A generalization of the Nielsen’s β-function

Kwara Nantomah

Department of Mathematics, Faculty of Mathematical Sciences, University for Development Studies, Navrongo Campus, P. O. Box 24, Navrongo, UE/R, Ghana.
e-mail: knantomah@uds.edu.gh

Received 1 February 2018; Accepted 28 February 2018

Abstract

In this paper, we introduce a p-generalization of the Nielsen’s β-function. We further study among other things, some properties such as convexity, monotonicity and inequalities of the new function. In the end, we pose an open problem.

Keywords: Nielsen’s β-function, p-generalization, p-Gamma function, convolution theorem for Laplace transforms, completely monotonic.

2010 Mathematics Subject Classification: 33E50, 26A48, 26A51.

1 Introduction

The Nielsen’s β-function may be defined by any of the following equivalent forms (see [2], [3], [8], [11]).

\[\beta(x) = \int_0^1 \frac{t^{x-1}}{1+t} \, dt, \quad x > 0, \]
\[= \int_0^\infty \frac{e^{-xt}}{1+e^{-t}} \, dt, \quad x > 0, \]
\[= \sum_{k=0}^{\infty} \frac{(-1)^k}{k+x}, \quad x > 0, \]
\[= \frac{1}{2} \left\{ \psi \left(\frac{x+1}{2} \right) - \psi \left(\frac{x}{2} \right) \right\}, \quad x > 0, \]
where $\psi(x) = \frac{d}{dx} \ln \Gamma(x)$ is the digamma or psi function and $\Gamma(x)$ is the Euler’s Gamma function. It is known to satisfy the properties:

$$\beta(x + 1) = \frac{1}{x} - \beta(x),$$ \quad \text{(5)}

$$\beta(x) + \beta(1 - x) = \frac{\pi}{\sin \pi x}. \quad \text{(6)}$$

Lately, this special function has been studied in diverse ways. For instance, in [8], the author investigated some properties and inequalities of the function. Also, in [9], the function was applied to study some monotonicity and convexity properties and some inequalities involving a generalized form of the Wallis’ cosine formula. Then in [10], the author proved some monotonicity and convexity properties of the function. In this paper, we continue the investigation by establishing a p-generalization of this special function. In the meantime, we recall the following definitions concerning the p-analogue of the Gamma function. We shall use the notations $\mathbb{N} = \{1, 2, 3, 4, \ldots\}$ and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

The p-analogue (also known as p-extension or p-deformation) of the Gamma function is defined for $p \in \mathbb{N}$ and $x > 0$ as [1], [12]

$$\Gamma_p(x) = \frac{p! p^x}{x(x + 1) \ldots (x + p)} = \frac{p^x}{x(1 + \frac{x}{1}) \ldots (1 + \frac{x}{p})} \quad \text{(7)}$$

$$= \int_0^p \left(1 - \frac{t}{p}\right)^p t^{x-1} dt \quad \text{(8)}$$

where $\lim_{p \to \infty} \Gamma_p(x) = \Gamma(x)$. It satisfies the identities [5]

$$\Gamma_p(x + 1) = \frac{px}{x + p + 1} \Gamma_p(x),$$

$$\Gamma_p(1) = \frac{p}{p + 1}. \quad \text{(10)}$$

The p-analogue of the digamma functions is defined for $x > 0$ as [6]

$$\psi_p(x) = \frac{d}{dx} \ln \Gamma_p(x) = \ln p - \sum_{n=0}^{p} \frac{1}{n + x}, \quad \text{(9)}$$

$$= \ln p - \int_0^\infty \frac{1 - e^{-(p+1)t}}{1 - e^{-t}} e^{-xt} dt, \quad \text{(10)}$$

and satisfies the relation [5]

$$\psi_p(x + 1) = \frac{1}{x} - \frac{1}{x + p + 1} + \psi_p(x). \quad \text{(11)}$$

Also, it is well known in the literature that the integral

$$\frac{m!}{x^{m+1}} = \int_0^\infty t^m e^{-xt} dt$$

holds for $x > 0$ and $m \in \mathbb{N}_0$.

A generalization of the Nielsen’s β-function
2 A p-Generalization of Nielsen’s β-function

In this section, we introduce a p-generalization of the Nielsen’s β-function and further study some of its properties.

Definition 2.1. The p-generalization of the Nielsen’s β-function is defined for $p \in \mathbb{N}$ as

\[
\beta_p(x) = \frac{1}{2} \left\{ \psi_p \left(\frac{x + 1}{2} \right) - \psi_p \left(\frac{x}{2} \right) \right\}, \quad x > 0,
\]

\[
= \sum_{n=0}^{p} \left(\frac{1}{2n + x} - \frac{1}{2n + x + 1} \right) x > 0,
\]

\[
= \int_0^{\infty} \frac{1 - e^{-2(p+1)t}}{1 + e^{-t}} e^{-xt} \, dt, \quad x > 0,
\]

\[
= \int_0^1 \frac{1 - t^{2(p+1)}}{1 + t} t^{x-1} \, dt, \quad x > 0,
\]

where $\beta_p(x) \to \beta(x)$ as $p \to \infty$.

Remark 2.2. The relations (14) and (15) are respectively derived from (9) and (10), and by a change of variable, (16) is obtained from (15).

Proposition 2.3. The function $\beta_p(x)$ satisfies the functional equation

\[
\beta_p(x+1) = \frac{1}{x} - \frac{1}{x + 2(p+1)} - \beta_p(x).
\]

Proof. By using representation (16), we obtain

\[
\beta_p(x+1) + \beta_p(x) = \int_0^1 \frac{1 - t^{2(p+1)}}{1 + t} t^x \, dt + \int_0^1 \frac{1 - t^{2(p+1)}}{1 + t} t^{x-1} \, dt
\]

\[
= \int_0^1 \frac{1 - t^{2(p+1)}}{1 + t} t^x \left(\frac{t + 1}{t} \right) \, dt
\]

\[
= \int_0^1 (1 - t^{2(p+1)}) t^{x-1} \, dt
\]

\[
= \frac{1}{x} - \frac{1}{x + 2(p+1)},
\]

which completes the proof. \(\square\)

As an immediate consequence of (17), we obtain the upper bound

\[
\beta_p(x) \leq \frac{1}{x} - \frac{1}{x + 2(p+1)}.
\]
A generalization of the Nielsen’s β-function

Also, successive applications of (17) yields the generalized form

$$\beta_p(x+n) = \sum_{s=0}^{n-1} \frac{(-1)^{s+n+1}}{x+s} + \sum_{s=0}^{n-1} \frac{(-1)^{s+n}}{x+s+2(p+1)} + (-1)^n \beta_p(x), \ n \in \mathbb{N}. \quad (19)$$

Also, successive differentiations of (13), (15), (16) and (17) yields respectively

$$\beta_p^{(n)}(x) = \frac{1}{2n+1} \left\{ \psi_p^{(n)} \left(\frac{x+1}{2} \right) - \psi_p^{(n)} \left(\frac{x}{2} \right) \right\}, \quad (20)$$

$$= (-1)^n \int_0^\infty \frac{t^n - t^n e^{-2(p+1)t}}{1 + e^{-t}} dt, \quad (21)$$

$$= \int_0^1 \frac{(\ln t)^n - (\ln t)^n t^{2(p+1)}}{1 + t} t^{x-1} dt, \quad (22)$$

$$\beta_p^{(n)}(x+1) = \frac{(-1)^n n!}{x^{n+1}} - \frac{(-1)^n n!}{(x+2(p+1))^{n+1}} - \beta_p^{(n)}(x), \quad (23)$$

where $n \in \mathbb{N}_0$ and $\beta_p^{(n)}(x) \to \beta^{(n)}(x)$ as $p \to \infty$.

Remark 2.4. It follows easily from (20)-(22) that:

(a) $\beta_p(x)$ is positive and decreasing,

(b) $\beta_p^{(n)}(x)$ is positive and decreasing if $n \in \mathbb{N}_0$ is even,

(c) $\beta_p^{(n)}(x)$ is negative and increasing if $n \in \mathbb{N}_0$ is odd.

Theorem 2.5. The function $\beta_p(x)$ satisfies the inequality

$$\beta_p \left(\frac{x+y}{u+v} \right) \leq [\beta_p(x)]^{\frac{1}{u}} [\beta_p(y)]^{\frac{1}{v}}, \ x, y \in (0, \infty), \quad (24)$$

where $u > 1, v > 1$ and $\frac{1}{u} + \frac{1}{v} = 1$. Put in another way, the function $\beta_p(x)$ is logarithmically convex on $(0, \infty)$.

Proof. Let $u > 1, v > 1$ and $\frac{1}{u} + \frac{1}{v} = 1$ and $x, y \in (0, \infty)$. Then Hölder’s inequality implies

$$\beta_p \left(\frac{x+y}{u+v} \right) = \int_0^1 \frac{1-t^{2(p+1)}}{1+t} t^{x+y-1} dt$$

$$= \int_0^1 \left(\frac{1-t^{2(p+1)}}{1+t} t^{x-1} \right)^{\frac{1}{u}} \left(\frac{1-t^{2(p+1)}}{1+t} t^{y-1} \right)^{\frac{1}{v}} dt$$

$$\leq \left(\int_0^1 \frac{1-t^{2(p+1)}}{1+t} t^{x-1} dt \right)^{\frac{1}{u}} \left(\int_0^1 \frac{1-t^{2(p+1)}}{1+t} t^{y-1} dt \right)^{\frac{1}{v}}$$

$$= [\beta_p(x)]^{\frac{1}{u}} [\beta_p(y)]^{\frac{1}{v}},$$

which gives the desired result. \qed
Remark 2.6. As a by-product of Theorem 2.5, we obtain immediately the following results.

(a) The inequality \(\beta_p(x)\beta_p''(x) \geq (\beta_p'(x))^2 \) holds for \(x \in (0, \infty) \).

(b) The function \(\frac{\beta_p(x)}{\beta_p'(x)} \) is increasing on \((0, \infty) \).

Corollary 2.7. The inequalities

\[
\begin{align*}
[\beta_p(x + y)]^2 &< \beta_p(x)\beta_p(y), \\
\beta_p(x + y) &< \beta_p(x) + \beta_p(y),
\end{align*}
\]

hold for \(x, y \in (0, \infty) \).

Proof. Let \(u = v = 2 \) in Theorem 2.5. Then by the decreasing property of \(\beta_p(x) \), it follows easily that

\[
\beta_p(x + y) < \beta_p\left(\frac{x + y}{2}\right) \leq \sqrt{\beta_p(x)\beta_p(y)},
\]

which gives (25). Next, by (27) and the basic AM-GM inequality, we obtain

\[
\beta_p(x + y) < \sqrt{\beta_p(x)\beta_p(y)} \leq \frac{\beta_p(x)}{2} + \frac{\beta_p(y)}{2} \leq \beta_p(x) + \beta_p(y),
\]

which gives (26). \(\square \)

Corollary 2.8. The inequality

\[
1 < \frac{\beta_p(z)}{\beta_p(z + 1)} < \frac{\beta_p(z - 1)}{\beta_p(z)}
\]

holds for \(z > 1 \).

Proof. Let \(z > 1 \). Then the left-hand side of (28) follows directly from the decreasing property of \(\beta_p(x) \). Next, by letting \(x = z - 1 \) and \(y = z + 1 \) in right-hand side of (27), we obtain

\[
\beta_p^2(z) < \beta_p(z - 1)\beta_p(z + 1),
\]

which when rearranged, gives the right-hand side of (28). Alternatively, we could proceed as follows. Let \(f(x) = \frac{\beta_p(x)}{\beta_p(x + 1)} \) for \(x > 0 \). Then

\[
f'(x) = f(x) \left[\frac{\beta_p'(x)}{\beta_p(x)} - \frac{\beta_p'(x + 1)}{\beta_p(x + 1)} \right] < 0,
\]

which implies that \(f(x) \) is decreasing. Hence \(f(z) < f(z - 1) \) which also gives the right-hand side of (28). \(\square \)
Theorem 2.9. The function

\[\phi(x) = u^x \beta_p(x), \quad u > 0, \]

is convex on \((0, \infty)\).

Proof. Let \(a > 1, b > 1, \frac{1}{a} + \frac{1}{b} = 1\) and \(x, y \in (0, \infty)\). Then the log-convexity of \(\beta_p(x)\) implies

\[\phi \left(\frac{x}{a} + \frac{y}{b} \right) = u^{x+b} \beta_p \left(\frac{x}{a} + \frac{y}{b} \right) \leq [u^x \beta_p(x)]^\frac{1}{a} [u^y \beta_p(y)]^\frac{1}{b}, \]

and by the classical Young's inequality, we obtain

\[[u^x \beta_p(x)]^\frac{1}{a} [u^y \beta_p(y)]^\frac{1}{b} \leq \frac{u^x \beta_p(x)}{a} + \frac{u^y \beta_p(y)}{b} = \frac{\phi(x)}{a} + \frac{\phi(y)}{b}. \]

Hence, \(\phi(x)\) is convex on \((0, \infty)\). \(\square\)

Theorem 2.10. The inequality

\[\exp \left\{ \beta_p \left(x + \frac{1}{2} \right) \right\} \leq \frac{\Gamma_p \left(\frac{x}{2} + 1 \right) \Gamma_p \left(\frac{x}{2} + \frac{1}{2} \right)}{\Gamma_p ^2 \left(\frac{x}{2} + \frac{1}{2} \right)} \leq \exp \left\{ \frac{1}{2x - \frac{1}{2x + 4(p+1)}} \right\} \]

holds for \(x > 0\).

Proof. We make use of the Hermite-Hadamard's inequality

\[f \left(\frac{a+b}{2} \right) \leq \frac{1}{b-a} \int_a^b f(s) \, ds \leq \frac{f(a) + f(b)}{2}, \]

for a convex function \(f : (a,b) \subset \mathbb{R} \to \mathbb{R}\). Since every logarithmically convex function is also convex, it follows that \(\beta_p(x)\) is convex. Now, letting \(f(s) = \beta_p(s) = \frac{1}{2} \left\{ \psi_p \left(\frac{s+1}{2} \right) - \psi_p \left(\frac{s}{2} \right) \right\}, a = x > 0\) and \(b = x + 1\) in (32) gives

\[\beta_p \left(x + \frac{1}{2} \right) \leq \left| \ln \Gamma_p \left(\frac{x}{2} + \frac{1}{2} \right) - \ln \Gamma_p \left(\frac{x}{2} \right) \right| \leq \beta_p \left(x + \frac{1}{2} \right) + \beta_p(x), \]

which by (17) implies

\[\beta_p \left(x + \frac{1}{2} \right) \leq \ln \frac{\Gamma_p \left(\frac{x}{2} + 1 \right) \Gamma_p \left(\frac{x}{2} + \frac{1}{2} \right)}{\Gamma_p ^2 \left(\frac{x}{2} + \frac{1}{2} \right)} \leq \frac{1}{2} \left(\frac{1}{x} - \frac{1}{x + 2(p+1)} \right). \]

Then by exponentiation, we obtain the required result (31). \(\square\)
Remark 2.11. The function \(\frac{\Gamma_p(x + \frac{1}{2})\Gamma_p(x)}{\Gamma_p(x + \frac{1}{2})} \) is a special case of
\[
T_p(x, y) = \frac{\Gamma_p(x)\Gamma_p(y)}{\Gamma_p(x + y/2)}, \quad x, y > 0,
\]
which is a \(p \)-analogue of Gurland’s ratio \([4]\) for the Gamma function. For more information concerning the Gurland’s ratio, one may refer to \([7]\) and the related references therein.

Lemma 2.12. Let \(f(t) \) and \(g(t) \) be any two functions with convolution \(f \ast g = \int_0^t f(s)g(t - s)\,ds \). Then the Laplace transform of the convolution is given as
\[
\mathcal{L}\{f \ast g\} = \mathcal{L}\{f\}\mathcal{L}\{g\}.
\]
That is
\[
\int_0^\infty \left[\int_0^t f(s)g(t - s)\,ds \right] e^{-xt}\,dt = \int_0^\infty f(t)e^{-xt}\,dt \int_0^\infty g(t)e^{-xt}\,dt. \tag{33}
\]

The above lemma is well-known in the literature as the convolution theorem for Laplace transforms. We shall rely on it in proving some of the results that follow.

Theorem 2.13. The function \(Q(x) = x\beta_p(x) \) is completely monotonic on \((0, \infty)\).

Proof. Recall that a function \(f : (0, \infty) \to \mathbb{R} \) is said to be completely monotonic on \((0, \infty)\) if \(f \) has derivatives of all order and \((-1)^n f^{(n)}(x) \geq 0 \) for all \(x \in (0, \infty) \) and \(n \in \mathbb{N} \). By repeated differentiation, we obtain
\[
Q^{(n)}(x) = n\beta_p^{(n-1)}(x) + x\beta_p^{(n)}(x). \tag{34}
\]
Then by (12), (15) and (33), we obtain
\[
\frac{(-1)^nQ^{(n)}(x)}{x} = (-1)^n \left[\frac{n}{x}\beta_p^{(n-1)}(x) + \beta_p^{(n)}(x) \right]
\]
\[
= -n \int_0^\infty e^{-xt}\,dt \int_0^\infty \frac{t^{n-1}(1 - e^{-2(p+1)t})}{1 + e^{-t}} e^{-xt}\,dt
\]
\[
+ \int_0^\infty \frac{t^n(1 - e^{-2(p+1)t})}{1 + e^{-t}} e^{-xt}\,dt.
\]
\[
= -n \int_0^\infty \left[\int_0^t \frac{s^{n-1}(1 - e^{-2(p+1)s})}{1 + e^{-s}} ds \right] e^{-xt}\,dt
\]
\[
+ \int_0^\infty \frac{t^n(1 - e^{-2(p+1)t})}{1 + e^{-t}} e^{-xt}\,dt.
\]
\[
= \int_0^\infty W(t)e^{-xt}\,dt,
\]
where
\[
W(t) = \frac{1}{1 + e^{-t}}.
\]
A generalization of the Nielsen’s β-function

where

$$W(t) = -n \int_0^t s^{n-1} \frac{(1 - e^{-2(p+1)s})}{1 + e^{-s}} ds + \frac{t^n(1 - e^{-2(p+1)t})}{1 + e^{-t}}.$$

Then $W(0) = \lim_{t \to 0} W(t) = 0$. In addition,

$$W'(t) = 2(p + 1) t^n e^{-2(p+1)t} + t^n e^{-t} \frac{1 - e^{-2(p+1)t}}{(1 + e^{-t})^2} > 0,$$

which implies that $W(t)$ increasing. Hence for $t > 0$, we have $W(t) > W(0) = 0$. Therefore,

$$(-1)^n Q^{(n)}(x) \geq 0 \quad (35)$$

which concludes the proof.

\[\Box\]

Remark 2.14. Theorem 2.13 implies that $Q(x) = x\beta_p(x)$ is decreasing and convex. These further imply that

$$\beta_p(x) + x\beta'_p(x) < 0 \quad (36)$$

and

$$2\beta'_p(x) + x\beta''_p(x) > 0 \quad (37)$$

respectively.

Corollary 2.15. The function $H(x) = x\beta_p(x)$ is increasing and concave on $(0, \infty)$.

Proof. By (34), (35) and (37), we obtain

$$H'(x) = \beta'_p(x) + x\beta''_p(x) > 2\beta'_p(x) + x\beta''_p(x) > 0,$$

$$H''(x) = 2\beta''_p(x) + x\beta'''_p(x) < 3\beta''_p(x) + x\beta'''_p(x) < 0,$$

which conclude the proof. \[\Box\]

Theorem 2.16. The inequality

$$\beta_p(xy) \leq \beta_p(x) + \beta_p(y), \quad (38)$$

holds for $x > 0$ and $y \geq 1$.

Proof. Let $\phi(x, y) = \beta_p(xy) - \beta_p(x) - \beta_p(y)$ for $x > 0$ and $y \geq 1$. By fixing y, we obtain

$$\frac{\partial}{\partial x} \phi(x, y) = y\beta'_p(xy) - \beta'_p(x)$$

$$= \frac{1}{x} [xy\beta'_p(xy) - x\beta'(x)]$$

$$\geq 0.$$
since \(x\beta'_p(x) \) is increasing. Hence, \(\phi(x, y) \) is increasing. Then for \(0 < x < \infty \), we obtain
\[
\phi(x, y) \leq \lim_{x \to \infty} \phi(x, y) = -\beta_p(y) < 0,
\]
which gives the result (38).

\[\square\]

Remark 2.17. Note that \(\left| \beta^{(n)}_p(x) \right| = (-1)^n \beta^{(n)}_p(x) \) for all \(n \in \mathbb{N}_0 \). In respect of this, the recurrence relation (23) yields
\[
\left| \beta^{(n)}_p(x + 1) \right| = \frac{n!}{x^{n+1}} - \frac{n!}{(x + 2(p + 1))^{n+1}} - \left| \beta^{(n)}_p(x) \right|.
\]

It is also worth noting that, if \(F(x) = \left| \beta^{(n)}_p(x) \right| \), then \(F'(x) = -\left| \beta^{(n+1)}_p(x) \right| \).

This implies that the \(\left| \beta^{(n)}_p(x) \right| \) is decreasing for all \(n \in \mathbb{N}_0 \). Furthermore, it follows readily from (39) that
\[
\left| \beta^{(n)}_p(x) \right| \leq \frac{n!}{x^{n+1}} - \frac{n!}{(x + 2(p + 1))^{n+1}}.
\]

This is a generalization of (18).

Theorem 2.18. Let \(\Delta_n \) be defined for \(x > 0 \) and \(n \in \mathbb{N}_0 \) as
\[
\Delta_n(x) = \frac{x^{n+1}}{n!} \left| \beta^{(n)}_p(x) \right|.
\]

Then,

(a) \(\lim_{x \to 0} \Delta_n(x) = 1 \) and \(\lim_{x \to 0} \Delta_n'(x) = 0 \).

(b) \(\Delta_n(x) \) is decreasing.

Proof. (a) By virtue of (39), we obtain
\[
\lim_{x \to 0} \Delta_n(x) = \lim_{x \to 0} \left\{ 1 - \left(\frac{x}{x + 2(p + 1)} \right)^{n+1} - \frac{x^{n+1}}{n!} \left| \beta^{(n)}_p(x) \right| \right\} = 1.
\]

Also,
\[
\lim_{x \to 0} \Delta_n'(x) = \lim_{x \to 0} \left\{ \left(\frac{n + 1}{n!} \right) x^n \left| \beta^{(n)}_p(x) \right| - \frac{x^{n+1}}{n!} \left| \beta^{(n+1)}_p(x) \right| \right\}
\]
\[
= \lim_{x \to 0} \left\{ \frac{(n + 1)x^{n+1}}{(x + 2(p + 1))^{n+2}} - \frac{(n + 1)x^n}{(x + 2(p + 1))^{n+1}} \right. \\
\left. + \frac{x^{n+1}}{n!} \left| \beta^{(n+1)}_p(x + 1) \right| - (n + 1) \frac{x^{n+1}}{n!} \left| \beta^{(n)}_p(x + 1) \right| \right\}
\]
\[
= 0.
\]
(b) By using (21) and (33), we obtain
\[\frac{n!}{x^{n+1}} \Delta_n'(x) = \frac{n+1}{x} |\beta_p^{(n)}(x)| - |\beta_p^{(n+1)}(x)| \]
\[= (n + 1) \int_0^\infty e^{-xt} dt \int_0^\infty \frac{t^n(1 - e^{-2(p+1)t})}{1 + e^{-t}} e^{-xt} dt \]
\[- \int_0^\infty e^{-t} t^{n+1} \left(1 - e^{-2(p+1)t}\right) e^{-xt} dt \]
\[= (n + 1) \int_0^\infty \left[\int_0^t \frac{s^n(1 - e^{-2(p+1)s})}{1 + e^{-s}} ds \right] e^{-xt} dt \]
\[- \int_0^\infty e^{-t} t^{n+1} \left(1 - e^{-2(p+1)t}\right) e^{-xt} dt \]
\[= \int_0^\infty K(t) e^{-xt} dt, \]
where
\[K(t) = (n + 1) \int_0^t \frac{s^n(1 - e^{-2(p+1)s})}{1 + e^{-s}} ds - \frac{t^{n+1}(1 - e^{-2(p+1)t})}{1 + e^{-t}}. \]

Then \(K(0) = \lim_{t \to 0} K(t) = 0. \) Furthermore,
\[K'(t) = -2(p + 1) \frac{t^{n+1} e^{-2(p+1)t}}{1 + e^{-t}} - t^{n+1} e^{-t} \frac{1 - e^{-2(p+1)t}}{(1 + e^{-t})^2} < 0, \]
which implies that \(K(t) \) decreasing. Hence for \(t > 0 \), we have \(K(t) < K(0) = 0. \) Therefore \(\Delta_n'(x) < 0 \) which gives the desired result.

\[\begin{array}{c}
3 \quad \text{Open Problem}
\end{array} \]

The function \(x\beta_p(x) \) has been shown to be completely monotonic in Theorem 2.13. Show that the generalized form \(\frac{x^{n+1}}{n!} |\beta_p^{(n)}(x)|, \ x > 0, \ n \in \mathbb{N}_0 \) is completely monotonic.

\[\text{References} \]

