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Abstract

The main aim of this article is to study some special ele-
ments (zero divisors and units) in ternary rings. Then, the
main properties and concepts of noetherian and artinian ternary
rings have been studied. In addition, new results on noethe-
rian and artinian ternary rings have been investigated.
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1 Introduction

The concept of the ternary rings has been produced by W. G. Lister in 1971,
where some special elements, ideals and regularity of these rings were also
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presented [8]. In [7] the author identified the noetherian ternary semirings
and presented a result similar to what is known in the noetherian rings. The
current research study some special elements in ternary rings, various known
concepts in the noetherian and artinian rings in the ternary rings and then
studying the properties of these rings.

2 Notations and basic concepts

In this section the notations and the necessary definitions of terms used in this
paper have been introduced.

Definition 2.1. [5] A nonempty set T together with binary operations (ad-
dition and a ternary multiplication) denoted by juxtaposition, is said to be a
ternary ring, if T is an additive commutative group satisfying the following
properties:

(i) (abc)de = a(bcd)e = ab(cde),

(ii) (a + b)cd = acd + bcd,

(iii) a(b + c)d = abd + acd and

(iv) ab(c + d) = abc + abd, for all a, b, c, d, e ∈ T .

During this paper, we write T instead of (T,+, ·) if there is nothing am-
biguous. The next are examples of some ternary rings.

Example 2.2. [8] The set T consisting of a single element 0 with binary
operation defined by 0 + 0 = 0 and ternary operation defined by 0 · 0 · 0 = 0, is
a ternary ring. This ternary ring is called the trivial ternary ring or the zero
ternary ring.

Example 2.3. [6] The set T = {−2i,−i, 0, i, 2i, · · · } is a ternary ring with
respect to addition and complex ternary multiplication.

Example 2.4. [6] The set T = {0, 1, 2, 3, 4} is a ternary ring with respect to
addition modulo 5 and ternary multiplication modulo 5.

Definition 2.5. [5] If T is a ternary ring, we call the unitary in the com-
mutative group (T,+) zero ternary ring, which is signified by 0 and meets the
conditions that x + 0 = x and 0xy = x0y = xy0 = 0 for all x, y ∈ T .

Through out this paper, T will always denote a ternary ring as zero.

Definition 2.6. [5] In the ternary ring T . If there is an element e ∈ T such
that eex = exe = xee = x for all x ∈ T , then e is called a identity element of
the ternary ring T .
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It is obvious that xye = (exe)ye = ex(eye) = exy and xye = x(eye)e =
xe(yee) = xey for all x, y ∈ T .

Proposition 2.7. [5] If e is a identity element of a ternary ring T , then
exy = xey = xye for all x, y ∈ T .

Definition 2.8. [5] A ternary ring T is called commutative if it meets the
following condition:

abc = cba = acb = bca = cab = bac, for all a, b, c ∈ T.

Definition 2.9. [4] A nonempty subset S of a ternary ring T is called a ternary
subring of T , if (S,+) is a subgroup of (T,+) and abc ∈ S for all a, b, c ∈ S.

Definition 2.10. [2, 3] An element x of a ternary ring T is called idempotent,
if x3 = x.

Definition 2.11. [1, 5] An element a in a ternary ring T is said to be regular,
if there is an element x ∈ T such that a = axa.

Definition 2.12. [4] An element x of a ternary ring T is called nilpotent, if
xn = 0 for some odd positive integer n.

The set of all nilpotent elements in T will be denoted by NT .

Definition 2.13. [1, 9] An additive subgroup I of a ternary ring T is called
a left (right, lateral) ideal of T , if bca ∈ I (respectively abc ∈ I, bac ∈ I) for
all b, c ∈ T and a ∈ I.

If I is a left, right and lateral ideal of T , then I is called an ideal of T . If
I is a left, and a right ideal of T , then I is called a two-sided ideal of T .

Definition 2.14. [1, 6] A proper ideal P of a ternary ring T is called a
semiprime of T , if this condition is met :A3 ⊆ P implies A ⊆ P , for any
ideal A of T .

� A proper ideal P of a ternary ring T is called a completely semiprime of
T , if there is an element a in T , such that: a3 ∈ P implies a ∈ P .

� A proper ideal P of a ternary ring T is called a prime ideal of T , if
ABC ⊆ P implies that A ⊆ P or B ⊆ P or C ⊆ P , for A,B and C are
ideals of T .

� A proper ideal P of a ternary ring T is called a completely prime ideal
of T , if and only if for any elements a, b, c ∈ T , then abc ∈ P implies
that a ∈ P or b ∈ P or c ∈ P .
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� A proper ideal P of a ternary ring T is called a idempotent ideal of T , if
P 3 = P .

Definition 2.15. [1, 10] An ideal M of a ternary ring T is maximal, if it is
not properly contained in other proper ideal of T i.e. M ⊆ M ′ ⊆ T implies
that M = M ′ or M ′ = T .

Definition 2.16. [4] A proper ideal I of a ternary ring T is said to be irre-
ducible, if A∩B ∩C = I implies that A = I or B = I or C = I, for A,B and
C are ideals of T .

Definition 2.17. [5] If a is an element of a ternary ring T , then:

aTT =

{∑
fin

axiyi | xi , yi ∈ T

}

TTa =

{∑
fin

xiyia | xi , yi ∈ T

}

TaT =

{∑
fin

xiayi | xi , yi ∈ T

}

TTaTT =

{∑
fin

xiyiax
′
iy
′
i | xi , yi , x′i , y′i ∈ T

}

Definition 2.18. [5] Let T be a ternary ring and a ∈ T and let n ∈ Z+
0 (the

set of positive integers with zero). Then the following statements hold:

(i) The left ideal generated by a, is given by 〈a〉l = TTa + na.

(ii) The right ideal generated by a, is given by 〈a〉r = aTT + na.

(iii) The two-sided ideal generated by a, is given by 〈a〉t = TTa + aTT +
TTaTT + na.

(iv) The lateral ideal generated by a, is given by 〈a〉m = TaT +TTaTT +na.

(v) The ideal generated by a, is given by 〈a〉 = TTa+aTT +TaT +TTaTT +
na.

Proposition 2.19. Let T be an unitary ternary ring and a ∈ T . Then:
〈a〉r = aTT , 〈a〉r = aTT , 〈a〉l = TTa , 〈a〉t = TTa+aTT+TTaTT , 〈a〉m =
TaT + TTaTT and 〈a〉 = TTa + aTT + TaT + TTaTT .
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Proof. It is clear that aTT ⊆ aTT + Z+
0 a = 〈a〉r. On the other hand, if e is

the identity element of T then:

Let z ∈ 〈a〉r. Then z =
∑
fin

axiyi + na , xi , yi ∈ T , n ∈ Z+
0

=
∑
fin

axiyi + a + a + · · ·+ a

=
∑
fin

axiyi + aee + aee + · · ·+ aee ∈ aTT.

Therefore, 〈a〉r ⊆ aTT . Hence, 〈a〉r = aTT .
In the same way, we prove the remaining cases.

3 Some special elements in a ternary ring

Definition 3.1. An element a of a ternary ring T is a zero divisor from right
(left, lateral), if there are two nonzero elements b and c in T , such that bca = 0
(abc = 0 , bac = 0 respectively).

We say that a is zero divisor on both sides, if it is a zero divisor from both
right and left. In addition, a is a zero divisor, if a is a zero divisor from all
right, left and lateral.

Let ZT be the group of zero divisors of T . Then, we have the next remarks:

Remark 3.2. Let T be any ternary ring. Then, 0 ∈ ZT .

Remark 3.3. If T = {0}, then ZT = ∅.

Remark 3.4. ZT = {0} for some ternary ring T . For example, T = Z5 =
{0, 1, 2, 3, 4}, which is a unitary ternary ring and ZT = {0}.

Remark 3.5. ZT = T for some ternary ring T . For example, T = Z6 =
{0, 1, 2, 3, 4, 5}, which is a unitary ternary ring and ZT = T .

Remark 3.6. Let (T,+) be an abelian group. Define a triple multiplication
operation on T as x.y.z = 0 , ∀x, y, z ∈ T . Then (T,+, .) is a ternary ring for
which ZT = T .

Definition 3.7. Let T be a ternary ring with identity e, and let x be an element
of T . We say that x is a unit from right (left, lateral), if there are two elements
y, z ∈ T where xyz = e (yzx = e , yxz = e, respectively).

Let T be a ternary ring, the element x ∈ T is called a unit on both sides
if it is a unit from both right and left. And, x is a unit if it is a unit from all
right, left and lateral. Let UT denotes the group of all units in a ternary ring
T .
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4 New results

Clearly, Z5 = {0, 1, 2, 3, 4} is a unitary ternary ring whose identity element
is 1, and we have UT = {1, 2, 3}. Also, Z6 = {0, 1, 2, 3, 4, 5} is an unitary
ternary ring whose unit is 1, for which UT = ∅. And, Z7 = {0, 1, 2, 3, 4, 5, 6}
is an unitary ternary ring whose identity element is 1, and we have UT =
{(1, 2, 4) , (1, 3, 5) , (2, 3, 6)} = T − {0}.

Lemma 4.1. If T is a unitary ternary ring whose identity element is e, and
let x ∈ NT . Then e− x ∈ UT .

Proof. Let x ∈ NT and n is the nilpotency degree of x. Then

(e− x) e (e + x + exx + xxx + exxxx + · · ·+ xn−2 + exxn−2)
= ee (e + x + exx + xxx + exxxx + · · ·+ xn−2 + exxn−2)
−xe (e + x + exx + xxx + exxxx + · · ·+ xn−2 + exxn−2)

= e + x + exx + xxx + exxxx + · · ·+ xn−2 + exxn−2 − xee− xex− xeexx
−xexxx− xeexxxx− · · · − xexn−2 − xeexxn−2

= e + x + exx + xxx + exxxx + · · ·+ xn−2 + exxn−2 − x− exx− xxx− exxxx
−xxxxx− · · · − exxn−2 − xxxn−2

= e− xn

= e

Thus e− x is a unit from the right.
In the same way, we prove that e− x is a left and lateral unit. Therefore,

e− x is unit.

Lemma 4.2. Let T is a commutative unitary ternary ring whose identity
element is e. If x ∈ NT and u ∈ UT , then u− x ∈ UT .

Proof. Let x ∈ NT and n is the nilpotency degree of x. Since u ∈ UT , then
there exist y and z in T , such that yzu = yuz = uyz = e. On the other hand,
u−x = uee−eex = uee−uyzex = ue(e−yzx). So xn = 0. Then, ynznxn = 0,
which implies that, (yzx)n = 0. Therefore, yzx ∈ NT . Using Lemma 4.1, we
have e− yzx ∈ UT . Thus, u− x = ue(e− yzx) ∈ UT .

Theorem 4.3. If T is a regular unitary ternary ring, then

(T \ UT ⊆ ZT ) and T \ ZT ⊆ UT .

Proof. Let T be a regular unitary ternary ring. Then, there is y ∈ T such that
x = xyx. So x − xyx = 0, implies that, (e− exy) ex = 0, since x /∈ ZT , then
e− exy = 0. Therefore, xey = e.
On the other hand, we have xe (e− eyx) = 0, since x /∈ ZT , then e− eyx = 0
implies that, eyx = e. Subsequently, exy = xey = eyx = e. Then, x ∈ UT .
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Theorem 4.4. Each unit element in an unitary ternary ring is a regular
element.

Proof. Let T be a ternary ring with identity element e. If u ∈ UT , then there
exist y and z in T such that, yzu = yuz = uyz = e. On the other hand,

u = eeu = (uyz) eu = u (yze)u = uxu, where x = yze ∈ T.

Thus, u is a regular element.

5 Noetherian and artinian ternary rings

Definition 5.1. Let be T a ternary ring. We say that T is left (right, lateral)
artinian, if T meets the descending chain condition on left (right, lateral respec-
tively) ideals. That is, for any chain of left (right, lateral respectively) ideals
I1 ⊇ I2 ⊇ · · · there is a positive integer n such that In = In+1 = In+2 = · · · .

A ternary ring T is an artinian, if T is all a left, right and lateral artinian.
A ternary ring T is a two-sided artinian, if T is both a left and right artinian.

Definition 5.2. [1, 9, ?] A proper ideal I of a ternary ring T is said to be
irreducible, if J ∩K ∩ L = I implies J = I or K = I or L = I, for J,K and
L are ideals of T .

Corollary 5.3. Each prime ideal in a ternary ring is irreducible deal.

Proof. Let P be a prime ideal of a ternary ring T , and let J,K and L be three
ideals of T , such that P = J ∩K ∩L. Then JKL ⊆ J ∩K ∩L ⊆ P , and since
P is prime ideal, then J ⊆ P or K ⊆ P or L ⊆ P . Therefore, P = J ∩K ∩L,
implies that P ⊆ J or P ⊆ K or P ⊆ K. Hence,

P = J or P = K or P = L

Theorem 5.4. Let T be a noetherian ternary ring. Then every ideal of T is
a finite intersection of irreducible ideals.

Proof. Let T be a noetherian ternary ring, and S be the collection of all ideals
none is a finite intersections of irreducible ideals from T . Since T is a noethe-
rian, then S has maximal element I. So, I is not irreducible, I = J ∩K ∩ L
for ideals J,K and L all are quite larger than I. Maximality implies that J,K
and L are finite intersections of irreducible ideals. Therefore I is also a finite
intersection of irreducible ideals, which is a contradiction. Hence, S = ∅.
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Definition 5.5. Let T be a ternary ring. Define the nil radical of T as:

N(T ) = {a ∈ T | an = 0 , n is a positive odd integer}

=

{ ⋂
P∈℘

P | ℘ set of prime ideals

}
.

For an ideal I of T , define the radical ideal of I as:

√
I = {a ∈ T | an ∈ T , n is a positive odd integer}

=

{ ⋂
I∈P

P | P is a prime ideal

}
.

Then N(T ) =
√
〈0〉.

Theorem 5.6. Let T be an artinian ternary ring. Then there exists a positive
odd integer n, such that N(T )n = 0 (we write N(T ) = N for simplicity).

Proof. Let T be an artinian ternary ring. Then, there is a positive odd integer
n with Nn = Nn+2 = Nn+4 = · · · . Suppose that I 6= 0 and let S be the
set of all ideals J with IIJ 6= 0. Then S is nonempty because I ∈ S. Since
T is an artinian ternary ring, then S has a minimal element say K. Since
IIK 6= 0, then there exists a ∈ K for which IIa 6= 0. So a = K by minimality
of K. Therefore, IIa ∈ S and IIa ⊆ a = K. Thus, there is x ∈ I where
xxa = a. Multiplying both sides by xx, we get xx(xxa) = xxa = a. Repeating
this ,multiplication to get xnxa = a. However, x ∈ I, which means that
x ∈ N = N(T ), so x is nilpotent. Thus, xn = 0 for some values of positive
odd integers n. Consequently, 0 = xnxa = a, which is a contradiction. Hence
I = Nn = 0.

Theorem 5.7. Let T be an artinian ternary ring. Then any prime ideal is
maximal.

Proof. Let T be an artinian ternary ring, and let P be a prime ideal. we
need to show that, given f ∈ T/P , then TTf + P = T . Since T is artinian
ternary ring, then the chain TTf + P ⊇ TTf 3 + P ⊇ TTf 5 + P ⊇ · · ·
must stabilize. This implies that, there is a positive odd integer n for which
TTfn + P = TTfn+2 + P . Then, we conclude that:

fn ∈ TTfn+P = TTfn+2+P implies that fn = xyfn+2+h , h ∈ P , x.y ∈ T.

Then wfn − xyfn+2 = h ∈ P , therefore fn (e− xyf 2e) e ∈ P .
Since f /∈ P , then fn /∈ P and P is prime, so e ∈ P or e − xyf 2e ∈ P . If

e ∈ P then P is maximal, and if e− xyf 2e ∈ P , then there is g ∈ P such that
e − xyf 2e = g, therefore xyf 2e + g = e. Hence, the ideal TTf + P contains
the element xyeff + g = e.
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Definition 5.8. Let T be a commutative ternary ring with an identity element
e. Then T is called a ternary field, if every element non-zero element a in T
is unit.

Proposition 5.9. A ternary field does not contain a proper zero divisor.

Definition 5.10. Let T be a commutative unitary ternary ring. Then T is
called a ternary integral domain, if it does not contain proper zero divisor.

Proposition 5.11. Each commutative ternary field is a ternary integral do-
main.

Definition 5.12. [10] Let T be a ternary ring and I be an ideal of T . Define
+I = {a+x | x ∈ I} for each a ∈ T and T/I = {a+I | a ∈ T}. Then T/I is a
ternary ring with addition and multiplication, which defined by (a+I)+(b+I) =
(a+ b) + I and (a+ I)(b+ I)(c+ I) = abc+ I for all a, b, c ∈ T . This ternary
ring T/I is called the ternary division ring of T by I.

Corollary 5.13. 1. If T is a commutative ternary ring, then the ternary
division ring T/I is commutative.

2. If T is a unitary ternary ring with identity element e, then the ternary
division ring T/I is unitary with identity element e + I.

Theorem 5.14. Let T be a ternary ring and I be an ideal of T . If T is an
artinian (noetherian) ternary ring, then the ternary division ring T/I is an
artinian (a noetherian) respectively.

Proof. The proof is similar to the proof of the same theory in rings.

Theorem 5.15. [10] Let T be a commutative ternary ring with identity ele-
ment e. Then, an ideal I of T is maximal if and only if T/I is ternary field.

Theorem 5.16. Let T be an artinian unitary ternary ring. Then:

1. Every non-zero divisor in T is a unit.

2. If T is commutative, then every prime ideal in T is maximal.

Proof. Let e be the identity element of T .

1. If x ∈ T be a non-zero divisor. Then xn is also a non-zero divisor for any
positive odd integer n. Let 〈xn〉 be the left ideal of T generated by xn of
some values of n. Then the descending chain 〈x〉 ⊇ 〈x3〉 ⊇ · · · ⊇ 〈xn〉 ⊇
· · · must stabilize, as T is artinian. We conclude that 〈xm〉 = 〈xm+2〉 =
· · · for some values of the positive odd integer m. So, xm ∈ 〈xm+2〉,
that is xm = qsxm+2 for some q, s ∈ T . Thus xm − qsxm+2 = 0 implies



Noetherian and artinian ternary rings 15

e(e− eqsxx)xm = 0, which leads to e− e(qsx)x = 0, as xm is a non-zero
divisor, this means that e(qsx)x = e. Hence x has a left unit.

Since x − xe(e(qsx)x) = 0 and x = xee = xe(e(qsx)x). Thus x −
(xee)(qsx)x = 0, this leads to x−x(qsx)x = 0, so e [e− x(qsx)e]x = 0 as
x is a non-zero divisor, this implies that e−x(qsx)e = 0, so x(qsx)e = e.
Hence x has a right unit.

On the other hand, we have x = exe, implies that x = [x(qsx)e]xe, then
x−[x(qsx)e]xe = 0, so x−x(qsx)(exe) = 0, which gives x−x(qsx)x = 0,
therefore x [e− (qsx)xe] e = 0. Thus, e − (qsx)xe = 0 implise that
(qsx)xe = e as x is a non-zero divisor. Thus, x has a lateral unit. Hence
x is a unit.

2. Let P be a prime ideal of T . Then T/P is an Artinian ternary integral
domain. From part (1), follows that every non-zero element of T/P is a
unit. Hence T/P is a ternary field and thus P is maximal.

Proposition 5.17. Every Artinian ternary integral domain is a ternary field.

Corollary 5.18. Let T be an artinian ternary ring. Then dim(T ) = 0.

Proof. Let P be a prime ideal of T . Then T/P is a ternary integral domain.
Since T is artinian, then T/P is artinian. Thus, T/P is a ternary field according
to Proposition 5.17. Thus, P is maximal and dim(T ) = 0.
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