑁(𝑥) = 𝐽𝑇,𝑆,𝑁(𝑥, 1) = 𝑇(1, 𝑁(𝑥)) = 𝑁(𝑥). 

Remark 5.1. In the above, 𝑁 is assumed to be a strong negation. However, N is not 

necessary supposed strong, even not necessary to be continuous. 

Example 5.1. For any t-norm T and t-conorm S and a fuzzy negation N by graphing    

Kleene –Dienes Ql Implication 

𝐼𝑏 = max(1 − 𝑥, 𝑦). 

 

 

 

 

 

 

Kleene -Dienes 

QL-implication 

𝐼𝑏 = 𝑚𝑎𝑥(1 − 𝑥, 𝑦) 

Kleene -Dienes 

QL-Coimplication 

𝐽𝑏 = 𝑚𝑖𝑛(1 − 𝑦, 1 − 𝑥) 

Kleene -Dienes 

QL-implication and 

QL-Coimplication 

 𝐼𝑏 and 𝐽𝑏 

 

Example 5.2. For any t-norm T and t-conorm S and a fuzzy negation N by graphing 

Łukasiewicz  QL Implication 

𝐼𝐿 = 𝑚𝑖𝑛(1 − 𝑥 + 𝑦, 1). 

  

 

Łukasiewicz 

QL-implication 

𝐼𝐿 = 𝑚𝑖𝑛(1 − 𝑥 + 𝑦, 1) 

 

Łukasiewicz  

QL-Coimplication 

𝐽𝐿 = 𝑚𝑎𝑥(0,1 − 𝑦 + 𝑥) 

 

Łukasiewicz QL-

implication 

and QL-Coimplication 

𝐼𝐿and 𝐽𝐿 
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Example 5.3. For any t-norm and t-conorm S and a fuzzy negation N by graphing least 

strict 𝐼𝐿𝑅. 

 
  

 

Least strict𝐼𝐿𝑅 

QL-implication 

𝐼𝐿𝑅 = {
𝑦    for 𝑥 = 1.
1    otherwise.

 

Least strickt 𝐼𝐿𝑅 

 QL-Coimplication 

𝐽𝐿𝑅 = {
0    otherwise.

𝑥    if 𝑦 = 1.
 

Least strict 

QL-implication  

and QL-Coimplication 

𝐼𝐿𝑅 and  𝐽𝐿𝑅 

 

Example 5.4. For any t-norm T and t-conorm S and a fuzzy negation N by graphing 

Reichenbach  𝐼𝑟(𝑥, 𝑦) = 1 − 𝑥 + 𝑥𝑦. 

 
 

 

Reichenbach 
QL-implication 

𝐼𝑟(𝑥, 𝑦) = 1 − 𝑥 + 𝑥𝑦 

Reichenbach 

QL-coimplication 

𝐽𝑟(𝑥, 𝑦) = 𝑥𝑦 − 𝑦 = 1 

Reichenbach 

 QL-implication  

and QL-coimplication 

𝐼𝑟 and 𝐽𝑟 

 

Example 5.5. For any t-norm T and t-conorm S and a fuzzy negation N by graphing Early 

Zadeh 

𝐼𝑚(𝑥, 𝑦) = 𝑚𝑎𝑥(1 − 𝑥, 𝑚𝑖𝑛(𝑥, 𝑦)). 
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Early Zadeh 
QL-implication 

𝐼𝑚 = 𝑚𝑎𝑥(1 − 𝑥, 𝑚𝑖𝑛(𝑥, 𝑦)) 

Early Zadeh 

QL-Coimplication 
𝐽𝑚 = 𝑚𝑖𝑛(max (𝑥, 𝑦),1 − 𝑥) 

Early Zadeh 

QL-implication  

and QL-Coimplication 

𝐼𝑚 and 𝐽𝑚 

 

Example 5.6. For any t-norm T and t-conorm S and a fuzzy negation  N  by graphing Klir 

and Yuan QL implication 

𝐼𝑝(𝑥, 𝑦) = 1 − 𝑥 + 𝑥2𝑦. 

 

 

 

 

 

 

Klir and Yuan 

QL-implication 

𝐼𝑝 = 1 − 𝑥 + 𝑥²𝑦 

 

Klir and Yuan  

QL-Coimplication 

𝐼𝑝 = 𝑦𝑥2 + 1 − 𝑥 

 

Klir and Yuan  

QL-implication  

and QL-Coimplication 

𝐼𝑝 and 𝑗𝑝 

 

Conclusion 

In this paper we have studied the class of QL-co-implications under certain conditions In 

crisp logic and Fuzzy logic as a generalization of the implication defined in Quantum 

logic ⇒ 𝑞 ≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞) .  However, QL-co-implications have not received as more 

attention as (S,N) and R-co-implications within Fuzzy logic. We wish that our new topic 

can be used in Fuzzy decision making or in multivariate Statistical Analysis. 
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