Int. J. Open Problems Compt. Math., Vol. 12, No. 1, March 2019 ISSN 1998-6262; Copyright ©ICSRS Publication, 2019 www.i-csrs.org

Some generalizations involving

open problems of F. Qi

B. Halim, A. Senouci¹

Department of Mathematics, Faculty of Mathematics and Computer Sciences, Ibn-Khaldoun University, Tiaret, Algeria e-mail: benalihalim19@yahoo.fr; kamer295@yahoo.fr

Received 23 September 2018; Accepted 15 December 2018

(Communicated by Zoubir DAHMANI)

Abstract

In this paper we generalize some inequalities obtained in [2] by considering two parameters and weight functions. Moreover we give a partial answer to an open problem posed in [2].

Keywords: Inequalities, open problem, generalizations. **2010** Mathematics Subject Classification: 03F55, 46S40.

1 Introduction

In [3], F. Qi proved the following

Theorem 1.1 For $x_i \ge 0$, i = 1, 2, ..., n, $n \in N$, $n \ge 2$, the inequality

$$\frac{e^2}{4} \sum_{i=1}^n x_i^2 \le \exp\left(\sum_{i=1}^n x_i\right) \tag{1}$$

is valid. Equality in (1) holds if $x_i = 2$ for some $1 \le i \le n$ and $x_j = 0$ for all $1 \le j \le n$ with $j \ne i$. Thus, the constant $\frac{e^2}{4}$ in (1) is the best possible.

¹Corresponding author

Theorem 1.2 Let $\{x_i\}_{i=1}^{\infty}$ be a nonnegative sequence such that $\sum_{i=1}^{\infty} x_i < \infty$. Then

$$\frac{e^2}{4} \sum_{i=1}^{\infty} x_i^2 \le \exp\left(\sum_{i=1}^{\infty} x_i\right). \tag{2}$$

Equality in (2) holds if $x_i = 2$ for some $i \in \mathbb{N}$ and $x_j = 0$ for all $j \in \mathbb{N}$ with $j \neq i$. Thus, the constant $\frac{e^2}{4}$ in (2) is the best possible.

In the same paper F. Qi posed the following two open problems.

Problem 1.3 For $x_i \ge 0$, i = 1, 2, ..., n, $n \in N$, $n \ge 2$, determine the best possible constants $\alpha_n \lambda_n \in \mathbb{R}$ and $\beta_n > 0$, $\mu_n < \infty$ such that

$$\beta_n \sum_{i=1}^n x_i^{\alpha_n} \le \exp\left(\sum_{i=1}^n x_i\right) \le \mu_n \sum_{i=1}^n x_i^{\lambda_n}.$$
(3)

Problem 1.4 What is the integral analogue of the two-sided inequality (3)?

Huan-Nan Shi gave a partial answer in [5] to Problem 1.3. In [2] is given a complete answer to Problem 1.3 and partial answer to Problem 1.4. Namely the following statements were proved there.

Lemma 1.5 Let r > 0, x > 0 real numbers, then the inequality

$$x^r \le \frac{r^r}{e^r} e^x \tag{4}$$

is valid. Equality in (4) holds if x = r. Thus, the constant $C = \frac{r^r}{e^r}$ in (4) is the best possible.

Theorem 1.6 Let $0 and <math>x_i > 0$, i = 1, 2, ..., n, $n \in N$ and $n \ge 2$, then

$$\sum_{i=1}^{n} x_{i}^{p} \leq n^{1-p} \frac{p^{p}}{e^{p}} \exp\left(\sum_{i=1}^{n} x_{i}\right).$$
 (5)

is valid. Equality in (5) holds if $x_i = p n^{-1}$ for all i = 1, ..., n. Thus the constant $n^{1-p} \frac{p^p}{e^p}$ is the best possible.

Theorem 1.7 let $0 and <math>x_i > 0$, i = 1, 2, ..., n, $n \in N$ and $n \ge 2$ such that $0 < x_i \le p$ for all i = 1, ..., n, then

$$\exp\left(\sum_{i=1}^{n} x_i\right) \le \frac{p^p}{n} e^{np} \sum_{i=1}^{n} x_i^{-p}.$$
(6)

is valid. Equality in (6) holds if $x_i = p$ for all i = 1, ..., n. Thus the constant $\frac{p^p}{n}e^{np}$ is the best possible.

Theorem 1.8 Let 0 , be a real number and let <math>f be a non negative continuous function on [a, b], then the inequality

$$\int_{a}^{b} f^{p} dx \le (b-a)^{1-p} \frac{p^{p}}{e^{p}} \exp\left(\int_{a}^{b} f dx\right).$$
(7)

is valid. Equality in (7) holds if $f(x) = p(b-a)^{-1}$. Thus, the constant $\frac{p^p}{e^p}(b-a)^{1-p}$ in (7) is the best possible.

In [2] was proposed the next open problem.

For $p \ge 1$ a real number and a function f, determine the best possible constant $\alpha \in \mathbb{R}$ such that

$$\int_{a}^{b} |f(x)|^{p} dx \leq \alpha \frac{p^{p}}{e^{p}} \exp\left(\int_{a}^{b} |f(x)| dx\right).$$
(8)

The aim of this paper is to generalize Theorem 1.6 and Theorem 1.8 for two parameters p, q with weighted function w. Moreover we give integral analogue of Theorem 1.7 and an answer to an open problem posed in [2] for some functions classes.

2 Preliminaries

In this section, we state and prove the following Lemmas which are useful in the proofs of our results.

Lemma 2.1 Let 0 and <math>p, p' are conjugate, $f \in L_p([a, b]), g \in L_{p'}([a, b])$ and w be a weight function (non negative measurable function).

1) If $1 \leq p$, then

$$\int_{a}^{b} f g w \, dx \le \left(\int_{a}^{b} f^{p} w \, dx\right)^{\frac{1}{p}} \left(\int_{a}^{b} g^{p'} w \, dx\right)^{\frac{1}{p'}}.$$
(9)

2) If 0 , then

$$\int_{a}^{b} f g w \, dx \ge \left(\int_{a}^{b} f^{p} w \, dx\right)^{\frac{1}{p}} \left(\int_{a}^{b} g^{p'} w \, dx\right)^{\frac{1}{p'}}.$$
 (10)

Proof 2.2 The following two inequalities are the well-known Hölder inequalities.

B. Halim, A. Senouci

1) If $p \geq 1$, then

$$\int_{a}^{b} |fg| dx \le \left(\int_{a}^{b} |f|^{p} dx \right)^{\frac{1}{p}} \left(\int_{a}^{b} |g|^{p'} dx \right)^{\frac{1}{p'}}.$$
 (*)

2) If 0 , then

$$\int_{a}^{b} |fg| dx \ge \left(\int_{a}^{b} |f|^{p} dx\right)^{\frac{1}{p}} \left(\int_{a}^{b} |g|^{p'} dx\right)^{\frac{1}{p'}}.$$
 (**)

By replacing f and g with $f_1 = fw^{\frac{1}{p}}$, $g_1 = gw^{\frac{1}{p'}}$ in (*) and (**), we obtain inequalities (9) and (10).

Lemma 2.3 Let 0 , and <math>f, w be non negative measurable functions on [a, b] such that $\int_a^b f^q w \, dx < \infty$, then

$$\left(\int_{a}^{b} f^{p} w \, dx\right)^{\frac{1}{p}} \leq \left(\int_{a}^{b} w \, dx\right)^{\frac{1}{p} - \frac{1}{q}} \left(\int_{a}^{b} f^{q} w \, dx\right)^{\frac{1}{q}}.$$
(11)

Proof 2.4 Let 0 . Applying (9) of Lemma 2.1 with <math>g = 1, and using parameter $\frac{q}{p} > 1$, its conjugate $\left(\frac{q}{p}\right)' = \frac{q}{q-p}$, we obtain

$$\int_{a}^{b} f^{p} w \, dx \leq \left(\int w \, dx\right)^{\frac{q-p}{q}} \left(\int_{a}^{b} f^{q} w \, dx\right)^{\frac{p}{q}}$$
$$\int_{a}^{b} f^{p} w \, dx\right)^{\frac{1}{p}} \leq \left(\int_{a}^{b} w \, dx\right)^{\frac{1}{p}-\frac{1}{q}} \left(\int_{a}^{b} f^{q} w \, dx\right)^{\frac{1}{q}}$$

or

$$\left(\int_{a}^{b} f^{p} w \, dx\right)^{\frac{1}{p}} \leq \left(\int_{a}^{b} w \, dx\right)^{\frac{1}{p} - \frac{1}{q}} \left(\int_{a}^{b} f^{q} w \, dx\right)^{\frac{1}{q}}.$$

Remark 2.5

1) If $q = \infty$, then (11) is satisfied

$$\left(\int_{a}^{b} f^{p} w \, dx\right)^{\frac{1}{p}} \leq \left(\int_{a}^{b} w \, dx\right)^{\frac{1}{p}} \|f\|_{L_{\infty}(a,b)}.$$
(12)

2) If w(x) = 1 in (11), then

$$\left(\int_{a}^{b} f^{p} dx\right)^{\frac{1}{p}} \leq (b-a)^{\frac{1}{p}-\frac{1}{q}} \left(\int_{a}^{b} f^{q} dx\right)^{\frac{1}{q}}.$$
 (13)

Equality in (13) holds if f = 1. Thus the constant $(b-a)^{\frac{1}{p}-\frac{1}{q}}$ is the best possible.

3 Main results

We give some inequalities with proofs.

Lemma 3.1 Let (x_i) be a sequence of non negative real numbers and let 0 , then

$$\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{\frac{1}{q}} \leq \left(\sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{1}{p}} \leq n^{\frac{1}{p} - \frac{1}{q}} \left(\sum_{i=1}^{n} x_{i}^{q}\right)^{\frac{1}{q}}.$$
(14)

Proof 3.2 The inequality

$$\left(\sum_{i=1}^n x_i^q\right)^{\frac{1}{q}} \le \left(\sum_{i=1}^n x_i^p\right)^{\frac{1}{p}}$$

is the well known Jensen's inequality and the right-hand side inequality follows by Hölder's inequality.

The following Theorem is the generalization of Theorem 1.6.

Theorem 3.3 Let $0 , and <math>x_i > 0$, i = 1, 2, ..., n, $n \in N$, then

$$\sum_{i=1}^{n} x_{i}^{p} \leq n^{1-\frac{p}{q}} \frac{p^{p}}{e^{p}} \exp\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{\frac{1}{q}}.$$
(15)

is valid. Equality in (15) holds if $x_i = p n^{\frac{-1}{q}}$ for all i = 1, ..., n. Thus the constant $n^{1-\frac{p}{q}} \frac{p^p}{e^p}$ is the best possible.

Proof 3.4 By applying the inequality (14) and Lemma 1.5 with $x = (\sum_{i=1}^{n} x_i^q)^{\frac{1}{q}}$, r = p, we obtain

$$\sum_{i=1}^{n} x_{i}^{p} \leq n^{1-\frac{p}{q}} \left(\sum_{i=1}^{n} x_{i}^{q} \right)^{\frac{p}{q}}$$
$$\leq n^{1-\frac{p}{q}} \frac{p^{p}}{e^{p}} \exp\left(\sum_{i=1}^{n} x_{i}^{q} \right)^{\frac{1}{q}}.$$

Remark 3.5 If q = 1 in (15) we obtain Theorem 1.6.

We give the integral analogue of Theorem 1.7.

Theorem 3.6 Let p > 0 be a real number and f be non negative continuous function on [a, b] such that $0 < f(x) \le p(b-a)^{-1}$, then

- 1) If $p \ge 1$, $\left(\int_{a}^{b} f(x) \, dx\right)^{p} \le \frac{p^{p}}{e^{p}} \exp\left(\int_{a}^{b} f(x) \, dx\right) \le \frac{p^{2p}}{(b-a)^{1+p}} \int_{a}^{b} f^{-p}(x) \, dx.$ (16)
- 2) If 0 , $<math display="block">\int_{a}^{b} f^{p}(x) dx \le (b-a)^{1-p} \frac{p^{p}}{e^{p}} \exp\left(\int_{a}^{b} f(x) dx\right) \le \frac{p^{2p}}{(b-a)^{2p}} \int_{a}^{b} f^{-p}(x) dx.$ (17)

Equalities in (16) and (17) holds if $f = p(b-a)^{-1}$. Thus the constants $C_1 = \frac{p^{2p}}{(b-a)^{p+1}}$, $C_2 = \frac{p^{2p}}{(b-a)^{2p}}$, are the best possible.

Proof 3.7 Let $p \ge 1$ if $0 < f(x) \le p(b-a)^{-1}$, therefore $\int_a^b f(x) \, dx \le p$, and $p^{-p}(b-a)^p < f^{-p}(x)$,

it follows that

$$p^{-p}(b-a)^{p+1} \le \int_a^b f^{-p}(x) \, dx$$

By Lemma 1.5 with $x = \int_a^b f(x) dx$, r = p, we obtain

$$\frac{e^{p}}{p^{p}} \left(\int_{a}^{b} f(x) \, dx \right)^{p} \leq \exp\left(\int_{a}^{b} f(x) \, dx \right) \\
\leq e^{p} \, p^{p} (b-a)^{-1-p} \, p^{-p} \, (b-a)^{p+1} \\
\leq \frac{p^{p} \, e^{p}}{(b-a)^{1+p}} \int_{a}^{b} f^{-p}(x) \, dx,$$

thus

$$\left(\int_{a}^{b} f(x) \, dx\right)^{p} \le \frac{p^{p}}{e^{p}} \exp\left(\int_{a}^{b} f(x) \, dx\right) \le \frac{p^{2p}}{(b-a)^{1+p}} \int_{a}^{b} f^{-p}(x) \, dx.$$

For 0 , by using (7), similarly one can prove the following two sided inequality

$$\int_{a}^{b} f^{p}(x) \, dx \le (b-a)^{1-p} \, \frac{p^{p}}{e^{p}} \, \exp\left(\int_{a}^{b} f(x) \, dx\right) \le \frac{p^{2p}}{(b-a)^{2p}} \, \int_{a}^{b} f^{-p}(x) \, dx.$$

The following Theorem is the generalization of Theorem 1.8.

Theorem 3.8 Let 0 , <math>r > 0 and f, w be measurable non negative functions on [a, b] such that $\int_a^b f^q w \, dx < \infty$, then

$$\left[\left(\int_{a}^{b} f^{p} w \, dx\right)^{\frac{1}{p}}\right]^{r} \leq \left(\int_{a}^{b} w \, dx\right)^{\frac{r}{p} - \frac{r}{q}} \frac{r^{r}}{e^{r}} \exp\left(\int_{a}^{b} f^{q} w \, dx\right)^{\frac{1}{q}}.$$
 (18)

Equality in (18) holds if $f = r \left(\int_a^b w\right)^{\frac{-1}{q}}$. Thus the constant $\frac{r^r}{e^r} \left(\int_a^b w\right)^{\frac{r}{p}-\frac{r}{q}}$ in (18) is the best possible.

Proof 3.9 Let $0 . By Lemma 1.5 with <math>x = \left(\int_a^b f^q w \, dx\right)^{\frac{1}{q}}, r > 0$ we get

$$\left[\left(\int_{a}^{b} f^{q} w \, dx\right)^{\frac{1}{q}}\right]^{r} \leq \frac{r^{r}}{e^{r}} \exp\left(\int_{a}^{b} f^{q} w \, dx\right)^{\frac{1}{q}}.$$
(19)

Now by applying inequality (11) and (19), we obtain

$$\left(\int_{a}^{b} f^{p} w \, dx\right)^{\frac{r}{p}} \leq \left(\int_{a}^{b} w \, dx\right)^{\frac{r}{p} - \frac{r}{q}} \left(\int_{a}^{b} f^{q} w \, dx\right)^{\frac{r}{q}}$$
$$\leq \left(\int_{a}^{b} w \, dx\right)^{\frac{r}{p} - \frac{r}{q}} \frac{r^{2}}{e^{r}} \exp\left(\int_{a}^{b} f^{q} w \, dx\right)^{\frac{1}{q}},$$

thus we get inequality (18).

If in inequality (18) we repalce f by $r\left(\int_{a}^{b} w\right)^{\frac{-1}{q}}$, we get equality.

Under the same assumptions of theorem 3.8, we have the following Corollaries.

Corollary 3.10 We consider inequality (18).

1) If in (18) r = p, then

$$\int_{a}^{b} f^{p} w \, dx \le \frac{p^{p}}{e^{p}} \left(\int_{a}^{b} w \, dx \right)^{1-\frac{p}{q}} \exp\left(\int_{a}^{b} f^{q} w \, dx \right)^{\frac{1}{q}}.$$
 (20)

2) If in (18) r = q, then

$$\left(\int_{a}^{b} f^{p} w \, dx\right)^{\frac{q}{p}} \leq \frac{q^{q}}{e^{q}} \left(\int_{a}^{b} w \, dx\right)^{\frac{q}{p}-1} \exp\left(\int_{a}^{b} f^{q} w \, dx\right)^{\frac{1}{q}}.$$
 (21)

3) If in (18) r = 1, then

$$\left(\int_{a}^{b} f^{p} w \, dx\right)^{\frac{1}{p}} \leq \frac{1}{e} \left(\int_{a}^{b} w \, dx\right)^{\frac{1}{p} - \frac{1}{q}} \exp\left(\int_{a}^{b} f^{q} w \, dx\right)^{\frac{1}{q}}.$$
 (22)

Corollary 3.11 By putting q = 1 in the inequality (18), we have

$$\left[\left(\int_{a}^{b} f^{p} w \, dx \right)^{\frac{1}{p}} \right]^{r} \leq \left(\int_{a}^{b} w \, dx \right)^{\frac{r}{p}-r} \frac{r^{r}}{e^{r}} \exp\left(\int_{a}^{b} f \, w \, dx \right).$$
(23)

1) If in (23) r = p, then

$$\int_{a}^{b} f^{p} w \, dx \le \frac{p^{p}}{e^{p}} \left(\int_{a}^{b} w \, dx \right)^{1-p} \exp\left(\int_{a}^{b} f \, w \, dx \right). \tag{24}$$

2) If in (23) r = 1, then

$$\left(\int_{a}^{b} f^{p} w \, dx\right)^{\frac{1}{p}} \leq \frac{1}{e} \left(\int_{a}^{b} w \, dx\right)^{\frac{1}{p}-1} \exp\left(\int_{a}^{b} f \, w \, dx\right).$$
(25)

Remark 3.12 Note that Corollaries 3.10 and 3.11 present generalizations of Theorem 1.8. In particular if in (24) w = 1, we obtain Theorem 1.8 with the same best constant $\frac{p^p}{e^p} (b-a)^{1-p}$.

Remark 3.13

1) If in (18) p = 1, then $1 < q \le \infty$ and

$$\left(\int_{a}^{b} f w \, dx\right)^{r} \le \left(\int_{a}^{b} w \, dx\right)^{r-\frac{r}{q}} \frac{r^{r}}{e^{r}} \exp\left(\int_{a}^{b} f^{q} w \, dx\right)^{\frac{1}{q}}.$$
 (26)

2) If in (26) r = 1, then

$$\left(\int_{a}^{b} f w \, dx\right) \le \left(\int_{a}^{b} w \, dx\right)^{1-\frac{1}{q}} \frac{1}{e} \exp\left(\int_{a}^{b} f^{q} w \, dx\right)^{\frac{1}{q}}.$$
 (27)

If we put $q = \infty$ in (18) we get the following Corollary.

Corollary 3.14 Let 0 , <math>r > 0 and f, w be measurable non negative functions on [a, b] such that $||f||_{\infty} < \infty$, the next inequality is valid

$$\left(\int_{a}^{b} f^{p} w \, dx\right)^{\frac{r}{p}} \leq \left(\int_{a}^{b} w \, dx\right)^{\frac{r}{p}} \frac{r^{r}}{e^{r}} \exp\left(\|f\|_{\infty}\right).$$
(28)

16

Some generalizations involving open problems of F. Qi

1) If in (28) r = p, then

$$\int_{a}^{b} f^{p} w \, dx \le \left(\int_{a}^{b} w \, dx\right) \, \frac{p^{p}}{e^{p}} \, \exp\left(\|f\|_{\infty}\right). \tag{29}$$

2) If in (28) r = 1, then

$$\left(\int_{a}^{b} f^{p} w \, dx\right)^{\frac{1}{p}} \leq \left(\int_{a}^{b} w \, dx\right)^{\frac{1}{p}} \frac{1}{e} \exp\left(\|f\|_{\infty}\right). \tag{30}$$

Remark 3.15 1) We note that if in (29) w = 1, we obtain the following inequalities.

$$\int_{a}^{b} f^{p} dx \le (b-a)^{1-p} \frac{p^{p}}{e^{p}} \exp\left(\int_{a}^{b} f dx\right) \le (b-a) \frac{p^{p}}{e^{p}} \exp\left(\|f\|_{\infty}\right).$$
(31)

2) If in (28) p = 1, then we get

$$\left(\int_{a}^{b} f w \, dx\right)^{r} \le \left(\int_{a}^{b} w \, dx\right)^{r} \frac{r^{r}}{e^{r}} \exp\left(\|f\|_{\infty}\right). \tag{32}$$

3) If in (32) r = p, then

$$\left(\int_{a}^{b} f w \, dx\right)^{p} \le \left(\int_{a}^{b} w \, dx\right)^{p} \frac{p^{p}}{e^{p}} \exp\left(\|f\|_{\infty}\right). \tag{33}$$

4) If in (32) r = 1, then

$$\int_{a}^{b} f w \, dx \le \left(\int_{a}^{b} w \, dx\right) \frac{1}{e} \exp\left(\|f\|_{\infty}\right). \tag{34}$$

3.1 Some functions classes

In this section we give a partial answer to the proposed open problem in [2] by considering some functions classes.

Lemma 3.16 Let $1 \le p, q$ conjugate real numbers and f, g be two non negative measurable functions satisfying the condition $0 < m \le \frac{f^p}{g^q} \le M$ where m, M are positive real numbers, then

$$\left(\int_{a}^{b} f^{p} dx\right)^{\frac{1}{p}} \left(\int_{a}^{b} g^{q} dx\right)^{\frac{1}{q}} \leq \left(\frac{M}{m}\right)^{\frac{1}{pq}} \left(\int_{a}^{b} f g dx\right).$$
(35)

Proof 3.17 By the condition $0 < m \le \frac{f^p}{g^q} \le M$, we have

$$f g \ge M^{\frac{-1}{q}} f^{p}$$

which yields

$$\left(\int_{a}^{b} f^{p} dx\right)^{\frac{1}{p}} \leq M^{\frac{1}{pq}} \left(\int_{a}^{b} f g dx\right)^{\frac{1}{p}}.$$
(36)

On the other hand $0 < m \leq \frac{f^{P}}{g^{q}} \leq M$, thus

$$f g \ge m^{\frac{1}{p}} g^q$$

then

$$\left(\int_{a}^{b} g^{q} dx\right)^{\frac{1}{q}} \leq m^{\frac{-1}{pq}} \left(\int_{a}^{b} f g dx\right)^{\frac{1}{q}}.$$
(37)

By (36) and (37) we get

$$\left(\int_{a}^{b} f^{p} dx\right)^{\frac{1}{p}} \left(\int_{a}^{b} g^{q} dx\right)^{\frac{1}{q}} \leq \left(\frac{M}{m}\right)^{\frac{1}{pq}} \left(\int_{a}^{b} f g dx\right).$$
(38)

Theorem 3.18 Let $1 \leq p < \infty$, q its conjugate and f be a non negative continuous function on [a, b] satisfying $0 < m \leq f^p \leq M$, where m, M are positive real numbers, then

$$\int_{a}^{b} f^{p} dx \le \alpha \, \frac{p^{p}}{e^{p}} \, \exp\left(\int_{a}^{b} f \, dx\right),\tag{39}$$

where $\alpha = (b-a)^{1-p} \left(\frac{M}{m}\right)^{1-\frac{1}{p}}$ is the best constant.

Proof 3.19 Since that function f is continuous on [a, b], then f is measurable in the same interval, consequently we can apply the previous Lemma. By putting in (35) g = 1, one obtains

$$\left(\int_a^b f^p \, dx\right)^{\frac{1}{p}} (b-a)^{\frac{1}{q}} \le \left(\frac{M}{m}\right)^{\frac{1}{pq}} \left(\int_a^b f \, dx\right),$$

thus

$$\int_{a}^{b} f^{p} dx \le (b-a)^{1-p} \left(\frac{M}{m}\right)^{1-\frac{1}{p}} \left(\int_{a}^{b} f dx\right)^{p}.$$
 (40)

18

Some generalizations involving open problems of F. Qi

By applying Lemma 1.5 with $x=\int_a^b f\,dx, r=p$, we get

$$\int_{a}^{b} f^{p} dx \leq (b-a)^{1-p} \left(\frac{M}{m}\right)^{1-\frac{1}{p}} \frac{p^{p}}{e^{p}} \exp\left(\int_{a}^{b} f dx\right)$$
$$= \alpha \frac{p^{p}}{e^{p}} \exp\left(\int_{a}^{b} f dx\right).$$

Equality in (39) holds if $f = p(b-a)^{-1}$ with m = M.

In the following Theorem we consider another function classe.

In 1939 L. Berwald [6] proved, via generalization of a mean value inequality of J. Favard, that if f is a non negative concave continuous function on [0, 1] and 0 , then

$$\left(\int_{0}^{1} |f|^{q} dx\right)^{\frac{1}{q}} \le (p+1)^{\frac{1}{p}} (q+1)^{\frac{-1}{q}} \left(\int_{0}^{1} |f|^{p} dx\right)^{\frac{1}{p}},\tag{41}$$

where the constant $(p+1)^{\frac{1}{p}}(q+1)^{\frac{-1}{q}}$ is sharp. If p=1 this is called Favard's inequality.

A coordinate transformation in (41) y = (b-a)x + a brings us to the case of the interval [a, b].

Lemma 3.20 Let $1 \le p \le q < \infty$ and f be a non negative continuous concave function on [a, b], then

$$\left(\int_{a}^{b} f^{q} dx\right)^{\frac{1}{q}} \leq (b-a)^{\frac{1}{q}-\frac{1}{p}} \frac{(1+p)^{\frac{1}{p}}}{(1+q)^{\frac{1}{q}}} \left(\int_{a}^{b} f^{p} dx\right)^{\frac{1}{p}},\tag{42}$$

where the constant $(b-a)^{\frac{1}{q}-\frac{1}{p}} \frac{(1+p)^{\frac{1}{p}}}{(1+q)^{\frac{1}{q}}}$ is sharp.

Remark 3.21 If p = 1 in (42), we get for all $1 \le q$

$$\left(\int_{a}^{b} f^{q} dx\right)^{\frac{1}{q}} \leq (b-a)^{\frac{1}{q}-1} \frac{2}{(1+q)^{\frac{1}{q}}} \int_{a}^{b} f dx,$$
(43)

in particular $(b-a)^{\frac{1}{q}-1} \frac{2}{(1+q)^{\frac{1}{q}}}$ is also sharp constant.

Theorem 3.22 Let $1 \le p < \infty$ and f be a non negative continuous concave function on [a, b], then

$$\int_{a}^{b} f^{p} dx \le \alpha \frac{p^{p}}{e^{p}} \exp\left(\int_{a}^{b} f dx\right).$$
(44)

Where $\alpha = (b-a)^{1-p} \frac{2^p}{(1+p)}$ is the best possible.

Proof 3.23 Let $1 \le p < \infty$. By (43) we have

$$\left(\int_{a}^{b} f^{p} dx\right)^{\frac{1}{p}} \le (b-a)^{\frac{1}{p}-1} \frac{2}{(1+p)^{\frac{1}{p}}} \int_{a}^{b} f dx.$$
(45)

By applying lemma 1.5 with $x = \int_a^b f \, dx, r = p$, we get

$$\int_{a}^{b} f^{p} dx \leq (b-a)^{1-p} \frac{2^{p}}{1+p} \left(\int_{a}^{b} f dx \right)^{p}$$
$$\leq (b-a)^{1-p} \frac{2^{p}}{(1+p)} \frac{p^{p}}{e^{p}} \exp\left(\int_{a}^{b} f dx \right)$$
$$= \alpha \frac{p^{p}}{e^{p}} \exp\left(\int_{a}^{b} f dx \right).$$

From (43) it follows that α , $\frac{p^p}{e^p}$ is the sharp constant in (44), consequently α is the best constant in (44).

Remark 3.24 The following inequality is the well known Hardy inequality (for more details see [4], [1]), $\int_a^b (Hf)^p(x) dx \leq \left(\frac{p}{p-1}\right)^p \int_a^b f^p(x) dx$, where p > 1, $Hf(x) = \frac{1}{x} \int_a^x f(x) dx$, the constant $\left(\frac{p}{p-1}\right)^p$ is the best possible.

By inequality (44) we get

$$\int_{a}^{b} (Hf)^{p} dx \leq \left(\frac{p}{p-1}\right)^{p} \alpha \frac{p^{p}}{e^{p}} \exp\left(\int_{a}^{b} f dx\right).$$
(46)

4 Open problems

Problem 4.1 In Theorem 3.6, replace the condition $0 < f(x) \le p(b-a)^{-1}$ by weaker one.

Problem 4.2 For p < 0 a real number, determine the best possible constant $\alpha \in \mathbb{R}$ such that

$$\alpha \cdot \frac{e^p}{p^p} \int_a^b |f(x)|^p dx \le \exp\left(\int_a^b |f(x)| dx\right)\right).$$

ACKNOWLEDGEMENTS. The authors would like to thank the referees for carefully reading this work and useful comments.

References

- N. Azzouz, B. Halim, A. Senouci, An Inequality For The Weighted Hardy Operator For 0 9879, volume 4, no. 3, (2013), 127-31.
- [2] B. Benharrat, A. El Farissi, Z. Latreuch, On Open Problems of F. QI, J. Inequal. Pure and Appl. Math., vol. 10, iss.3, Art. 90, (2009).
- [3] F. Qi, Inequalities between the sum of squares and the exponential of sum of a J. Inequal. Pure Appl. Math., 8 (2007), no. 3, Art. 78. Available online at http://jipam.vu.edu.au/article.php?sid=895.
- [4] G. H. Hardy, J. E. Littlewood, G. Polya, *Inequalities*, Second Edition, Cambridge University Press, 1952.
- [5] H. N. Shi, Solution of an open problem proposed by Feng Qi, RGMIA Res. Rep. Coll. 10 (2007), no. 4, Art. 9; Available online at http://www.staff.vu.edu.au/rgmia/v10n4.asp.
- [6] L. Berwald, Verallgemeinerung eines Mittelwertsatzes von J. Favard fr positive konkave Funktionen, (German), Acta Math. 79(1947), 1737.