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Abstract

In this paper, we study some problems of time-frequency analysis associated with
the g-Dunkl wavelet transform. We introduce the notion of two g-Dunkl wavelet. The
resolution of the identity formula and Calderon’s type reproducing formula are proved.
Next, we define the localization operators associated with the g-Dunkl wavelet transform.
We prove for these operators the boundedness and compactness on the Schatten classes.
Finally, the traces and the trace class norm inequalities are shown.
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1 Introduction

The g-theory, called also in some literature quantum calculus, began to arise. Interest in this
theory is grown at an explosive rate by both physicists and mathematicians due to the large
number of its application domains.

Very recently, many authors have been investigating the behavior of the g-theory to sev-
eral problems already studied for the Fourier Analysis; for instance, sampling theorem [1],
Paley-Wiener theorems [2, 3], wavelet transform [14], uncertainty principles [15], wavelet pack-
ets [16], Ramanujan master theorem [17], Sobolev spaces [24], Gabor transform [23], wavelet
multipliers [25], wave equation [27], Fock spaces [28] and so on.
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One of the aims of the Fourier Analysis, is the study of the theory of localization operators.
This theory has been initiated by Daubechies in [10, 11], developed in series of papers by Wong
[8, 30, 31], and detailed in the book [32] also by Wong.

Nowadays, the localization operators have found many applications to time-frequency anal-
ysis, the theory of differential equations, quantum mechanics. Arguing from these point of view,
many works were done on them, we refer in particular to the papers of Balazs et al. [4, 5], (see
also [9, 12, 13, 19, 32]).

As the g-harmonic analysis has known remarkable development, the natural question to ask
whether there exists the equivalent of the theory of localization operators in the framework of
the g-theory.

Motivated by the recent works of Bettaibi and all [6, 7], where the harmonic analysis asso-
ciated to the g-Dunkl theory, has known remarkable development, it is natural to solve some
questions for the time-frequency analysis associated with the g-Dunkl wavelet transform.

The purpose of the present paper is twofold. On one hand, we want to study some results for
the g-Dunkl wavelet transform. On the other hand we want to study the boundedness and com-
pactness of localization operators associated with g-Dunkl wavelet transform on the Schatten
classes.

The remainder of this paper is arranged as follows. In §2 we recall the main results about
the harmonic analysis associated with the g-Dunkl operator. In §3, we prove the resolution
identity and a Calderdn’s reproducing formulas in the cadre of the g-Dunkl two-wavelet theory.
§4, is devoted to the study of boundedness and compactness of the localization operators for the
g-Dunkl continuous wavelet transform on the Schatten classes.

2 Preliminaries

For the convenience of the reader, we provide in this section a summary of the mathematical
notations and definitions used in this paper. We refer to the general references [6, 18, 20, 21,
26, 27, 32]. Throughout this paper, we assume that g € (0, 1).

2.1 Basic symbols
For a € C, the g-shifted factorials are defined by

n—1 0o

@qo="1 @qa=]]|(1-ad) n=1,2.; @@o=]|(1-ag), @D

k=0 k=0

and

We also denote

1 —
], = —L, xeC 2.2)
l-¢q
and
_ (@

i—q "
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2.2 Operators and elementary special functions
The ¢*-analogue differential operator is given by (see [26, 27]),

S+ /(=471 = fq2) + [0 =2/ (=) o

0,(NH2) = 2(1 - ¢g)z ’ (2.3)
limd,(H(x) (in R, if z=0.

Note that if f is differentiable at z, then lirrll 9,(N2) = f'(@).
q—)
The g-Gamma function is given by (see [20])

_ (¢: P
(q*;q).,

It satisfies the following relations

r,(x) (1-¢'", x#0,-1,-2,...

LG+ D)= [0, T =1 and lim Iy(x) = T(x), Z(x) > 0.
q—)

The g-trigonometric functions g-cosine and g-sine are defined by (see [26, 27])

2n

= X
cos(x;¢%) = D (=1)'g"" P
n=0

[2n],!
and
5 i ) (1) x2n+l
sin(x;¢°) == ) (-1)'¢"" ———.
s 2n +1],!
The g-analogue exponential function is given by
e(z; qz) = cos(—iz; qz) + i sin(—iz; q2). 2.4)

These three functions are absolutely convergent for all z in the plane and when ¢ tends to 1 they
tend to the corresponding classical ones pointwise and uniformly on compacts.
Note that we have for all x € R,

1 1
| cos(x; ¢*)| < , |sin(x; ¢%)| < ,
(4; oo (4: Do
and
le(—ix; q°)| < :
1 (45 Do
Here, for a function f defined on R,. The g-Jakson integrals are defined by (see [20, 21])

(2.5)

[Se]

oo b
f: f@dyx = (1= gy flag"q", f f@dyx =1 -q) Y ¢ (fbg" - flag").
n=0 a n=0
fo f@dx=(1-9) ). 4"f(g",

f fdyx=(1=-q) > 1fg"Vq" + F(=4")q"),

provided the sums converge absolutely.
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2.3 Sets and spaces

By the use of the g*-analogue differential operator d,, we note:
e &,(R,) the space of functions f defined on R, satisfying

Vn €N, a >0, Poo(f) = sup{ldf ()l 0<k<n, xel-aalnR,} <o

and
1in(1)(a; x) (in R,) exists.

We provide it with the topology defined by the semi norms P, ,.
o 7,(R,) the space of function f defined on R, satisfying

VYn,m €N, Py,uq=suplx"d,f(x)| < oo
xeR,
and

lir%(ag Hx) (in R,) exists.

e D,(R,) the subspace of .7, (R,) constituted of functions with compact supports.
o L} (R,),1 < p < oo, the space of functions f on R, satisfying

s

) 1/p
(f If(X)I”qu) <00, 1<p<oo,

ess sup |f(x)| < oo, p=oo.
xeR,

1Ay ey

In particular, L2 (R,) denotes the Hilbert space with the inner product

a,q

<f’ g>a,q = f f(x)ﬁlxlzaﬂd‘]x'
Ry

2.4 Elements of g-Dunkl Harmonic Analysis

109

In this section, we collect some notations and results on g-Dunkl operator and g-Dunkl trans-

form studied in [6].
For « > 1, the g-Dunkl transform is defined on L}L /Ry by:

Z 35

T3 (D) = g f FOWH I dyx, - forall 1€ R,

d+q7°

Wa(a+1) and ¢ is the g-Dunkl kernel defined by

where ¢, 4, =

Yrl(x) = jo(Ax; q7) + Jar1(AX; @),
q

Ax
[2a + 2]

with j,(x; ¢%) is the normalized third Jackson’s g-Bessel function given by:

[p(@+ Dg"*h X )2n

.(1 5 ) = —-1)"
Jnlx: ) HZ::?( ST+ Tp@rn+ D\4g

(2.6)

(2.7)
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It was proved in [6] that for all A € C, the function x — ¢ (x) is the unique solution of the
g-differential-difference equation:

Aoy(f) = idf
{ )= 1. (2.8)

where A, 4 is the g-Dunkl operator defined by

J(x) - f(=x)

Aag(H)X) = 8, fe + ¢ f1(x) + 2a + 1], P

(2.9)

with f, and f, are respectively the even and the odd parts of f.
We recall that the g-Dunkl operator A, , lives the spaces D,(R,) and .7, (R,) invariant.

Remark 2.1. (i) It is easy to see that in the even case F, reduces to the q-Bessel transform
and in the case a = %, it reduces to the g*-analogue Fourier transform.
(ii) It is worthy to claim that letting q T 1 subject to the condition

In(1 —¢)
In(g)

1 tends, at least formally, the classical Dunkl transform. (See [6]).
In the remainder of this paper, we assume that the condition (2.10) holds.

€ 2Z, (2.10)

Some other properties of the g-Dunkl kernel and the g-Dunkl transform are given in the
following results (see [6]).

Proposition 2.1. i) Forall 1,x € R, a € C, we have

VI =y, Y0 =y e, ¢ =yl

ii) If @ = =1, then ¢7(x) = e(idx; ¢°).
iii) For @« > —3, the q-Dunkl kernel ' has the following g-integral representation of
Mehler type

1
2’

A1+ @lpe@+1) M ¢ e

VxeR, uT%x) =
q w/l ( ) 2qu(%)qu(@+ %) 4 (t2q2a/+1;q2)oo

(1 + De(idxt; g*)d,t.  (2.11)

iv) For all A € Ry, y{? is bounded on R, and we have

VxeR,, W7%x)|< . (2.12)
v (45 @)oo
v) For all A € Ry, the function y{? belongs to 7 (R,).
vi) The function y{? verifies the following orthogonality relation: For all x, y € R,
S T e 4(1 +q)2“l";2(a+ 1)
Vo wlarPetd,a = Sy (2.13)
[ T g = — e,
vii) If f € Lé’q(Rq) then F,(f) € Ly (Ry) and
a,q 4c05,q
175 (Plleg, =, < WA, e, (2.14)

(4; Do
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Moreover

lim FRUND) =0, LRy lim FRUNW) = Fp(NNO), L R, (215

[A]—> 00
viii) For f € L,, (R,), we have
F 5 (Nag)HA) = idF (). (2.16)

ix) For f, g € L, (R,), we have

f Fp (DI dya = f FOF 5 @) dyx, (2.17)

[

Theorem 2.1. Forall f € L}W(Rq), we have

VxeRy f(X) = cog f T (DY dgd = FRUF ()X, (2.18)

—00

Theorem 2.2. i) Plancherel’s formula
Fora > —%, the g-Dunkl transform % is an isomorphism from #,(R,) onto itself. Moreover,
forall f € S, (R,), we have

175 (Olliz e,y = 11122, 5, - (2.19)

ii) Plancherel’s theorem
The q-Dunkl transform can be uniquely extended to an isometric isomorphism on Li’q(Rq). Its
inverse transform (%) is given by :

(Zp D () = cayg f ST d,d = F30(f)(=x). (2.20)

Proposition 2.2. Parseval’s formula for F .

Forall f, g in L}, (R,), we have

f DI dyA = f T (N F U (@I dyx. (2.21)

(%)

Proposition 2.3. For all f in D(R,) (resp. S(R,)), we have the following relations

VxeR, ZyHx) = ZyfH), (2.22)
VxeR, FyUHx)=F3f)-x), (2.23)
where g(x) := g(—x).

Definition 2.1. The g-Dunkl translation operator is defined for f € Li,q(Rq) and x, y € R, by

73X = Cayg f T OO w T WIAP dy. (2.24)

(o)

It verifies the following properties.
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Proposition 2.4. (i) For all x, y € Ry, 77(f)(x) = 779(H(B).
(i) If f € L, (Ry) (resp. S4(R,)) then 7(f) € L, (R,) (resp. .7(R,)) and we have

N 4
Il 2 < Tl - (2.25)

(iii) For all x, y, A € Ry, 1y N(x) = ¢ (0w ().
(iv) For all f € L}, (R,), x, y € Ry, we have

Tl Q) =0T (). (2.26)
(v) For all f € /}(R,), and for all y € R,, we have
AagTylf = 70 N g gf.

Definition 2.2. The g-Dunkl convolution product is defined for f, g € /,(R,) by:

(o)

F b 800) = Cag f 9 F(—y)gOd,y. 2.27)

Proposition 2.5. 1) Let f € L}, (R,) and g € L, (R,), then f %, 4 g € L, (R,) and we have

FUS *aq &) = F5()-F5 Q).

2) Let f, g bein Li’q(Rq), then f *,,8 € Li,q(Rq) if and only ifﬁg’q(f)ﬁg’q(g) is in Li’q(Rq)
and we have F(f %4, 8) = () F5(g) and

f |f #ag gEOP P dyx = f |75 NPT g ()Pl d .

3 Two g-Dunkl wavelet theory

3.1 Resolution identity formula

Notation. We denote by
Lﬁm(Rq x R,) the space of all functions f defined on R, X R,, p € [1, o0], and satisfying

1
00 00 >
||f||L;€(,,q(RqXRq) = ([ I |f(a’ x)lpd/la’,q(a7 x) < 007

W, mpry = ess sup |f(a, x)| < oo
’ (a,x)ERy xR,
N |x|***'d, ad,x
where du, 4(a, x) = W

For p € [1, o], p’ denotes as in all that follows, the conjugate exponent of p.

Definition 3.1. (/7]) A g-Dunkl wavelet is a square g-integrable function h on R, satisfying the
following admissibility condition

d,a
— < oo. (3.1)
lal

0<cpti= [ 17 e



The g-Dunkl wavelet theory and localization operators 113

We generalize the notion of the g-Dunkl wavelet as follows.

Definition 3.2. Let u and v be in Li,q(Rq). We say that the pair (u,v) is a two g-Dunkl wavelet

@,q

on R, if the following integral, noted by C,};,

e —d
f 9’3’[’(V)(a§)3zg’q(u)(a§)—a (3.2)

q

0 lal

is constant for all € € R,. We call the number C,;! the two q-Dunkl wavelet constant associated
to the functions u and v.

Remark 3.1. It is obvious that if u is a qg-Dunkl wavelet then the pair (u,u) is a two q-Dunkl
wavelet, and C,, coincides with C,7.

Proposition 3.1. Fora € R, and h € L2 (R,) (resp. .#,(R,)), the function h, defined by

a,q

X
Vxe Rq, ha(X) = Wh(;) (3.3)
belongs to wa(Rq) (resp. S4(R,)) and we have
Whalliz = e Wl (3.4)
(ii) Let a € Ry and h be in L, (R,) U L7, ,(R,). We have
Tl h)§) = Fpl(h)(ag), €€R,. (3.5)

Let i be a g-Dunkl wavelet in L2 (R,) (resp. 7, (R,)). We consider for all a € R, and b be

a.q

in ﬁq, the family of g-Dunkl wavelets A  defined in Li’q(Rq) (resp. 7, (R,)) for x € R, by

hax(y) := lal* ' 70 (hy) (), (3.6)
where 777, x € R,, is the g-Dunkl translation operator given by (2.24).

Remark 3.2. Let h be in L}, (R,). We have

b

4
Via,x) € Ry xRy, hasllzz e, < m”h”ﬁw(&y (3.7)

Definition 3.3. Let h be a g-Dunkl wavelet on R, in L(Zl, /Ry). The continuous q-Dunkl wavelet

transform TZJ! on R, is defined for regular functions f on R, by

Yi(a,x) e Ry xRy,  W,(f)a,x) = coy f T MY dyy = coglfi haxdag (3.8
This transform can also be written in the form

W)@, x) = lal™ f xag ha(x), (3.9)

where *,, is the g-Dunkl convolution product given by (2.27).



114 H. Mejjaoli and N. Sraieb

Remark 3.3. Let h be a g-Dunkl wavelet, in Li’q(Rq). Then from the relations (3.7) and (3.8),
forall f in L}, (R,) we have

MG DN g ey < Ceg @ oW e Vil e, (3.10)

(
Theorem 3.1. Let (u,v) be a two q-Dunkl wavelet. Then for all f and g in Li, ,Ry), there holds

f f Wy, ()@ 0¥ ()(a, )it g(a, x) = Cof f FOX " d,x, (3.11)

where

Gl = f Nq(u)(af)ff“‘](v)(af)ﬁ (3.12)

Proof. The use of Fubini’s Theorem, relation (3.9), Parseval’s formula (2.21) and Proposition
2.3 give

f f e ()@, ) ()@, X)dpta,q(a, x) = f e f I *ag Ua(0)B *aq Va(X)dito (@, X)
o o - .

i f f Z DO DO T W& T TN d

= f yg’q(f)(f)m(f J\aq(u)(aé:)ﬁaq(\/)( (/lf) | | )|§|20+1dq§

00 - . ;
:f fgq(f)(f)?gq(g)(f)(f fgq(u)(aéf)gag‘I(V)(aé‘;)ﬁ)lgldeqg

= Cu f Tl NEOT U@ dyé.

Thus, the proof will be achieved by the use of Parseval’s formula (2.21). O
Remark 3.4. If u = v is a g-Dunkl wavelet and f = g we obtain the following Plancherel’s
formula
[ e Pdungtan = ez [P (3.13)
where
@ o * ora,q qua
Crt=Cpnt: |- (u)(aé) W (3.14)
o a

Corollary 3.1. Let (u,v) be a two q-Dunkl wavelet. We have the following:
IfCyy =0, then ¥4 (L, (R,)) and W4 (L, (R,)) are orthogonal.

Theorem 3.2. (Inversion formula). Let (u,v) be a two q-Dunkl wavelet such that C,;} # 0. For
all f belongs to L}, (R,), we have

a,q ~ ~ @ (] 2a+ld‘Iqua
C f) = cCag Wy (N, x)vg (y)lx| s Y €R,. (3.15)
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Proof. Lety € R, and put k = 6. Then, the use of relation (3.11) and the definition of ¥y ,
give that

(1- q)lylz‘”zf(y) - f FORDIPdt

(f )a, x)‘Pa (k)(a, x)|x|2a+1qudqa

| |2a/+3

_ C(zq f f \Pw (f)(a X) fOO k(l_)v(y (t)|t|211+1d l,)|x|20+1 Cllqlzf+§l
Co d
= amanfr g [ [ e et s

the last line of this proof is obtained by the use of the g-Jackson integral. O

3.2 Calderon’s reproducing formula

Theorem 3.3. (Calderon’s formula). Let u and v be the g-Dunkl wavelets in L2 Ry) such that
(u,v) is a two g-Dunkl wavelet, Jaq(u) Fr(v) belong to LY (Ry) and Col + 0. Then, for f in
LZ! (R,) and &,06 € R, such that € < 6, the function

d,a
fo>x) = f f Yo (a, b)va,(x)d, bl Bars X € R, (3.16)
u v e<l|a|<d
belongs to Liyq(Rq), and satisfies
E_)loiglloo I1fe° - f||Lg,q(Rq) = 0. (3.17)

To prove this theorem we need the following Lemmas.

Lemma 3.1. Let u and v be two gq-Dunkl wavelets satisfying the conditions of Theorem 3.3 and
fin L} (R,). Then,
i) The functions (f #,.4 Ug) and (f #aq Ug) *aq Ve are in L2, ,(Ry), and we have

Ty ([ #aq W) *ag vE) = T NO T ) T @), € €R,, (3-18)
ii) We have
1 g ) g Valliz ) < I Z 5 @l w1 Z 5 Ol pllf iz, (3:19)

Proof. 1) From Proposition 2.3 and Proposition 2.5 we have
FyU(f #aq u) WE) = FpU(f #ay i)(—E)
F U PN=E).T 5 (Ug)(—€)
F5UNEF 5 ) (E). (3.20)

For x € R,, we put Z(x) = ( f *0.q 1,)(x). It’s easy to see that Z belongs to Li’q(Rq). Using
Proposition 2.5 and the fact that

T UZ %0g V&) = Fp ([ *ag Ha) *ag V&) = FPUDNE T v)E), €€R,  (321)
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the relation (3.18) is obtained by using relations (3.20) and (3.21).
ii) From 1) we have

f |75 ([ *agla) ¥agva) E)PIEP"  dy = f T3 (DEPIT W) EPIT R v EPIEP dyé.

Then, from the Plancherel formula (2.19) and the fact that .%,%(u,) and .%,%(v,) belong to
Ly (R,), we obtain

ICF g ) g Valliz ey < 17 Wl @17 Gl @ 1Lz, -
This end the proof by the use of relation (3.5). O

Lemma 3.2. Let u, v and f be as above. For €, 6 € R, such that € < 6, define the two function

TN d,a
Kos®) = oy f Fr O T O £c R, (3.22)
u,y Je<lal<o
and
€,0 2a+1 d‘]a
F90) = ‘P W OV O s,y € Ry (3.23)
uv e<lal<é
Then,
i)
VCHACY!
0 < [Kes(O) = # (3.24)
and
1(}m K.5(6) = 1. (3.25)
ii) The function f<° € Li’ q(Rq) and
FUf) = FpUHKes. (3.26)

Proof. 1) It follows from the Cauchy-Schwarz inequality and the relation (3.14), that

I } N }

Ko < o M@“q(ua)(f)ﬁl |) ( f 7 %va)(f)Fl |)
’ v, - 1% d 2 Cg,ch’,q
< (o l f |5 () @) l"l)( f Ic%)"’(va)(f)lzﬁl) :—”lcq

And we get easily that
hm K6 & =1.

e—0,0

ii) It’s not difficult, by the use of the definition of the g-Dunkl convolution product, to see
that

£°0) =

o . d,a
o f (f *a.q Ua) *a g va(y)ﬁ- (3.27)
u,y Je<lal<o
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Indeed,

€,0 _ Cag — a.,q 2a+1 d
FeoGy) = C— f ) f (F g T2 )0 d"||
u,v e<|al<é

. d,a
= v TP )~ d 0
e<|al<s |a|
. f (g Ta) g valD)
= ~ *g.q Ua) *a.q Va(y)—
Cu,,vq e<lal<d 1 4 Y | I

dya
By using Holder’s inequality for the measure lq—l, we get
a

1 dLa f
|C1(i’3|2(je-<|a|<6 |a|) e<lal<s (

So, by applying Fubuni-Tonelli’s theorem, we obtain

d, a dya
€,0 2(t+ld f f f N ) %, . 2&+1 )
f 700D gy < g |2( s ) s U I g T g v P )3

From Parseval’s formula (2.21) and relation (3.18), we deduce that

f O,y <

2da

fOIP <

Ft0a ) 2uq va)| 75

1 day [ d
(f La)[ |§gq(f)(§)|2( f<| |<6|ﬁg’q(ua)(§)|2|ﬁg’q(va)(§)|2LT)|§|2a+1dq§.

ICar PN Jesia<s lal la

On the other hand, from the relations (3.14) and (3.5), we have

f T @R T e |q| < CHNFL IR,
e<la|<d

Thus,

€, 0% C(Zq a, «,
I FRPOFDE dy <t |2(ff<|a|<6 a |)”3j WOl 175 N -

and the Plancherel formula (2.19) implies

a,q

©0 ( d,a
€,0 21, 12a+1 v q ar.q 2 2
i < ( —) o 0.
[m |f (y)l |y| dqy — |Cg,vq|2 fe;lalsé a ||JD (u)l|Lﬂ,fI(RlI)||f||L(2,’q(Rq) <

Then, f<° belongs to L, (R,).
Now we prove the relation (3.26). Let y in .”(R,). We have the function (%, %) (y) is in
< (R,). From the relation (3.27), we have

f FLeOF D 0O dyy

f f T T g m(y)W)(W‘f) O dyy

ora.q 2a+1 d
f ) f (f *ag ) *ag vaO(T5 D) OO dqy)| - (328
e<lal<o

@.q
Cuy
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To justify the use of the Fubini’s theorem in the last sequence of the equalities, observe that

|f f| | |(f a,q uu) a,q va(y)(L/G\Q— q)()()(y)' | |Y| @ ldqy =
e<|al<o
1

‘C(:V fE<|Q|<5 f—oo |(f *q ) qua(y)”(ya ) (X)(y)”ylza : qy| | |

By applying Holder’s inequality to the second member, we get

! 7 ) a,q\— o d,a
- f [f 1 g ) #aq VeI QOO Py | 72 <
CM,V e<lal<o —00 d al
—aq i ) Zqy-1 qa
'C;Y:I c<ll<s ”(f *a,q Uy) *a,q Va“Lg,q(Rq)”(c/D ) (X)”L(ly’q(Rq)W.

From the relation (3.19) and the Plancherel formula (2.19), we obtain

1 < . . N d,a
[T 10 00T s v 0 |72 <
Cu,v e<|al<é d | |
1 @, a,
o | OV Wi s VT O W g i <
’ e<l|al<d

Now, by using the Parseval formula (2.21) and the relation (3.18) and Fubini’s theorem, the
integral given by relation(3.28) becomes

lal
f O\aq(f)(f)( @.q fl - 6%?“% a)(é‘)_»/(ét)lé«lmﬂdqg

MV

MV

f lal f F q(f)(f)mﬁa q(va)(‘f))((fﬂﬂzaﬂdqf)
e<lal<6

f T NEKes @@L dyé. (3.29)

On the other hand, by applying the Parseval formula (2.21) to the first member of the relation
(3.28), we get

f T (fONENENE T dyé. (3.30)

From the relations (3.29) and (3.30), we obtain for all y in ./ (R,)

[ (50 - 75 @K@ e@ler - de = 0.

Thus
T NO = T (NOKE): € Ry

We are now ready to prove the main result of this subsection.
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Proof. of Theorem 3.3. From Lemma 3.2 ii), the function £ belongs to Li, ,(Ry). By using the
Plancherel formula (2.19) and Lemma 3.2 ii), we obtain

7= My = [ 1F5G - O dye

f [T 5 (IEKes(€) = DIPIEP dyé

f | Z U AENI = Kes@)PIEP dyé.
But from Lemma 3.2 ii) again, for all £ € R,, we have
_lim FUEPI = Kes@)P =0,

and

[T NEPIL = KesOF < CLERU (NN,

with Iﬁg’q( @ in Lé’q(Rq). So, the relation (3.17) follows from the dominated convergence
theorem. O

4 Localization operators for the g-Dunkl wavelet transform

4.1 Preliminaries

Notation. We denote by

e [’(N) the set of all infinite sequences of real (or complex) numbers x := (x;) jex, such that

had 1
ldl, = (D )" <oo, if 1<p<oo,
j=1
lIXllee 1= sup|x;| < oo.
JEN

For p = 2, we provide this space [*(N) with the scalar product

[

(X, y)2 = Z Xy

Jj=1

° B(Liy ,(Ry)) the space of bounded operators from Lé,q(Rq) into itself.

Definition 4.1. (i) The singular values (s,(A))en of a compact operator A in B(Lfy’q(Rq)) are

the eigenvalues of the positive self-adjoint operator |A| = VA*A.
(ii) For 1 < p < oo, the Schatten class S , is the space of all compact operators whose
singular values lie in I’(N). The space S ,, is equipped with the norm

IAlls, = (Z(sn(A»P)"l’. (4.1)
n=1
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Remark 4.1. We note that S , is the space of Hilbert-Schmidt operators, whereas S | is the space
of trace class operators.

Definition 4.2. The trace of an operator A in S| is defined by
tr(A) = ) (AV, Vaag 4.2)
n=1

where (v,,), is any orthonormal basis of Li, /Ry

Remark 4.2. If A is positive, then
tr(A) = ||Alls, - (4.3)

Moreover, a compact operator A on the Hilbert space Lfy, ,Ry) is Hilbert-Schmidt, if the positive
operator A*A is in the space of trace class S . Then

IAllGs == lIAllg, = lA*Alls, = tr(A*A) = > [lAv,I7, (4.4)
La,q(Rq)

n=1
for any orthonormal basis (v,), of Li’q(Rq).

Definition 4.3. We define S ., := B(L(zl’q(Rq)), equipped with the norm,

IAls. == sup AV, (4.5)

2 N —
VELzr,q (Rq).”V”L(z,'q(Rq)_ 1

Definition 4.4. Let u,v be measurable functions on R,, o be measurable function on Ry X R,,
we define the two-wavelet localization operator noted by £, (o), on Lg,q(Rq), 1 <p<oo by

L) )Y) = Cayg f f o(a, ¥, ()@, x) v, (dpaqa x), y € Ry. (4.6)

In accordance with the different choices of the symbols o and the different continuities
required, we need to impose different conditions on « and v, and then we obtain an operator on
L} ,(R,).

It is often more convenient to interpret the definition of ., ,(0) in a weak sense, that is, for
fin L2 (R,), p € [1,00], and g in L (R,),

(L F)r &g =f f o, P () DT (D@ Dellinglar ). (A7)

Proposition 4.1. Let p € [1, c0). The adjoint of linear operator 2, (o) : L ,(R,) — L§ ,(R,)
is Zu(@) 1 LI ,(Ry) = LI ,(R,).

Proof. Forall fin L} ,(R,) and g in ngq(Rq) it immediately follows from (4.7)

(L)) g

f (a1, W () et T (@) Dl a1, 3)
RyxRy

f @ P (9@, D (@ el gt 1)
RyXRy

<°Z/,u(6)(g)a f>a,q = <fa Z},M(E)(g»a,q
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Thus we get
L) = L@ (4.8)
O

In what follows, such operator .Z,, (") will be named localization operator for the sake of
simplicity. In this section, u and v will be two g-Dunkl wavelets on R, such that

||M||L§,,,(R‘,) = ||V||L2 JRY T =L

4.2 Boundedness for .Z, ,(c) on S .,

The main result of this subsection is to prove that the linear operators .Z, (o) : Li, q(Rq) -
Lfy,q(Rq) are bounded for all symbols o € “aq(R xRy, 1 < p < co. We first consider
this problem for o in L}lmq(Rq X Ry) and next in L? (R, X R,) and we then conclude by using
interpolation theory.

Proposition 4.2. Let o be in L};m (R, xRy), then the localization operator Z,,,(0) is in S « and

we have 2

16¢
12 @ls. < Sl (4.9)

Proof. For every functions f and g in L2 ,(Ry), we have from the relations (4.7) and (3.10),

(L)), 8agl < f f lo(a, O, ()a, DIV ()a, ¥ldpaq(a, x)

||\Pa (Ol (R, qu)H\P y(@llze (R, xR)||0'||L

Har g Ha,q Ha,q (RQXRq)
2
S @ )2 ”f”L,]q(Rq)”g”Laq(Rq)”O-” Ll g ®oxRy)"
Thus,
16¢2
q
L e T

O

Proposition 4.3. Let o be in L;‘(’w (R, xRy), then the localization operator Z,,,(0) is in S « and
we have

|-Z (s, < C;ch:/l’q”0-||Lfl°a,q(Rq><Rq)-

Proof. For all functions f and g in L2 (R,), we have from Holder’s inequality

@,q
KL (o) (f)s 8agl < f f lo(a, VI, (/) a, OIS, (8)(a, X)ldua 4(a, x)

@)Y (Ol 2

<ol

Ha.q

o (RyxR )||‘P @2

2 g RgXRy)*

Using Plancherel’s formula for W{ , and W , given by the relation (3.13), we get

KLin(@)S), &agl < VCICNS N2

‘,q(R,,)||g||L§,q(R,,)||0'||L°° (R XR,)-

Ha,q

Thus,
l-Z()ls., < Cﬁ’qcf’qllrflIL;MquRq).



122 H. Mejjaoli and N. Sraieb

We can now associate a localization operator %), () : Li’ Ry — th ,(Ry) to every symbol
o in Lﬁm(Rq X R,), I < p < oo and prove that .Z,, (o) is in S.. The precise result is the
following theorem.

Theorem 4.1. Let o be in Lﬁm (Ry;xRy), 1 < p < co. Then there exists a unique bounded linear
operator Z,,,(0) : L, (R,) — L} (R,), such that

16C(22’q % 169 g\ 5t
I1Z (s, < (W) (C1cy 7 oy,

Proof. Let f be in Lﬁyq(Rq). We consider the following operator
T L:tu,q(Rq XRH)MNL; Ry xRy — Li’q(Rq),

(RgXRy)*

given by
T(0) := L))
Then by Proposition 4.2 and Proposition 4.3
2
||=7(0')||Lg,q(Rq) <

: ||f||Lg,q(Rq)||0'||L}4 (RgXRg) (4.10)

_taaq
(q: 93

@.,q
and

17 (@2, w,) < VCAC Nz, @) RN, 2yxiy)- (4.11)
Therefore, by (4.10), (4.11) and the Riesz-Thorin interpolation theorem (see [[29], Theorem 2]
and [[32], Theorem 2.11]), .7 may be uniquely extended to a linear operator on Lﬁmq Ry X Ry),
1 < p < oo and we have

2

166‘0"] % 107 @ gt
@)Dl = 17 Ol < (55) €CEUCID Tl

Since (4.12) is true for arbitrary functions f in Li, ,(R,), then we obtain the desired result. O

q(Rq)”O-”Lza,q(RqXRq)' (4.12)

4.3 Schatten-von Neumann properties for ., (o)

The main result of this subsection is to prove that, the localization operator .Z, (o) : Lfl, Ry —
L; (R,) is in the Schatten class S ,.

Proposition 4.4. Let o be in LLM (R, X Ry), then the localization operator £, ,(07) is in S, and

we have
16ciq
I-Zn()lls, < W”G”LLQ#(R‘IXR({)'

Proof. Let{¢;, j = 1,2...} be an orthonormal basis for Li’q(Rq). Then by (4.7), Fubini’s theorem,
Parseval’s identity and the relations (3.8) and (4.8), we have

D@ o) = D (L)), L) Dy
J=1 J=1

= A [ [ @@ 100 @ v ditfa)
jzl —00 —00
=, f f (@, %) D (b 1, gl L (ON(V,.): gy (@ X)

= ¢, f f o(a, xXZ; () v, .o U, aqdiag(a, X).



The g-Dunkl wavelet theory and localization operators 123

Thus, from (4.8),(4.9) and (3.7) we get

- l6c(2“] « « %
Z 1Pz ) < = f f lo(a, Ol 112, ()l A 4(a, x)
@,g\">q q:9)
=1 —00 J—oo (4.13)
l6c§q
((q;q)éo ) 2||O-||i}llmq(RqXRq) <
So, by (4.13) and Proposition 2.8 in the book [32], by Wong,
L) 1 Ly Ry = L (R,)
is in the Hilbert-Schmidt class S, and hence compact. O

Proposition 4.5. Let o be a symbol in LZM (RyxR,), 1 < p < oo. Then the localization operator
Z,,(0) is compact.

Proof. Leto € L}, (R, X R,) and let (07)err € L, (Ry X R N L7 (R, X R,) be a sequence of
functions such that o7, — o in Lﬁm (R; XR,) as n — oco. Then by Theorem 4.1

2 1

16Ca,q > o o p-1
L) = Zius(@ls.. < ( o ) (CICD T Nl = gy, em,-

Hence .Z, ,(07,) — Z,,(0) in S« as n — oco. On the other hand, as by Proposition 4.4, .Z, ,(c,)
is in S, hence compact, it follows that .%), () is compact. O

Theorem 4.2. Let o be in LLasq(Rq X Ry). Then Z, (o) : L} (R)) — L (R,) isin S and we

have
2C§,q —_ 16C§’q
c* 4+ C""Illo-”L/La,q(RqXRq) < IZiy(@)lls, < W||O'||L}m¢q(quRq)a (4.14)
u v 5 Q)5

where o is given by
Y(a,x) e R; xRy, o(a,x) = (Z,,(0) Uy s Vo dag:

Proof. Since o is in L;IJU,,,(Rq x R,), by Proposition 4.4, %), ,(c) is in S, then from the canon-
ical form for compact operators given in [32, Theorem 2.2], there exists an orthonormal basis
{¢;, j=1,2...} for the orthogonal complement of the kernel of the operator .Z,,,(c"), consisting
of eigenvectors of |.Z;, (o) and {¢;, j = 1,2...} an orthonormal set in Li,q(Rq), such that

(o)

L F) = D 5K Fr b et (4.15)

J=1

where s;, j = 1,2... are the positive singular values of .Z, (o) corresponding to ¢;. Then, we
get

1Zs(@Ns, = D55 = D (LN g

J=1 J=1
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Thus, by Fubini’s theorem, Cauchy-Schwarz’s inequality, Bessel inequality, relations (3.8) and
3.7), we get

1L s, = D A Zas @B 6 g
= Z f f o(a, )Y, (9 )(a, )] (p)(a, X)dtaq(a, X)
LT 1 1
(e 2 00 2
< f |a<a,x>|[2 |T3,u<¢j><a,x>|2] [Z |\P§,ﬁv<¢j><a,x>|2J e g(a, X)
RgxRy j=1 j=1
< g [ [ 1@l e gl v e i)
165,
< @ )2 Lo HL#M(RXR,,)‘
Thus

2

16¢
IlZp(lls, < @ )2 — ol e e,

Ha,q

We now prove that .Z, (o) satisfies the first member of (4.14). It is easy to see that o belongs
to L, ,(R,), and using formula (4.15), we get

Fa 0] = (L@ 1), 7, Jeg

(o)
= \Z 5 s 0

2

S] '( I/t“, ¢]>wq ’( Vﬂvx, ‘Pj)(z,q )

J=

1
2

Then from Fubini’s theorem, we obtain

f f (@, X)ldpta qa, x)< sj f f Kty Vet g %)
+ f f KV, Vg e g, X)).

Thus using Plancherel’s formula for W¢ , Yo , we get

qu> = qv?
A A Col+ G o C+Cy1
f f [0, Dldpag(a x) € =5== ) sy = = L@,
—00 J—00 aq j=1 a,q
The proof is completed. O

Corollary 4.1. For o in LLM (R, X R,), we have the following trace formula

(L () = ¢, f ) f ) o (a, X)XV, s U, Vo gdiay(a, X). (4.16)
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Proof. Let{¢;, j = 1,2...} be an orthonormal basis for Lé’q(Rq). From Theorem 4.2, the local-
ization operator .Z, ,(0) belongs to S, then by the definition of the trace given by the relation
(4.2), Fubini’s theorem and Parseval’s identity, we have

tr(Zu(0) = i(%,v(a)(%), b )ag
=1

-2y [ i [ " 0B 1y g 9, g )
jo1 oo

= 2, f i f "o, x)i«bj, t, ag(Bjs V) Ahtaq(as X)
Y —

= oy f i f " ota, x><jv,l,x,ua,x>a,q dpta4(a, x),

and the proof is completed. O

In the following we give the main result of this subsection.

Corollary 4.2. Let o be in L, (R, XR,), 1 < p < co. Then, the localization operator £,,,(c) :
L Ry — L (R, isin S, and we have

2

16C0”(I % a gy 5t
||°‘Zu,v(0-)||s,, < ((q q)2 ) (Cu,qcv,q) 2p HO-”L/I;a,

Proof. The result follows from Proposition 4.3, Theorem 4.2 and by interpolation (See [32,
Theorem 2.10 and Theorem 2.11]). O

J(RyxR)"

Remark 4.3. If u = v and if o is a real valued and nonnegative function in L}lm (R, X R,) then
Z(0) L?l,q(Rq) — L%(Rd) is a positive operator. So, by (4.3) and Corollary 4.1

|Z(@ls, = ca, I I o(a )l Nz g dag(@: ). (4.17)

Now we state a result concerning the trace of products of localization operators.

Corollary 4.3. Let 0y and o, be any real-valued and non-negative functions in L;lzmq (Ry; X Ry).
We assume that u = v and u is a function in L(zl’q(Rq) such that ||ul|2 SR = 1. Then, the
localization operators £, ,(01), Z,.,(02) are positive trace class operators and

|(Ziton L) |

tr( L) L))
(tr((,?u,v((f | )))n(”” (Lo 2)))n
[, [[unio)

IA

S ’
for any natural number n.

Proof. By Theorem 1 in the paper [22] by Liu we know that if A and B are in the trace class S
and are positive operators, then

n

VneN, trAB) < (r(A) (r(B))

So, if we take A = %, (1), B = Z,,(0») and we invoke the previous remark, the desired
result is obtained and the proof is completed. O
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S Open Problem

In the present paper, we have successfully studied the localization theory associated with the
g-Dunkl wavelet transforms on the Schatten classes. The obtained results have a novelty and
contribution to the literature. It is our hope that this work motivate the researchers to study the
boundedness and compactness of these localization operators on L7 ,(R,), 1 < p < oo,
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