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Abstract

The present paper investigates some properties of general-
ized reverse derivations on prime and semiprime rings. Firstly,
the commutativity of a prime ring R is examined under the fol-
lowing differential identities provided by a generalized reverse
derivation F associated with a reverse derivation d of R on a
one-sided ideal of R and a mapping G: (i)F ([x, y]) ∓ [G(z), y] ∈
Z(R), (ii)F ([x, y])∓G(z) ◦ y ∈ Z(R), (iii)F ([x, y])∓G(z)x ∈ Z(R),
(iv)F ([x, y])∓xG(z) ∈ Z(R), (v)F ([x, y])∓xz ∈ Z(R), (vi)F (yx)∓
[G(z), y] ∈ Z(R), (vii)F (yx)∓G(z)◦y ∈ Z(R), (viii)F (xy)∓G(z)x ∈
Z(R), (ix) F (xy) ∓ xG(z) ∈ Z(R), (x)F (y◦x) ∓ [G(z), y] ∈ Z(R),
(xi)F (y◦x)∓G(z)◦y ∈ Z(R), (xii)F (x◦y)∓G(z)x ∈ Z(R), (xiii)
F (x ◦ y)∓ xG(z) ∈ Z(R), (xiv)F (x ◦ y)∓ xz ∈ Z(R). Secondly, we
study the relationships between r−generalized reverse deriva-
tions and l−generalized derivation and l−generalized reverse
derivation and r−generalized derivations on a noncentral
square-closed Lie ideal in a semiprime ring. Finally, we pro-
vide two open problems.
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1 Introduction

R will denote an associative ring and Z(R) denotes the center of R. Let U
be a subset of R. The set CR(U) = {x ∈ R | xa = ax, for all a ∈ U} is
called centralizer of U . For each r, s ∈ R, commutator and anti-commutator
are defined as [r, s] = rs−sr and r◦s = rs+sr, respectively. For any a, b ∈ R,
if aRb = (0) implies either a = 0 or b = 0, then R is said to be a prime ring
and if aRa = (0) implies a = 0, then R is called a semiprime ring. An additive
subgroup U of R is called a Lie ideal of R if [U,R] ⊆ U . A Lie ideal U of R is
said to be square-closed if x2 ∈ U , for all x ∈ U . It is well known that if U is
a square-closed Lie ideal, then 2xy ∈ U , for all x, y ∈ U. In a ring, every ideal
is a square-closed Lie ideal. However, the opposite is not always true.

Remember that an additive mapping d : R → R is called a derivation if
d(xy) = d(x)y + xd(y), for all x, y ∈ R [1]. An additive mapping d : R → R
is called a reverse derivation if d(xy) = d(y)x + yd(x), for all x, y ∈ R. The
consept of reverse derivation of a prime ring R was introduced by Herstein in
[2]. He has shown that if R is a prime ring and d is a reverse derivation, then
R is a commutative integral domain and d is an ordinary derivation on R. In
[3], Samman and Alyamani have provided some examples which examine all
the cases between reverse derivations and derivations. Moreover, they have
shown that if a prime ring R admits a nonzero reverse derivation, then R is
commutative.

In [4], Bresăr has extended the concept of derivations to the concept of gen-
eralized derivations. An additive mapping F : R → R is called a general-
ized derivations on R associated with a derivation d : R → R, if F (xy) =
F (x)y + xd(y), for all x, y ∈ R. In [5], Gölbaşı and Kaya have presented
the concepts of l−generalized derivations (generalized derivations [4]) and
r−generalized derivations. An additive mapping F : R → R is called an
l−generalized derivations on R associated with a derivation d : R → R, if
F (xy) = F (x)y + xd(y), for all x, y ∈ R. An additive mapping F : R → R is
called an r−generalized derivations on R associated with a derivation d : R→
R, if F (xy) = d(x)y + xF (y), for all x, y ∈ R. In [6], Aboubakr and Gonzălez
have extend the concept of reverse derivations to the concepts of l−generalized
reverse derivations (generalized reverse derivations) and r−generalized reverse
derivations. An additive mapping F : R → R is called an l−generalized
reverse derivations (generalized reverse derivations) on R associated with a
reverse derivation d : R → R, if F (xy) = F (y)x + yd(x), for all x, y ∈ R. An
additive mapping F : R→ R is called an r−generalized reverse derivations on
R associated with a reverse derivation d : R → R, if F (xy) = d(y)x + yF (x),
for all x, y ∈ R. Furthermore, a mapping F is called a generalized reverse
derivation if both an l−generalized reverse derivation and an r−generalized
reverse derivation are. Additionally, the authors have provided some examples
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on matrices ring via generalized reverse derivations. Afterwards, Ibraheem [7]
showed that R is a prime ring with a right ideal I of R such that I∩Z(R) 6= (0)
and if f is a generalized reverse derivation on R with a nonzero reverse deriva-
tion d on R such that [f(x), x] ∈ Z(R), for all x, y ∈ I, then R is commutative.
Furthermore, Huang [8] has investigated the commutativity of a prime ring R
with a generalized reverse derivation F : R → R under the following condi-
tions: For all x, y ∈ R, (i)F (xy)∓xy ∈ Z(R), (ii)F ([x, y])∓ [F (x), y] ∈ Z(R),
(iii)F ([x, y]) ∓ [F (x), F (y)] ∈ Z(R), (iv)F (x ◦ y) ∓ F (x) ◦ F (y) ∈ Z(R),
(v) [F (x), y]∓ [x, F (y)] ∈ Z(R), (vi)F (x) ◦ y ∓ x ◦ F (y) ∈ Z(R).

The first part of the present study is directly motivated by the work of Huang
[8]. Thus, we proved the following theorem:

Theorem. Let R be a prime ring, I be a nonzero right (left) ideal of R,
G : R→ R be a mapping, and F : R→ R be a generalized reverse derivation
associated with a reverse derivation d : R → R such that d(Z(R)) 6= (0). If
one of the following conditions holds:

(i) F ([x, y])∓ [G(z), y] ∈ Z(R) (ii) F ([x, y])∓G(z) ◦ y ∈ Z(R)
(iii) F ([x, y])∓G(z)x ∈ Z(R) (iv) F ([x, y])∓ xG(z) ∈ Z(R)
(v) F ([x, y])∓ xz ∈ Z(R) (vi) F (yx)∓ [G(z), y] ∈ Z(R)
(vii) F (yx)∓G(z) ◦ y ∈ Z(R) (viii) F (xy)∓G(z)x ∈ Z(R)
(ix) F (xy)∓ xG(z) ∈ Z(R) (x) F (y ◦ x)∓ [G(z), y] ∈ Z(R)
(xi) F (y ◦ x)∓G(z) ◦ y ∈ Z(R) (xii) F (x ◦ y)∓G(z)x ∈ Z(R)
(xiii) F (x ◦ y)∓ xG(z) ∈ Z(R) (xiv) F (x ◦ y)∓ xz ∈ Z(R)

for all x, y, z ∈ I, then R is commutative.

In [6], Aboubakr and Gonzălez have extended r−generalized derivation and
l−generalized derivation definitions of Gölbaşı and Kaya [5] to r−generalized
reverse derivation and l−generalized reverse derivation. Moreover, the same
article includes many examples investigating the relationship between
l−generalized reverse derivation and r−generalized reverse derivation. To be
more specific, the theorems provided by Aboubakr and Gonzălez are as follow:

Theorem. [6, Theorem 3.1 and Theorem 3.2] Let R be a semiprime ring and I
be an ideal of R. There exists F : I → R, an l−generalized (r−generalized) re-
verse derivation associated with a nonzero reverse derivation d : I → R, if and
only if d(I), F (I) ⊆ CR(I), d is a derivation on I, and F is an r−generalized
(l−generalized) derivation associated with d on I.

In the second part of the present article, we examined what happens for a
noncentral square-closed Lie ideal of a semiprime ring. Therefore, we proved
the following theorem:

Theorem. Let R be a 2−torsion free semiprime ring and U be a noncentral
square-closed Lie ideal of R. There exists F : U → R, an l−generalized
(r−generalized) reverse derivation associated with a nonzero reverse derivation
d : U → R, if and only if d(U), F (U) ⊆ Z(R), d is a derivation on U , and F
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is an r−generalized (l−generalized) derivation associated with d on U .
Moreover, we will use without explicit mention the following basic identities:

� [xy, z] = x[y, z] + [x, z]y

� [x, yz] = y[x, z] + [x, y]z

� x ◦ (yz) = (x ◦ y)z − y[x, z] = y(x ◦ z) + [x, y]z

� (xy) ◦ z = x(y ◦ z)− [x, z]y = (x ◦ z)y + x[y, z]

The material in the study is a part of the first author’s Master’s Thesis super-
vised by Prof. Dr. Neşet Aydın.

2 Generalized Reverse Derivations on One-Sided

Ideals in Prime Rings

Lemma 2.1. [8, Lemma 1] Let R be a prime ring with center Z(R). If d
is a reverse derivation of R, then d(Z(R)) ⊆ Z(R).

Lemma 2.2. [9, Remark 1] Let R be a prime ring with center Z(R). If
a, ab ∈ Z(R), for some a, b ∈ R, then either a = 0 or b ∈ Z(R).

Lemma 2.3. [10, Lemma 3] If a prime ring R contains a nonzero commu-
tative right (left) ideal, then R is commutative.

Lemma 2.4. Let R be a prime ring and I be a nonzero right (left) ideal of
the ring R. If [I, I] ⊆ Z(R), then R is commutative.

Proof. Let I be a nonzero right ideal of R and [I, I] ⊆ Z(R). Let x, y,∈ I, r ∈
R. Then, [[x, xy], r] = 0. If the equation is rearranged, then [x, r][x, y] = 0.
Replacing r by yr, we get y[x, r][x, y]+[x, y]r[x, y] = 0. Because of [x, r][x, y] =
0, we have

[x, y]r[x, y] = 0, for all x, y ∈ I, r ∈ R

Because the ring R is a prime ring,

[x, y] = 0, for all x, y ∈ I

Therefore, I is commutative. Thus, R is commutative according to Lemma
2.3. Besides, the same proof is done for a nonzero left ideal by means of the
above-mentioned proof.

Lemma 2.5. Let R be a prime ring and I be a nonzero right (left) ideal of
the ring R. If x ◦ y = 0, for all x, y ∈ I, then R is commutative.
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Proof. Let I be a right ideal of R. Assume that

x ◦ y = 0, for all x, y ∈ I

Replacing x by xz such that z ∈ I, we get (x◦y)z+x[z, y] = 0. Our hypothesis
reduces it to

x[z, y] = 0, for all x, y, z ∈ I

For r ∈ R, replacing x by xr, we obtain

xr[z, y] = 0, for all x, y, z ∈ I, r ∈ R

By using primeness of R,

x = 0 or [z, y] = 0, for all x, y, z ∈ I

Since I is a nonzero right ideal,

[z, y] = 0, for all y, z ∈ I

Therefore, I is commutative. Thus, the ring R is commutative from Lemma
2.3. Moreover, the same proof is done for a nonzero left ideal via the above-
mentioned proof.

Lemma 2.6. Let R be a prime ring and I be a nonzero right (left) ideal of
the ring R. If x ◦ y ∈ Z(R), for all x, y ∈ I, then R is commutative.

Proof. Let I be a nonzero right ideal. From the hypothesis,

[x ◦ y, r] = 0, for all x, y ∈ I, r ∈ R

In this equation, if xy is written instead of y, then 0 = [x, r](x◦ y) +x[x◦ y, r].
Using [x ◦ y, r] = 0, we can write the last equation as [x, r](x ◦ y) = 0. For
s ∈ R, replacing r by rs, then

[x, r]s(x ◦ y) = 0, for all x, y ∈ I, r, s ∈ R

Since R is a prime ring,

[x, r] = 0 or x ◦ y = 0, for all x, y ∈ I, r ∈ R

The sets I1 = {x ∈ I : [x, r] = 0, r ∈ R} and I2 = {x ∈ I : x ◦ y = 0, y ∈ I} are
subgroups of I. According to Brauer, either I1 = I or I2 = I becasue a group
cannot be written as a union of proper subgroups.
If I1 = I, then

[x, r] = 0, for all x ∈ I, r ∈ R

That is, I ⊆ Z(R). Hence, R is commutative by Lemma 2.3.
If I2 = I, then

x ◦ y = 0, for all x, y ∈ I

Hence, the ring R is commutative according to Lemma 2.5. Furthermore, it is
clear that if I is a nonzero left ideal, then the ring R is commutative.
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Theorem 2.7. Let R be a prime ring, I be a nonzero right (left) ideal of R,
G : R → R be a mapping, and F : R → R be a generalized reverse derivation
associated with reverse derivation d : R → R such that d(Z(R)) 6= (0). If one
of the following conditions holds:

(i) F ([x, y])∓ [G(z), y] ∈ Z(R) (ii) F ([x, y])∓G(z) ◦ y ∈ Z(R)
(iii) F ([x, y])∓G(z)x ∈ Z(R) (iv) F ([x, y])∓ xG(z) ∈ Z(R)
(v) F ([x, y])∓ xz ∈ Z(R) (vi) F (yx)∓ [G(z), y] ∈ Z(R)
(vii) F (yx)∓G(z) ◦ y ∈ Z(R) (viii) F (xy)∓G(z)x ∈ Z(R)
(ix) F (xy)∓ xG(z) ∈ Z(R)

then R is commutative.

Proof. Suppose that I is a right ideal.
(i) From the hypothesis,

F ([x, y])− [G(z), y] ∈ Z(R), for all x, y, z ∈ I (1)

Replacing y by cy, c ∈ Z(R) in (1), we get

(F ([x, y])− [G(z), y])c + [x, y]d(c) ∈ Z(R), for all x, y, z ∈ I, c ∈ Z(R) (2)

Using (1) and (2), [x, y]d(c) ∈ Z(R). Since [x, y]d(c) ∈ Z(R) and d(c) ∈ Z(R),
from the Lemma 2.2, we have

d(c) = 0 or [x, y] ∈ Z(R), for all x, y ∈ I, c ∈ Z(R)

Because of d(Z(R)) 6= (0),

[x, y] ∈ Z(R), for all x, y ∈ I

Thus, the ring R is commutative from Lemma 2.4.
Moreover, suppose that

F ([x, y]) + [G(z), y] ∈ Z(R), for all x, y, z ∈ I

Replacing the generalized reverse derivation F associated with reverse deriva-
tion d by the generalized reverse derivation −F associated with reverse deriva-
tion −d, then the following expression is obtained:

F ([x, y])− [G(z), y] ∈ Z(R), for all x, y, z ∈ I

As a result, the ring R is commutative from the above proof. Similarly, proofs
for (ii), (iii), (iv), (v), (vi), (vii), (viii), and (ix) are made using Lemma 2.2
and Lemma 2.4. Moreover, similar proofs for a nonzero left ideal are also done
via the above-mentioned proof of (i).
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Theorem 2.8. Let R be a prime ring, I be a nonzero right (left) ideal of R,
G : R → R be a mapping, and F : R → R be a generalized reverse derivation
associated with reverse derivation d : R → R such that d(Z(R)) 6= (0). If one
of the following conditions holds:

(i) F (y ◦ x)∓ [G(z), y] ∈ Z(R) (ii) F (y ◦ x)∓G(z) ◦ y ∈ Z(R)
(iii) F (x ◦ y)∓G(z)x ∈ Z(R) (iv) F (x ◦ y)∓ xG(z) ∈ Z(R)
(v) F (x ◦ y)∓ xz ∈ Z(R)

for all x, y, z ∈ I, then R is commutative.

Proof. Let I be a nonzero right ideal.
(i) For x, y, z ∈ I,

F (y ◦ x)− [G(z), y] ∈ Z(R) (3)

In (3), if cy is written instead of y such that c ∈ Z(R), then

(F (y ◦ x)− [G(z), y])c + (y ◦ x)d(c) ∈ Z(R) (4)

Using (3) and (4), (y ◦ x)d(c) ∈ Z(R). Since (y ◦ x)d(c) ∈ Z(R) and d(c) ∈
Z(R), from the Lemma (2.2), we have

d(c) = 0 or y ◦ x ∈ Z(R), for all x, y ∈ I, c ∈ Z(R)

Since d(Z(R)) 6= (0), R is commutative according to Lemma 2.6. Additionally,
it is clear that if

F (y ◦ x) + [G(z), y] ∈ Z(R), for all x, y, z ∈ I

then the ring R is commutative similar to the proof (i). Similarly, proofs of
(ii), (iii), (iv), and (v) are made using Lemma 2.2 and Lemma 2.6. Moreover,
similar proofs for a nonzero left ideal are also done via the above-mentioned
proofs of (i).

Example 2.9. Let S be a ring, R =


 0 0 0

x 0 0
y z 0

 : x, y, z ∈ S

 and I =
 0 0 0

0 0 0
x y 0

 : x, y ∈ S

. Then, it is clear that R is a ring and I is an ideal

of the ring R. Let G : R → R be a mapping. Define maps F : R → R and
d : R→ R as follows:

F

 0 0 0
x 0 0
y z 0

 =

 0 0 0
0 0 0
−x 0 0


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and

d

 0 0 0
x 0 0
y z 0

 =

 0 0 0
0 0 0
x 0 0



Then, it is straightforward to check that F is a generalized reverse deriva-
tion associated with the nonzero reverse derivation d on the ring R and so
d(Z(R)) 6= (0). Moreover,

(i) F ([x, y])∓ [G(z), y] ∈ Z(R) (ii) F ([x, y])∓G(z) ◦ y ∈ Z(R)
(iii) F ([x, y])∓G(z)x ∈ Z(R) (iv) F ([x, y])∓ xG(z) ∈ Z(R)
(v) F ([x, y])∓ xz ∈ Z(R) (vi) F (yx)∓ [G(z), y] ∈ Z(R)
(vii) F (yx)∓G(z) ◦ y ∈ Z(R) (viii) F (xy)∓G(z)x ∈ Z(R)
(ix) F (xy)∓ xG(z) ∈ Z(R) (x) F (y ◦ x)∓ [G(z), y] ∈ Z(R)
(xi) F (y ◦ x)∓G(z) ◦ y ∈ Z(R) (xii) F (x ◦ y)∓G(z)x ∈ Z(R)
(xiii) F (x ◦ y)∓ xG(z) ∈ Z(R) (xiv) F (x ◦ y)∓ xz ∈ Z(R)

for all x, y, z ∈ I. However, since R is a not prime ring, R is non-commutative.
In other words, the condition primeness in theorems is not superfluous.

3 Generalized Reverse Derivations on Noncentral

Square-Closed Lie Ideals in Semiprime Rings

Lemma 3.1. [11, Lemma 2.3] Let R be a 2-torsion free semiprime ring and
U be a noncentral square-closed Lie ideal of R. Then, there exists a nonzero
two-sided ideal M = R[U,U ]R of R such that 2M ⊆ U .

Lemma 3.2. [11, Lemma 2.6] Let R be a 2-torsion free semiprime ring and
U be a nonzero Lie ideal of R. Then, CR(U) = Z(R).

Lemma 3.3. [12, Lemma 2.1] Let R be a semiprime ring, I be a nonzero
two-sided ideal of R, and a ∈ R. If aIa = (0), then a = 0.

Theorem 3.4. Let R be a 2−torsion free semiprime ring and U be a non-
central square-closed Lie ideal of R. There exists F : U → R, an l−generalized
reverse derivation associated with a nonzero reverse derivation d : U → R,
if and only if d(U), F (U) ⊆ Z(R), d is a derivation on U , and F is an r-
generalized derivation associated with d on U .

Proof. For each x, y, z ∈ U ,

F (4x(yz)) = 4(F (yz)x + yzd(x)) = 4((F (z)y + zd(y))x + yzd(x))
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and so

F (4x(yz)) = 4F (z)yx + 4zd(y)x + 4yzd(x), for all x, y, z ∈ U (5)

Moreover, for all x, y, z ∈ U

F (4(xy)z) = 4(F (z)xy + zd(xy)) = 4(F (z)xy + z(d(y)x + yd(x)))

Hence,

F (4(xy)z) = 4F (z)xy + 4zd(y)x + 4zyd(x), for all x, y, z ∈ U (6)

On substracting (5) from (6) and using the condition 2−torsion free, we have

F (z)[x, y] = [y, z]d(x), for all x, y, z ∈ U (7)

Replacing x by y in (7), we have

[x, z]d(x) = 0, for all x, z ∈ U (8)

For m ∈ M , 2m ∈ 2M ⊆ U , from Lemma 3.1. Thus replacing z by 2m in (8)
and using the condition 2−torsion free, we get

[x,m]d(x) = 0, for all x ∈ U,m ∈M (9)

Substituting m by rm such that r ∈ R in (9),

[x, r]md(x) = 0, for all x ∈ U,m ∈M, r ∈ R (10)

Linearizing (10) and using (10),

[y, r]md(x) + [x, r]md(y) = 0, for all x, y ∈ U,m ∈M, r ∈ R

Thus,

[y, r]md(x) = −[x, r]md(y), for all x, y ∈ U,m ∈M, r ∈ R (11)

For s ∈ R, replacing m by md(y)s[y, r]m in (11),

[x, r]md(y)s[y, r]md(x) = 0, for all x, y ∈ U,m ∈M, r ∈ R (12)

Using (11) in (12),

[x, r]md(y)R[x, r]md(y) = (0), for all x, y ∈ U,m ∈M, r, s ∈ R

Since R is a semiprime ring,

[x, r]md(y) = 0, for all x, y ∈ U,m ∈M, r ∈ R (13)
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Writing d(y) by r in (13), we obtain

[x, d(y)]md(y) = 0, for all x, y ∈ U,m ∈M (14)

Replacing m by mx in (14), we have

[x, d(y)]mxd(y) = 0, for all x, y ∈ U,m ∈M (15)

Multiplying (15) by x on the right, we get

[x, d(y)]md(y)x = 0, for all x, y ∈ U,m ∈M (16)

Subtracting (16) from (15),

[x, d(y)]M [x, d(y)] = (0), for all x, y ∈ U

According to Lemma 3.3,

[x, d(y)] = 0, for all x, y ∈ U

Thus, d(U) ⊆ CR(U) = Z(R) according to Lemma 3.2. Hence,

d(xy) = d(y)x + yd(x) = d(x)y + xd(y), for all x, y ∈ U

which proves that d is a derivation on U .
On the other hand, substituting y by z in (7), we have

F (z)[x, z] = 0, for all x, y ∈ U (17)

Using same techniques as above, we get F (U) ⊆ CR(U) = Z(R). Hence,

F (xy) = F (y)x + yd(x) = d(x)y + xF (y), for all x, y ∈ U

and F is an r−generalized derivation with respect to d. The converse is trivial.

Theorem 3.5. Let R be a 2−torsion free semiprime ring and U be a non-
central square-closed Lie ideal of R. There exists F : U → R, an r−generalized
reverse derivation associated with a nonzero reverse derivation d : U → R,
if and only if d(U), F (U) ⊆ Z(R), d is a derivation on U , and F is an
l−generalized derivation associated with d on U .

Proof. This proof follows steps of the proof of Theorem 3.4.

As a consequence of Theorem 3.4 and Theorem 3.5, the following corollary
is valid.

Corollary 3.6. Let R be a 2−torsion free semiprime ring and U be a non-
central square-closed Lie ideal of R. If F : U → R, a generalized reverse
derivation associated with a nonzero reverse derivation d : U → R, then d is
a central derivation on U and F is a central generalized derivation associated
with d on U .
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4 Open Problem

How to generalize lemmas and theorems provided in Section 2 for a semiprime
ring or a square-closed Lie ideal of a semiprime ring? How to generalize theo-
rems provided in Section 3 for a Lie ideal or Jordan İdeal of semiprime ring?
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