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Abstract 

     Grid distortion errors arising due to the use of non-orthogonal 
grid in the curvilinear streamfunction coordinate system are 
analyzed in this work. The objective is to offer a method of 
measuring and quantifying grid distortion errors. This is 
accomplished by solving numerically the problem of viscous fluid 
flow in a curvilinear, two-dimensional channel, governed the the 
Navier-Stokes equations. The curvilinear flow domain is 
transformed into a rectangular computational domain, and the 
governing equations and boundary conditions are transformed, 
using the von Mises transformation. Grid distortions errors are then 
quantified using the metrics of transformation, and are taken to be 
proportional to the angle of inclination to the horizontal of the 
tangents to the streamlines of the flow. At each grid cell the sine of 
the inclination angle, defined in terms of the metrics, is computed 
and the largest possible value is obtained. Effects of the various 
boundary vorticity approximations on grid distortion are studied in 
this work where in the process the streamline pattern in the flow 
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field and the equivorticity curves are obtained for small Re when 
uniform and non-uniform grids are used. 

     Keywords: Grid distortion errors; von Mises; curvilinear coordinates. 

1      Introduction 
When finite differences are used to solve partial differential equations with 
boundary conditions in general coordinate systems (such as fluid flow equations 
in curvilinear domains), the following are some of the errors and their sources that 
are introduced in the process and affect the local and global accuracies of the 
numerical solution obtained (cf. [1-5] and the references therein): 

a) Round-off errors due to numerical computations 
b) Solution errors due to the differencing schemes 
c) Errors in the approximation of boundary conditions 
d) Local grid distortion errors due to loss of orthogonality of grid when 

curvilinear coordinates are used 
e) Errors due to high grid aspect ratios 
f) Additional truncation errors that arise due to the introduction of extra 

convective terms when using curvilinear coordinates. 

In addition to the above, grid size used, grid clustering near the boundary, the 
order of accuracy of the differencing schemes used in the computational domain 
and on the boundary, and the choice of uniform or non-uniform (clustered) grid, 
influence both the local and global accuracy of the numerical solution.  
The above factors have been the subject matter of a large number of investigations 
(cf. [6-15] and the references therein), due to the importance of these studies in the 
efficient design of software and codes with applications to fluid flow and 
groundwater simulation, [14]. 
 
Errors associated with grid distortion are due to the use of non-orthogonal grid 
and the mapping of a curvilinear region onto a rectangular region. These errors 
can be measured in terms of angles of deviation from orthogonality of a 
computational grid. Their influence on local and global accuracies of computed 
solutions can be quantified in terms of the metrics of the employed transformation 
by defining the deviation angle in terms of the metrics. Grid distortion errors are 
therefore dependent in part on: (i) the transformation used, (ii) the shape of the 
curvilinear boundary, and (iii) the type of grid employed (that is, whether 
clustered or uniform).   
 
In using uniform grid, it is sometimes possible to arrive at the wrong conclusion 
that uniform grid produce small grid distortion. If, when using uniform grid, the 
step size near the boundary is fairly large (non-refined grid) then the effect of the 
boundary shape is not properly transmitted into the whole computational domain. 



  
 
 
89                                                                 Grid distortion errors in streamfunction 

This results in a superficial reduction in grid distortion error. For clustered grid 
with small step size near the boundary, a more accurate effect of the boundary is 
transmitted into the computational domain and the effect of grid distortion is more 
pronounced. 
 
In the current work we study grid distortion and the main factors that have an 
influence on it when the curvilinear domain is mapped onto a rectangular domain 
using von Mises coordinates, by devising a numerical experiment in which we 
consider viscous fluid flow through a two-dimensional curvilinear channel. We 
determine in the computational domain the largest grid distortion errors incurred 
when different boundary shapes are used and different finite difference 
approximations are implemented in computing vorticity at the boundaries. 
Comparison is provided between grid distortion errors when a uniform grid is 
used and when a grid with a variable step size is used. Grid size used is taken the 
same for all cases studied and first, second and third-order accurate boundary 
vorticity schemes are used for the sake of comparison. However, we also study 
the effect of grid refinement on grid distortion. 
 
To measure the effectiveness of a particular boundary we consider the region near 
the entrance to the channel. It is expected that the parabolic inlet profile is 
undisturbed in the first few steps into the channel. This implies that the vorticity 
along each streamline is constant, and the equivorticity lines should be as close to 
the horizontal as possible. However, due to boundary vorticity approximations 
and the influence of boundary shape, the flow pattern is disturbed and the 
equivorticity lines deviate from the horizontal. In order to place a quantitative 
measure on the influence of the boundary vorticity approximations, we measure 
the grid distortion in terms of sine of the angle between the horizontal axis and the 
tangent to the streamlines of the flow. In the process we solve the governing 
Navier-Stokes equations, generate streamline patterns and equivorticity curves. 
 

2      Metrics of transformation 
Consider the curvilinear net  in which the curves constant, represent 
streamlines of the flow. Now, consider the following transformation which 
defines the von Mises coordinates [16-18]: 
 

    .           (1) 

 
The Jacobian of transformation (1) is defined as 
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                                                 ,                                               (2) 

where subscript notation denotes partial differentiation. 
 
Let  be an element of arc length along any curve in the plane, with the 
squared element of arc length given by: 
 
                                                       .                                             (3) 
   
From (1) we obtain: 
 

                                          .                                      (4) 

 
Using (4) in (3), we obtain: 
 
                                ,               (5) 
 
where , and  are the metrics of transformation (coefficients of the first 
fundamental form) that satisfy: 
 
                                              ,                                                (6) 
                                              ,                                                        (7) 

                                                                                                     (8) 
 
Distances in the  and directions are given, respectively, by: 
 
                                              ,                                                          (9) 

                                              ,                                                      (10) 
 
and the Jacobian of transformation (2) is expressed in terms of the metrics as 
 

                                               .                                                  (11) 
 
If fluid flows along the streamline  in the direction of increasing x, then 

 and the positive sign in (11) is chosen, while if fluid flows in the direction 
of decreasing x, then  and the negative sign in (11) is chosen. Now, the 

yy
y

x
yxJ =

¶
¶

=
),(
),(

dS -xy

222 dydxdS +=

þ
ý
ü

+=
=

)yydydxydy
dxdx

x

222 ),(),(2),( yyyyy dxGdxdxFdxxEdS ++=

FE, G

2)(1),( xyxE +=y

yyyyxF x=),(

.)(),( 2
yy yxG =

-x -y

dxEdSx =
yy dEdS =

2FEGJ -= !

c=y
0>J

0<J



  
 
 
91                                                                 Grid distortion errors in streamfunction 

vector  denotes the tangent vector to the curve , and  denotes 
the tangent vector to the curve x = constant.  
 
Letting  denote the angle of inclination to the x-axis of the tangent line to 

, directed in the sense of increasing x, as shown in Fig. 1, then: 
 

                                         .                            (12) 

                                         .                            (13) 

 
Fig. 1. Representative sketch: Angle of inclination. 

 
Equations (12) and (13) provide a measure of the physical orientation of the 
computational grid relative to the x-axis. Along the x-axis,  or , 
hence .  Grid aspect ratio, , is the ratio of the magnitudes of the tangent 
vectors, expressed as 
 

                                                            (14) 

 
There are two parts of grid aspect ratio (14), the first is the controllable ratio of 
grid spacing  which depends on one’s choice of grid size or grid spacings. 
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The second is the uncontrollable ratio , which is inherent in the 

curvilinear coordinate system used. The local grid distortion is determined by 
angle  between the coordinate lines, measured by: 

 

                                     .                                (15) 

 
Accuracy of the solution is degraded by this grid distortion. Therefore, for high 
accuracy, the grid should be orthogonal or near orthogonal. For orthogonal grid, 

or . Equivalently, , which implies that 

 or . If  then  (which is impossible), while if  
then .If the grid is not orthogonal, additional truncation errors are 
introduced and are proportional to . However, it is generally accepted that 

departure from orthogonality of up to  radians can be tolerated, [1]. 

 

3      Numerical experiment 
3.1      Physical domain quantities and equations 

In order to study the effect of grid distortion, error propagation, accuracy of the 
numerical solution and convergence of the numerical scheme used, we consider 
the flow of a viscous fluid through a two-dimensional channel shown 
diagrammatically in Fig. 2, and described by: 
 
                                                            (16) 

 
Fluid enters through section ad and exists through bc. The channel is assumed to 
be long enough to impose parallel flow at its inlet and exit. 
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Fig. 2. Physical domain: two-dimensional channel 

 
Equations governing the flow are the two-dimensional Navier-Stokes equations in 
the following dimensionless vorticity-streamfunction,  form: 
 
Streamfunction equation: 
 
                                                       .                                 (17)  
 
Vorticity equation: 
 
                                                       .                  (18)  
 
Relationships between the velocity components, , the streamfunction, , and 
vorticity, , are given by: 
 
                                                       ,                                                         (19) 

                                                       ,                                                       (20) 
                                                       .                                                  (21) 
 
Physical boundary conditions are the no-slip on the channel walls and a parallel, 
parabolic velocity profile at the inlet and exit of the channel, namely: 
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                                   ,                             (24) 
                                    at  and  .                  (25) 
 

Corresponding conditions on the streamfunction and vorticity are the following 
inlet and exit conditions: 
  
For  

                                    ,                          (26) 

                                   .                               (27) 
 

For  
                                   ,                                                (28) 
                                   ,                                                (29) 
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3.2      Computational domain quantities and equations 

In order to solve the governing equations using finite differences, the curvilinear 
physical domain is mapped onto a rectangular computational domain, Fig. 3, 
using the von Mises transformation (1). Boundary conditions and governing 
equations are transformed into von Mises coordinates, as described in what 
follows. Using transformation (1), the roles of and y are interchanged, the 
curvilinear streamlines, constant, in the physical domain are horizontal 
straight lines in the computational domain, and the physical domain is mapped 
onto the rectangular computational domain described by: 
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Fig. 3. Rectangular Computational domain. 

 
It is clear that the lower and upper boundaries are the streamlines  and , 
respectively. 
 
First-order partial differential operators in the Cartesian and von Mises coordinate 
systems are related by: 

                                                              ,                              (33) 

                                                             ,                                           (34) 

 
and higher-order operators can be obtained by repeated applications of (33) and 
(34) onto themselves. Governing equations (17) and (18) are thus transformed into 
the following forms, to be solved for  and : 
 
The equation: 
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The equation: 
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            ,                                                   (38) 

                                                                                       (39)  

 
and the square of the speed of the flow is given by: 
 

.                           (40) 

 
Equations (35) and (36) are to be solved in the computational domain subject to 
the following transformed conditions on  and :  
 
For  
 

,                                        (41) 
,                                       (42) 

,                         (43) 

.                         (44) 

 
For  
 

,                               (45) 

,                               (46) 

,                                     (47) 

.                                  (48) 

4     Finite difference approximations 
4.1 Discretizing the flow domain 

In order to solve (35) and (36) numerically, subject the transformed boundary 
conditions (41)-(48), the computational domain is discretized using either a 
uniform grid or a non-uniform grid, with vertical grid lines ranging from i=1 at 
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to i=Imax at , and horizontal grid lines ranging from j=1 at  to 
j=Jmax at .  
 
In this work, we choose the following data for the computational domain: 
 

;       (49) 

 

;                       (50) 

 
where k is a shape parameter that controls the thickness of the boundary bump, 
and    

 
The horizontal extent of the channel is deemed to be sufficient to impose parallel 
inlet and exit velocity profiles. We select Imax = 201 grid points in the x-direction 
and Jmax = 51 grid points in the -direction.  
 
In using uniform grid, step sizes are constant and take the values  and 

. The choice of constant step size in the -direction in the 
computational domain produces a grid in the physical domain that is clustered 
near the horizontal centerline of the channel, away from the boundary, [3,4]. This 
is a disadvantage of using uniform grid, since one desires clustering near the 
boundary in order to better capture boundary effects. 
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velocity profile [3]. This is one of the advantages of using the von Mises 
transformation. 
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,                                           (51) 

.                                        (52) 

4.2 Discretizing the governing equations 

Expansion of a function  about the point  and using Taylor series 
approximations, we obtain the following second-order finite difference 
expressions for the first and second derivatives with respect to  and , valid for 
variable step size in the -direction: 
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where  stands for  or , and is the right-hand-side vector. The 

matrix coefficients , and the right-hand-side vector are given for 
each of governing equations (35) and (36) in what follows, for i=2,3,…,Imax-1, 
and j=2,3,…,Jmax-1. 
 
For the y-equation: 
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4.3 Boundary vorticity approximations 

Vorticity on the lower and upper boundaries is given by (43) and (44), 
respectively, in terms of the first derivative of the square of the speed of the flow. 
Boundary vorticity is approximated using the following finite difference 
expressions of first, second and third order accuracy for the first derivative of the 
square of the speed, for both uniform and non-uniform grid. For first-order 
accurate approximation we implement 2, 3, 4, and 5 grid points using schemes 
derived in [4]. Reference to these schemes is as follows: a (1,2) scheme uses the 
grid points along j=1 and j=2, while a (1,2,3,4,5) scheme uses grid points along 
j=1,2,3,4,5. 

 
For non-uniform grid, first, second and third-order accurate forward schemes, 
respectively, using the natural order of grid lines, are: 
 
First-order Schemes: 
 
(1,2) Scheme 

 .                              (68) 

 
(1,2,3) Scheme 

                (69) 

 
(1,2,3,4) Scheme 

         (70) 

 
(1,2,3,4,5) Scheme 
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Second-order (1,2,3) Scheme 
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Third-order (1,2,3,4) Scheme 
 

 

 

                    (73) 

 
Expressions (68)-(73) are forward schemes applied at the lower boundary using 
grid points ,  and . Similar, backward schemes are used 
on the upper boundary using grid points  
and . 
 
For uniform grid, first, second and third-order accurate forward schemes, 
respectively, are: 
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                                        (78) 

or 

                        (79) 

 
For uniform grid, equations (77) and (79) take the forms, respectively: 
 

                                           (80) 

 

                                     (81) 

 

4.5 Solution algorithm 

Numerical solution to the governing equations, subject to the given boundary 
conditions, is obtained according to the following algorithm: 
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(50). 

(e) Compute  and  for . 
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For  
          
          
          
          
          
          

 
(g)  Initialize  and  at interior grid points by assigning them small 

starting values, for  and . 
 
Step 2: 

(a) Calculate  and  at interior grid points using expressions (77)-(81). 
(b) Calculate the boundary vorticity using expressions (68)-(76). 

 
Step 3:  

(a) Calculate coefficients of the tri-diagonal systems appearing in (60)-(67). 
(b) Solve the - and y-equations using the tri-diagonal solver and successive 

line over-relaxation according to: 
 

                               (82) 
 

where r is the relaxation parameter,  is the value of  or  at iteration 
level n+1, obtained from the tri-diagonal solver,   is the value at iteration 
level n, and  is the most up-to-date value. 
 
Step 4: Repeat steps 2 and 3 until the following convergence criterion is satisfied: 
 

.                                        (83) 

 
Step 5: After convergence, repeat step 2. 
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5      Results and discussion 
5.1 Grid Distortion 

Grid distortion measurements have been obtained for grid size of . Results 
have been obtained for variable step schemes of first, second and third order 
accuracy and comparison is made with uniform grid results. The values of  
are calculated using equation (15) in discretized form. Locations of maximum 
distortion are not reported here as they occur, within error tolerance of , at 
a fairly large number of points in the flow field. 
 
 

Table 1: Distortion data. , . 
*: Using uniform grid.  **: .  ***: ;  

 
Scheme Order Maximum 

Distortion 
Number of 
Iterations 

(1,2) 1 0.117612 194 
(1,2)* 1  236 
(1,2,3) 1 0.130447 196 
(1,2,3,4) 1 0.148066 203 
(1,2,3,4,5) 1 0.159754 213 
(1,2,3) 2 0.117634 204 
(1,2,3)* 2  233 
(1,2,3)** 2 0.156425 260 
(1,2,3,4) 3 0.117504 204 
(1,2,3,4)** 3 0.155991 426 
(1,2,3,4)*** 3 0.117883 451 

 
Table 1 illustrates the distortion measurements for first-order accurate boundary 
vorticity schemes that use 2, 3, 4 and 5 grid points, together with 3-point second-
order accurate and 4-point third-order accurate schemes. For first-order schemes 
with variable step size, increasing the number of grid points used in boundary 
vorticity schemes results in an increase in the maximum distortion values. This 
means that the distortion angle  decreases, and increases. When second- and 
third-order schemes are used, values of maximum distortion are comparable with 
those obtained when using the two-point (1,2) scheme of first-order accuracy. 
Number of iterations required for convergence are reported in Table 1, which 
shows an increase in the required number of iterations with increasing scheme 
accuracy and with increasing number of grid points used in the boundary vorticity 
approximations.   
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5.2 Effect of boundary shape 

Equations (16) and (17) define the shape of the lower and upper channel 
boundaries. Thickness of the bump on the boundaries is controlled by parameter k. 
We have experimented with the following values:  and found 

that when selecting  with non-uniform grid, an overflow error occurs. This 

may be attributed to the closeness of streamlines to the boundary when the bump 
is thick, and the tendency of flow to approach separation threshold and the 
development of recirculating eddies near the leading and trailing edges. This kind 
of flow reversal changes the sign of the Jacobian of transformation, which is a 
drawback of using the von Mises transformation for viscous fluid flow. Results in 

this work are therefore based on  and , and Table 1 demonstrates 

the increase in maximum grid distortion with increasing bump thickness when 
second- and third-order accurate boundary vorticity schemes are used.  

5.3 Effect of grid refinement 

If the number of grid points in the x-direction is doubled so that the grid size is 
 and , the third-order accurate boundary vorticity scheme 

produces a maximum distortion of 0.117883. Using this fine grid produces a 
slightly more accurate results. When using clustered grid, our numerical 
experiment showed that using grids containing more than 90 grid lines in the 

direction results in no convergence. The upper limit on the grid size depends 
on the boundary vorticity finite difference formula used. For the third-order 
accurate scheme, the upper limit is 70 lines, while for the first-order accurate (1,2) 
scheme the limit is 102 lines. These upper limits represent the threshold for 
detection of viscous separation near the leading or trailing edges of the boundary 
bump, which results in flow reversal and a change of sign of the Jacobian, hence 
convergence is hindered.    

5.4 Flow patterns and equivorticity curves 

Results in this section are based on grid size of with boundary vorticity 
computed using third-order accurate schemes, for both uniform and non-uniform 
grids. 

Streamlines of the flow for Re = 0 are illustrated in Fig. 4(a,b). For uniform grid, 
Fig. 4(a) demonstrates a loss of accuracy in the solution near the inlet and exit to 
the channel due to lack of clustering near the boundary. In using uniform grid, 
equal step sizes in the direction in the computational domain results in 
clustering near the centre of the channel and the boundary effects are not 
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efficiently captured in the solution. In using non-uniform grid, Fig. 4(b), 
illustrates the steamline pattern with a more accurate, expected behaviour near the 
inlet and exit of the channel. We note that a non-uniform, clustered grid in the 
computational domain, with clustering near the boundary and capturing boundary 
effects more accurately, results in a uniform grid in the physical domain.  

Streamline patterns have also been obtained for Re = 20 and 40, and exhibit 
similar qualitative behaviors to the patterns in Fig. 4(a,b), hence not shown here. 
However, effects of Re are better captured and illustrated in the equivorticity 
curves, shown in Fig. 5(a,b) and Fig. 6(a,b). As Re increases, the region between 
two equivorticity curves closest to the trailing edge gets larger. This is indicative 
of the possibility of potential viscous separation near the trailing edge, with 
increasing Re, and the potential formation of a recirculating eddy in that region. 
This behavior persists when either uniform or non-uniform grid is used. The effect 
of using non-uniform grid is, again, reflected in capturing the boundary effects 
better than uniform grid, hence producing different values of equivorticity curves 
near the boundary (along the same computational gridlines).  

 

 
        Fig. 4(a). Streamline pattern, uniform grid, Re = 0. 
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          Fig. 4(b). Streamline pattern, clustered grid, Re = 0. 

 

 
                             Fig. 5(a). Equivorticity curves, uniform grid, Re = 0. 

 
 

 
                             Fig. 5(b). Equivorticity curves, clustered grid, Re = 0. 
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                                Fig. 6(a). Equivorticity curves, uniform grid, Re = 40. 

 
 

 
                                Fig. 6(b). Equivorticity curves, clustered grid, Re = 40. 

 
 

6      Conclusion 
In this work we studied grid distortion errors that arise when the von Mises 
transformation is used in the study of viscous fluid flow through a curvilinear 
domain. Maximum distortion was quantified using sine of the angle between the 
tangent to the streamlines and the x-axis. Effects of order of accuracy of the 
numerical schemes used in computing boundary vorticity and effects of grid 
refinement on grid distortion have been analyzed. In the process of grid distortion 
quantification, we produced streamline patterns and equivorticity curves of the 
flow for small values of Reynolds number. 
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7      Open problem 
In the above analysis we considered grid distortion in a curvilinear domain with 

boundary bump thickness  so that viscous separation does not occur. 

When  there is a possibility of flow separation near the leading and trailing 

edges of the bump and a reversal in the value of the Jacobian of transformation. 
Handling this case requires domain decomposition and the determination of flow 
separation regions, which is not considered in this work. 
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