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Abstract

In this article, we study the local well-posedness of the
Cauchy problem for the generalized two-component Degasperis-
Procesi system by using Kato’s theory in the Sobolev spaces.
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1 Introduction and overview

In the present work, we investigate the Cauchy problem of the following gen-
eralized two-component Degasperis-Procesi system:


ut − uxxt + 4umux − 3uxuxx − uuxxx + kρρx = 0, t > 0, x ∈ R,
ρt + uρx + 2uxρ = 0, t > 0, x ∈ R,
u (0, x) = u0 (x) , ρ (0, x) = ρ0 (x) , x ∈ R.

(1)
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where m ≥ 1, m ∈ N and k is an arbitrary real constant. For m = 1,
the system (1) was firstly introduced by Popowicz in [14] as a generalization
of the Degasperis-Procesi equation (DP) by use of the Dirac reduction of the
generalized, but degenerated Hamiltonian operator of the Boussinesq equation.
In system (1), if m = 1 and ρ = 0, we obtain the classical DP [3]

ut − uxxt + 4uux − 3uxuxx − uuxxx = 0. (2)

Eq. (2) was proved formally integrable by constructing a Lax pair [4].
The authors also presented that Eq. (2) has bi- Hamiltonian structure and
an infinite sequence of conserved quantities, and admits exact peakon solu-
tions which are analogous to the Camassa-Holm peakons [4]. We obtain the
Camassa-Holm equation (CH) [1] by changing the coefficients 4 and 3 in Eq.
(2) with 3 and 2, respectively. CH and DP are two integrable equations with
application in the theory of water waves ([2], [4], [5], [9]). Also, both equa-
tions have the same asymptotic accuracy. Although CH and DP are similar in
many aspects, we want to emphasize that they are actually very different. For
example, DP has not only peakon solutions [4] and periodic peakon solutions
[19], but also shock peakons [13] and the periodic shock waves [6]. This is a
different property of DP from CH.

After the DP was derived, it was studied by many researchers in several
aspects ([8], [12], [17], [18], [19] and the citations therein). Furthermore, Tian
and Li [15] studied the generalized DP (or called it the modified DP),

ut − uxxt + 4umux − 3uxuxx − uuxxx = 0, (3)

where m > 0, m ∈ N . They studied the local well-posedness of the Cauchy
problem of Eq. (3).

In recent years, the system (1) has attracted the attention of many authors,
and it has been studied by many authors, for m = 1. Yan and Yin [16]
established local well-posedness in the nonhomogeneous Besov spaces. Then
they derived precise blow-up scenario, proved the existence of strong solutions
which blow up in finite time. In [20], Yu and Tian investigated the traveling
wave solutions to the two component Degasperis-Procesi system. Jin and
Guo [10] studied the blow-up mechanisms and persistence properties of strong
solutions.

We note that the Cauchy problem of system (1) (for m > 1) has not been
discussed yet. The main purpose of this article is to investigate the local
well-posedness the system of (1), for m ≥ 1.

2 Preliminaries

In the here, we will introduce some notations by summarizing them. Also, we
will give the theorem and the lemma necessary for our proof.
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‖.‖Z denotes the norm of Banach space Z. Hs is the classical Sobolev space
with norm ‖.‖Hs = ‖.‖s , s ∈ R. For practical purposes, we will denote different
positive constants with the same symbols c.

We will apply Kato’s theory to establish the local well-posedness for the
Cauchy problem of (1). In the following we will present a form suitable of
Kato’s general theory for our purpose. Consider the abstract quasi-linear initial
value problem:

dv

dt
+ A(v)v = f (v) , t ≥ 0, v (0) = v0. (4)

Let (4) be in a Hilbert space X, and let Y be another Hilbert space which is
continuously and densely embedded into X. Let S : Y → X be a topological
isomorphism. L(Y,X) denotes the space of all bounded linear operators from
Y to X, particularly, it is denoted by L(X), if X = Y. We write G(X, 1, β) for
the set of all linear operators A in X, where β is a real number, such that −A
generates a C0-semigroup T (t) on X and that ‖T (t)‖L(X) ≤ etβ for all t ≥ 0.

Theorem 2.1 [11] Assume that:
(I) A(y) ∈ L(Y,X) for y ∈ X with

‖(A(y)− A(z))ω‖X ≤ κ1 ‖y − z‖X ‖ω‖Y , y, z, ω ∈ Y,

and A(y) ∈ G (X, 1, β) , (i.e. A(y) is quasi-m-accretive), uniformly on bounded
sets in Y .

(II) SA(y)S−1 = A(y) + B(y), where B(y) ∈ L(X) is bounded, uniformly
on bounded sets in Y . Moreover,

‖(B(y)−B(z))ω‖X ≤ κ2 ‖y − z‖Y ‖ω‖X , y, z ∈ Y, ω ∈ X.

(III) f : Y → Y and also extends to a map from X into X. f is bounded
on bounded sets in Y , and satisfies

‖(f(y)− f(z))‖Y ≤ κ3 ‖y − z‖Y , y, z ∈ Y,
‖(f(y)− f(z))‖X ≤ κ4 ‖y − z‖X , y, z ∈ Y.

Here κi = (i = 1, 2, 3, 4) are constants depending only on max {‖y‖Y , ‖z‖Y } .
If the conditions (I), (II) and (III) hold, given v0 ∈ Y, there is a maximal
T > 0 depending only on ‖v0‖Y , and a unique solution v to (4) such that

v = v (., v0) ∈ C ([0, T ) ;Y ) ∩ C1 ([0, T ) ;X) .

Moreover, the map v0 → v (., v0) is continuous from Y to
C ([0, T ) ;Y ) ∩ C1 ([0, T ) ;X) .
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Lemma 2.2 [11] Let r, t be any real numbers such that −r < t ≤ r. Then

‖fg‖Ht ≤ c ‖f‖Hr ‖g‖Ht , if r >
1

2
,

‖fg‖
Hr+t− 1

2
≤ c ‖f‖Hr ‖g‖Ht , if r <

1

2

where c is a positive constant depending on r, t.

3 Local well-posedness

We note that if p (x) = 1
2
e−|x|, x ∈ R, then (1− ∂2x)

−1
f = p ∗ f for all

f ∈ L2(R). Here we denote by ∗ the convolution. We can rewrite (1) as
follows:

ut + uux = −∂xp ∗ ( 4
m+1

um+1 − 1
2
u2 + k

2
ρ2) t > 0, x ∈ R,

ρt + uρx = −2uxρ, t > 0, x ∈ R,
u (0, x) = u0 (x) , ρ (0, x) = ρ0 (x) , x ∈ R,

(5)

or in the equivalent form:
ut + uux = −∂x(1− ∂2x)−1( 4

m+1
um+1 − 1

2
u2 + k

2
ρ2) t > 0, x ∈ R,

ρt + uρx = −2uxρ, t > 0, x ∈ R,
u (0, x) = u0 (x) , ρ (0, x) = ρ0 (x) , x ∈ R.

(6)

Theorem 3.1 Given U0 =

(
u0
ρ0

)
∈ Hs×Hs−1, s ≥ 2, there exists a maximal

T = T
(
‖U0‖Hs×Hs−1

)
> 0, and a unique solution U =

(
u
ρ

)
to (6) (or (1))

such that

U = U (., U0) ∈ C
(
[0, T ) ;Hs ×Hs−1) ∩ C1

(
[0, T ) ;Hs−1 ×Hs−2) .

Moreover, the solution depends continuously on the initial data, i.e., the map-
ping

U0 → U (., U0) : Hs×Hs−1 → C
(
[0, T ) ;Hs ×Hs−1)∩C1

(
[0, T ) ;Hs−1 ×Hs−2)

is continuous.

To prove this theorem, we will apply Theorem 2.1, with

U = (u, ρ) ,

A (U) =

(
u∂x 0
0 u∂x

)
,

f (U) =

(
−∂x (1− ∂2x)

−1 ( 4
m+1

um+1 − 1
2
u2 + k

2
ρ2
)

−2uxρ

)
,
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Y = Hs ×Hs−1, X = Hs−1 ×Hs−2, Λ = (1− ∂2x)
1
2 and S =

(
Λ 0
0 Λ

)
. We

know that S is an isomorphism of Hs×Hs−1 onto Hs−1×Hs−2. Thus, to get
Theorem 3.1 by applying Theorem 2.1, we only need to check that A(U) and
f(U) satisfy the conditions (I), (II) and (III).

Lemma 3.2 The operator A (U) =

(
u∂x 0
0 u∂x

)
with U ∈ Hs×Hs−1, s ≥ 2,

belongs to G(L2 × L2, 1, β).

Lemma 3.3 The operator A (U) =

(
u∂x 0
0 u∂x

)
with U ∈ Hs×Hs−1, s ≥ 2,

belongs to G(Hs−1 ×Hs−2, 1, β).

Lemma 3.4 Let A (U) =

(
u∂x 0
0 u∂x

)
with U ∈ Hs ×Hs−1, s ≥ 2. Then

A (U) ∈ L
(
Hs ×Hs−1, Hs−1 ×Hs−2) .

Moreover,

‖(A(U)− A(V ))W‖Hs−1×Hs−2 ≤ κ1 ‖U − V ‖Hs−1×Hs−2 ‖W‖Hs×Hs−1 ,

for all U, V,W ∈ Hs ×Hs−1.

Lemma 3.5 Let B (U) = SA (U)S−1 − A (U) with U ∈ Hs × Hs−1, s ≥ 2.
Then B (U) ∈ L (Hs−1 ×Hs−2) and

‖(B(U)−B(V ))W‖Hs−1×Hs−2 ≤ κ2 ‖U − V ‖Hs×Hs−1 ‖W‖Hs−1×Hs−2 ,

for all U, V ∈ Hs ×Hs−1 and W ∈ Hs−1 ×Hs−2.

The proof of these lemmas can be found in [7], therefore, we will skip the proof
of these lemmas here. Thus, the conditions (I) and (II) are satisfied. We will
now show that the condition (III) is satisfied. For this, we need to prove the
following lemma.

Lemma 3.6 Let U ∈ Hs ×Hs−1, s ≥ 2 and let

f (U) =

(
−∂x (1− ∂2x)

−1 ( 4
m+1

um+1 − 1
2
u2 + k

2
ρ2
)

−2uxρ

)
.

Then f is bounded on bounded sets in Hs ×Hs−1, and satisfies

(i) ‖f(U)− f(V )‖Hs×Hs−1 ≤ κ3 ‖U − V ‖Hs×Hs−1 U, V ∈ Hs ×Hs−1,

(ii) ‖f(U)− f(V )‖Hs−1×Hs−2 ≤ κ4 ‖U − V ‖Hs−1×Hs−2 U, V ∈ Hs ×Hs−1.
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Proof: Let U, V ∈ Hs ×Hs−1, s ≥ 2 and let V = (v1, v2) . Note that Hs−1 is a
Banach algebra. Then, we have

‖f(U)− f(V )‖Hs×Hs−1

≤
∥∥∥∥−∂x (1− ∂2x)−1( 4

m+ 1
um+1 − 1

2
u2 − 4

m+ 1
vm+1
1 +

1

2
v21

)∥∥∥∥
s

+

∥∥∥∥−∂x (1− ∂2x)−1(k2ρ2 − k

2
v22

)∥∥∥∥
s

+ ‖−2uxρ+ 2v1,xv2‖s−1

≤ c
(∥∥um+1 − vm+1

1

∥∥
s−1 +

∥∥u2 − v21∥∥s−1 +
∥∥ρ2 − v22∥∥s−1)

+c
(
‖uxρ− v1,xv2‖s−1

)
. (7)

Using the imbedding property of Sobolev spaces Hs and Lemma 2.2, we have∥∥um+1 − vm+1
1 )

∥∥
s−1 =

∥∥(u− v1)(um + um−1v1 + ...+ vm1 )
∥∥
s−1

≤ c ‖u− v1‖s
∥∥um + um−1v1 + ...+ vm1

∥∥
s

≤ c ‖u− v1‖s
(
‖u‖ms + ‖u‖m−1s ‖v1‖s + ...+ ‖v1‖ms

)
≤ c ‖u− v1‖s . (8)∥∥u2 − v21∥∥s−1 = ‖(u− v1) (u+ v1)‖s−1
≤ c ‖u− v1‖s ‖u+ v1‖s
≤ c (‖u‖s + ‖v1‖s) ‖u− v1‖s
≤ c ‖u− v1‖s . (9)

Similarly, we get ∥∥ρ2 − v22∥∥s−1 ≤ c ‖ρ− v2‖s−1 (10)

and

‖uxρ− v1,xv2‖s−1 ≤ ‖uxρ− uxv2‖s−1 + ‖uxv2 − v1,xv2‖s−1
≤ c ‖u‖s ‖ρ− v2‖s−1 + c ‖v2‖s−1 ‖u− v1‖s . (11)

So, from (7)-(11), we have

‖f(U)− f(V )‖Hs×Hs−1 ≤ c ‖u− v1‖s + c ‖ρ− v2‖s−1
≤ κ3 ‖U − V ‖Hs×Hs−1 .

This completes (i). Choosing V = 0 in the above inequality, we get that f is
bounded on bounded set in Hs ×Hs−1.
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Now, we prove (ii).

‖f(U)− f(V )‖Hs−1×Hs−2

≤
∥∥∥∥−∂x (1− ∂2x)−1( 4

m+ 1
um+1 − 1

2
u2 − 4

m+ 1
vm+1
1 +

1

2
v21

)∥∥∥∥
s−1

+

∥∥∥∥−∂x (1− ∂2x)−1(k2ρ2 − k

2
v22

)∥∥∥∥
s−1

+ ‖−2uxρ+ 2v1,xv2‖s−2

≤ c
(∥∥um+1 − vm+1

1

∥∥
s−2 +

∥∥u2 − v21∥∥s−2 +
∥∥ρ2 − v22∥∥s−2)

+c
(
‖uxρ− v1,xv2‖s−2

)
. (12)

Again, by using the imbedding property of Sobolev spaces Hs and Lemma 2.2,
we have∥∥um+1 − vm+1

1 )
∥∥
s−2 =

∥∥(u− v1)(um + um−1v1 + ...+ vm1 )
∥∥
s−2

≤ c ‖u− v1‖s−1
∥∥um + um−1v1 + ...+ vm1

∥∥
s−2

≤ c ‖u− v1‖s−1
(
‖u‖ms + ‖u‖m−1s ‖v1‖s + ...+ ‖v1‖ms

)
≤ c ‖u− v1‖s−1 . (13)∥∥u2 − v21∥∥s−2 = ‖(u− v1) (u+ v1)‖s−2
≤ c ‖u− v1‖s−1 ‖u+ v1‖s−2
≤ c ‖u− v1‖s−1 . (14)

In an analogous way, we have∥∥ρ2 − v22∥∥s−2 ≤ c ‖ρ− v2‖s−2 (15)

and

‖uxρ− v1,xv2‖s−2 ≤ ‖uxρ− uxv2‖s−2 + ‖uxv2 − v1,xv2‖s−2
≤ c ‖ρ− v2‖s−2 + c ‖u− v1‖s−1 . (16)

So, from (12)-(16), we get

‖f(U)− f(V )‖Hs−1×Hs−2 ≤ c ‖u− v1‖s−1 + c ‖ρ− v2‖s−2
≤ κ4 ‖U − V ‖Hs−1×Hs−2 .

This completes the proof of Lemma 3.6.

Proof of Theorem 3.1. The proof of Theorem 3.1 is obtained by com-
bining Theorem 2.1 and Lemma 3.2-Lemma 3.6.
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4 Open Problem

In this article, we obtained the local well-posedness for the generalized Degasperis-
Procesi system by using Kato’s theory in Sobolev spaces. The open problems
here are listed below:
1) Can we obtain the local well-posedness for the system (1) in the Besov
spaces (which generalize the Sobolev spaces)?
2) Are there global solutions for the system (1)?
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