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Abstract
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1 Introduction

The models about the propagation of waves on the water surface play sig-
nificant role in applied mathematics and physics. The governing equations
of water waves, namely the Euler equations produce some difficulties in the
theoretical and numerical studies. The difficulties encountered when working
with the full system of equations that describes surface flow lead to derive
simplified models. The Benney-Luke equation is an approximation of shallow
water to the Euler equation that arises as an approximation to the water waves
naturally [5, 14].
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Isotropic Benney-Luke equation is

vtt −∆v + α
(
a∆2v − b∆vtt

)
+ ε (2∇v · ∇vt + vt∆v) = 0, (1)

where a, b, α, and ε are real valued positive constants, v (x, y, t) is a real valued
function which defines the velocity potential on the region. Here ε is the non-
linearity coefficient (amplitude parameter) and α is the dispersion coefficient
(long-wave parameter). The parameters a, b > 0 are such that a− b = ρ− 1

3
,

where ρ is the Bond number. Eq. (1) was derived for describing two-way wa-
ter wave propagation with small amplitude in the existence of surface tension
in [14]. Taking a = 1/6, b = 1/2 with no surface tension (ρ = 0) one can
obtain the original Benney-Luke equation [5]. With a suitable renormaliza-
tion the Benney-Luke equation reduces to the Kadomtsev-Petviashvilli (KP)
and Korteweg-de Vries equations [14, 10] . Changing the variables of (1) with
τ = εt/2, ξ = x − t, η = ε1/2y and υ (x, y, t) = h (ξ, η, τ) , and omitting the
O (ε) terms one deduce that θ = hξ satisfies the KP equation [14](

θt −
(
ρ− 1

3

)
θξξξ + 3θθξ

)
ξ

+ θηη = 0.

KP equation is also a nonlinear shallow water waves model which is a
maximally balanced (maximal balance occurs when all parameters of the model
have a relation between them) multidimensional approximation of the Euler
water wave equations [2, 4]. Depending on surface tension, there are two types
of KP equations; large surface tension yields KP-I, and small surface tension
yields KP-II. KP equation is the unique model that has many closed form
solutions and a Lax Pair. Analyzing and computing the solutions of both the
KP and the Benney-Luke equations are easier than the governing equations
of water waves (i.e. Euler equations). Moreover, the Benney-Luke equation
allows for two-directional waves, while the KP and Korteweg-de Vries equations
model one-directional waves (see also [3, 22]).

In this paper, we concern with the existence of global solutions of the
following problem

utt−∆utt+∆2u−µ∆u+ε (ut∆u+ 2∇u · ∇ut)+β∇ (|∇u|p∇u) = 0, x ∈ Rn, t > 0,
(2)

u (x, 0) = ϕ (x) , ut (x, 0) = ψ (x) , x ∈ Rn, (3)

where µ, β > 0, ε is constant, ϕ and ψ are the initial value functions and

0 < p <∞, n = 1, 2,

0 < p ≤ 4

n− 2
, n = 3, 4. (4)
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The energy functional related with (2), (3) is

E (t) =
1

2

[
‖ut‖2 + ‖∇ut‖2 + µ ‖∇u‖2 + ‖∆u‖2

]
− β

p+ 2
‖∇u‖p+2

p+2 . (5)

The potential energy, a Nehari functional and the depth of potential well for
(2) are respectively given as

J (u) =
1

2

(
µ ‖∇u‖2 + ‖∆u‖2

)
− β

p+ 2
‖∇u‖p+2

p+2 ,

I (u) = µ ‖∇u‖2 + ‖∆u‖2 − β ‖∇u‖p+2
p+2 , (6)

d = inf
u∈N

J (u) ,

where N = {u ∈ H2 (Rn) | I (u) = 0,∇u 6= 0}.
There is a considerable number of previous works investigating Benney-

Luke equation from different perspectives (especially see [3, 7, 12, 10, 17, 13,
14, 6, 22] and references therein). Nieva [7] examined various Benney-Luke
equations. She investigated Cauchy problem of Benney-Luke eqautions and
gave some results about local and global well-posedness of the problems in
some Sobolev spaces by using fixed point argument and Strichartz inequalities.
In [14], the authors proved the existence of solitary waves for isotropic Benney–
Luke equations with finite-energy via the concentration-compactness method.

Depending on the initial energy (E(0)), there are three cases for global
existence of solutions of (2), (3):

� Sub-critical case (E(0) < d),

� Critical case (E(0) = d),

� Super-critical case (sometimes called as high initial energy case(E(0) >
d)).

The problem of the existence of global solutions of problem (2), (3) in the
subcritical case was previously considered in [22] by the potential well method.
But global existence of solutions for problem (2), (3) in critical and super-
critical cases has not been investigated yet. The aim of the present paper is to
extend the global existence results of [22] to the critical and supercritical cases.
To prove the global existence in the supercritical case, we use the potential
well method [18, 24] with a functional that includes the initial velocity ψ (x)
and initial displacement ϕ (x) together. Such a functional is first introduced
in [8] to obtain the existence of global solutions of a Boussinesq equation

utt −∆u− β1∆utt + β2∆
2u = ∆f (u)
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with sign preserving nonlinear term (f (u) = α |u|p , α > 0) in the case of
high initial energy. The existence of global solutions was previously proved
for some evolution equations with particular types of nonlinear terms, but not
for all types of nonlinear terms, in the high initial energy case [15, 21]. The
method of [8] filled this gap in the literature and was used by some authors
[19, 16, 23, 9, 20] for proving the global existence of some evolution equations
with different types of nonlinear terms and high initial energy.

Our paper consists of three more sections besides the introduction. In
the second section, we introduce some functionals related to potential well for
problem (2), (3), and give their properties. Moreover, we prove the global
existence for the critical case and also give the sign invariance of I (u) which
provides the nonexistence of solutions for the critical case. In the third section,
we construct some new functionals and prove the sign preserving property of
this functional. Existence theorem of the global weak solution is discussed. The
last section provides construction of initial data satisfying initial conditions.

The notation to be used is mostly standard. Hs = Hs (Rn) denotes the

Sobolev space on Rn with norm ‖f‖Hs =
∥∥∥(I −∆)

s
2 f
∥∥∥ =

∥∥∥(1 + k2)
s
2 f̂
∥∥∥ ,

where I is unitary operator, and s is a real number. Lp (Rn) (1 ≤ p <∞) is
the Lebesque space, and the norm on Lp (Rn) and L2 (Rn) are denoted by ‖f‖p
and ‖f‖, respectively.

2 Preliminaries

In this section, we define some quantities and give their properties, and a
local existence theorem . We also mention some results of [22] that are about
existence of global solutions for problem (2), (3) in the case of E (0) < d.
Furthermore, we will give the sign invariance of I (u) , which will be used
in the proof of global existence and nonexistence (blow up) of solutions for
problem (2), (3) in the case of critical initial energy, i.e., E (0) = d.

For the sake of completeness, let us firstly state existence theorems of [22]
for finite and infinite time intervals in case of E (0) < d. Then we quote
conservation of energy from [22].

Theorem 2.1. [22] Let ϕ ∈ H2, ψ ∈ H1 and p fulfills the conditions
(4). Problem (2), (3) has a unique maximal solution u ∈ C ([0, T0) ;H2) ∩
C1 ([0, T0) ;H1), where T0 maximal time depends only initial data on ‖ϕ‖H2 +
‖ψ‖H1. Furthermore, if

sup
t∈[0,T0)

(‖u (., t)‖H2 + ‖ut (., t)‖H1) <∞

then T0 =∞.
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The above theorem was also written for solutions u ∈ C ([0, T0) ;H2) ∩
C1 ([0, T0) ;H1) ∩ C2 ([0, T0) ;L2) of problem (2), (3) in Theorem 2.2 of [22].

Theorem 2.2. [22] Let ϕ ∈ H2, ψ ∈ H1. Suppose that E (0) < d and
I (ϕ) > 0 or ∇ϕ = 0. Then problem (2), (3) admits a unique global weak
solution u ∈ C ([0,∞) ;H2) ∩ C1 ([0,∞) ;H1) ∩ C2 ([0,∞) ;L2) .

Lemma 2.3. [22] Assume that ϕ ∈ H2, ψ ∈ H1 and the solution u (x, t)
of (2), (3) is in C ([0, T0) ;H2) ∩ C1 ([0, T0) ;H1) ∩ C2 ([0, T0) ;L2) . Then the
energy of the system is conserved, i.e, for ∀t ∈ [0, T0)

E (t) =
1

2

[
‖ut‖2 + ‖∇ut‖2 + µ ‖∇u‖2 + ‖∆u‖2

]
− β

p+ 2
‖∇u‖p+2

p+2 = E (0) .

By the Sobolev imbedding theorem and the assumptions on p in (4), we
have

‖∇u‖p+2 ≤ C∗
(
µ ‖∇u‖2 + ‖∆u‖2

)1/2
. (7)

Here, the imbedding constant is

C∗ = sup
u∈H2,∇u6=0

‖∇u‖p+2(
µ ‖∇u‖2 + ‖∆u‖2

)1/2 . (8)

The potential well depth can also be written with the aid of imbedding con-
stant, the proof of which was given in Lemma 3.5 of [22], as

d =

[
p

2 (p+ 2)

] (
βCp+2
∗
)−2/p

> 0. (9)

For global existence in the case E (0) = d, we need some properties of the
functional J (u) .

Lemma 2.4. [22] Let u ∈ H2 and ∇u 6= 0. Then J (λu) = 1
2
λ2
(
µ ‖∇u‖2 + ‖∆u‖2

)
−

β
p+2

λp+2 ‖∇u‖p+2
p+2 satisfies the followings:

(i) lim
λ→0

J (λu) = 0, lim
λ→∞

J (λu) = −∞.

(ii) For 0 < λ <∞, there exists a unique extreme point

λ =
(
µ ‖∇u‖2 + ‖∆u‖2 /β ‖∇u‖p+2

p+2

)1/p
of J (λu) , and J (λu) takes its maximum at that point (i.e. sup

λ≥0
J (λu) =

J
(
λu
)
).
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Remark 2.1. Note that from d
dλ
J (λu) = λ

(
µ ‖∇u‖2 + ‖∆u‖2

)
−βλp+1 ‖∇u‖p+2

p+2

one can conclude J (λu) is increasing on 0 ≤ λ ≤ λ and decreasing on
λ < λ <∞. This lemma also implies that I (λu) > 0 for 0 ≤ λ ≤ λ, I (λu) < 0
for λ < λ <∞, and I

(
λu
)

= 0 due to the fact that λ d
dλ
J (λu) = I (λu) .

Lemma 2.5. [22]

(i) If 0 < µ ‖∇u‖2 + ‖∆u‖2 < 2(p+2)
p

d, then I (u) > 0.

(ii) If I (u) = 0, then either ‖∇u‖ = 0 or µ ‖∇u‖2 + ‖∆u‖2 ≥ 2(p+2)
p

d.

(iii) If I (u) < 0, then µ ‖∇u‖2 + ‖∆u‖2 > 2(p+2)
p

d.

Proof. We only give the proof of ii), the proof of i) and iii) can be found in
[22]. If ‖∇u‖ = 0, then I (u) = 0. If I (u) = 0 and ‖∇u‖ 6= 0, then from

µ ‖∇u‖2 + ‖∆u‖2 = β ‖∇u‖p+2
p+2 ≤

(
βCp+2
∗
) (
µ ‖∇u‖2 + ‖∆u‖2

)(p+2)/2

we have (
µ ‖∇u‖2 + ‖∆u‖2

)p/2 ≥ (βCp+2
∗
)−1

.

With the aid of (9) the proof is completed.

Theorem 2.6. Let ϕ ∈ H2, ψ ∈ H1. Suppose that I (ϕ) ≥ 0 and E (0) =
d. Then problem (2), (3) has a global weak solution u ∈ C ([0,∞) ;H2) ∩
C1 ([0,∞) ;H1) .

Proof. We split the proof of the theorem into two parts:

1. ‖∇ϕ‖ 6= 0

i) In I (ϕ) > 0 case, d
dλ
J (λϕ)|λ=1 = 1

λ
I (λϕ)|λ=1 > 0. Thus for some

λ ∈ (λ1, λ2), we have d
dλ
J (λϕ) > 0 and I (λϕ) > 0, where λ1 < 1 < λ2.

Let us take the sequence {λk} such that λ1 < λk < 1, λk = 1 − 1
k

and
ϕk = λkϕ, ψk = λkψ, k = 2, 3, ....Consider problem (2) with the initial
conditions

u (x, 0) = ϕk (x) , ut (x, 0) = ψk (x) . (10)

Then
I (ϕk) = I (λkϕ) > 0 (11)

and

Ek (0) =
1

2

[
‖ψk‖2 + ‖∇ψk‖2 + µ ‖∇ϕk‖2 + ‖∆ϕk‖2

]
− β

p+ 2
‖∇ϕk‖p+2

p+2

=
1

2

[
‖ψk‖2 + ‖∇ψk‖2

]
+ J (ϕk)

=
1

2

[
‖ψk‖2 + ‖∇ψk‖2

]
+ J (λkϕ)

<
1

2

[
‖ψ‖2 + ‖∇ψ‖2

]
+ J (ϕ) = E (0) = d (12)
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ii) If I (ϕ) = 0, then ϕ ∈ N and definition of d implies J (ϕ) ≥ d, which
together with

1

2

[
‖ψ‖2 + ‖∇ψ‖2

]
+ J (ϕ) = E (0) = d

yields J (ϕ) = d. Then it follows from Lemma 2.4 that λ = λ (ϕ) = 1,
J (λϕ) is increasing and I (λϕ) > 0 for 0 < λ < 1. Let us take a sequence
{λk} such that 0 < λk < 1, λk = 1 − 1

k
, k = 2, 3, .... Let ϕk = λkϕ,

ψk = λkψ and consider problem (2), (10). Then (11) and (12) also hold.

From Theorem 2.2, for each k, problem (2), (10) has a global weak solution
uk (t) ∈ C ([0,∞) ;H2) and ukt (t) ∈ C1 ([0,∞) ;H1) for t ∈ [0,∞) which
satisfies

(ukt, υ) + (∇ukt,∇υ) + (∆uk,∆υ) + µ (∇uk,∇υ)− β (|∇uk|p∇uk,∇υ)

= (ψk, υ) + (∇ψk,∇υ) , ∀υ ∈ H2, t ∈ [0,∞) (13)

and
1

2

[
‖ukt‖2 + ‖∇ukt‖2

]
+ J (uk) = Ek (0) < d, (14)

From (14) and

J (uk) =
p

2 (p+ 2)

(
µ ‖∇uk‖2 + ‖∆uk‖2

)
+

1

p+ 2
I (uk)

≥ p

2 (p+ 2)

(
µ ‖∇uk‖2 + ‖∆uk‖2

)
we have

1

2

[
‖ukt‖2 + ‖∇ukt‖2

]
+

p

2 (p+ 2)

(
µ ‖∇uk‖2 + ‖∆uk‖2

)
< d, t ∈ [0,∞) .

(15)
The above inequality gives

µ ‖∇uk‖2 + ‖∆uk‖2 <
2 (p+ 2)

p
d, (16)[

‖ukt‖2 + ‖∇ukt‖2
]
≤ 2d, (17)

β ‖∇uk‖p+2
p+2 ≤ Cp+2

∗
(
µ ‖∇uk‖2 + ‖∆uk‖2

)(p+2)/2 ≤ |β|−1
(
µ ‖∇uk‖2 + ‖∆uk‖2

)
,

(18)

J (uk) ≥
1

2
µ ‖∇uk‖2 + ‖∆uk‖2 −

1

p+ 2

∫
Rn
|∇uk|p+2 dx

≥ p

2 (p+ 2)

(
µ ‖∇uk‖2 + ‖∆uk‖2

)
≥ 0. (19)
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From the above inequalities we get

‖∇uk‖p+2
p+2 ≤ |β|

−1 2 (p+ 2)

p
d.

It follows from (16)-(18) that there exists a ũ such that I (ũ) > 0 and a
subsequence {uη} of {uk} such that as η →∞

uη → ũ in L∞ ([0,∞) ;H2) weakly star and a.e. in Rn × [0,∞) ,
uηt → ũt in L∞ ([0,∞) ;H1) weakly star,
|∇uη|p∇uη → |∇ũ|p∇ũη in L∞

(
[0,∞) ;L(p+2)/p

)
weakly star.

Substituting k = η →∞ in (13) yields

(ũkt, υ) + (∇ũkt,∇υ) + (∆ũk,∆υ) + µ (∇ũk,∇υ)− β (|∇ũk|p∇ũk,∇υ)

= (ψk, υ) + (∇ψk,∇υ) , t ∈ [0,∞)

for any υ ∈ H2 from which we infer that ũ satisfies (2). Moreover, we have

ũ (x, 0) = ϕ (x) , ũt (x, 0) = ψ (x) .

So, ũ is a global solution for problem (2), (3). By the uniqueness of the
solution, we get ũ = u on Rn × [0, T ) and I (u) = I (ũ) > 0. By Theorem 2.2
we conclude that T =∞. This completes the proof.

2. ‖∇ϕ‖ = 0

Let λk = 1− 1
k

and ϕk = λkϕ, ψk = λkψ, k = 2, 3, ....Consider problem (2)
with the initial conditions (10). Note that ‖∇ϕ‖ = 0 implies that J (ϕ) = 0
and

1

2

[
‖ψ‖2 + ‖∇ψ‖2

]
= E (0) = d.

By using the following inequality

Ek (0) =
1

2

[
‖ψk‖2 + ‖∇ψk‖2

]
+ J (ϕ)

=
1

2

[
‖ψk‖2 + ‖∇ψk‖2

]
=

1

2
λ2k
[
‖ψ‖2 + ‖∇ψ‖2

]
<

1

2

[
‖ψ‖2 + ‖∇ψ‖2

]
= E (0) = d

and Theorem 2.2, we conclude that for sufficiently large k, problem (2), (10)
has a global weak solution uk (t) ∈ C ([0,∞) ;H2) and ukt (t) ∈ C1 ([0,∞) ;H1)
and I (uk) = 0 for t ∈ [0,∞) . The rest of the proof can be made in the same
way as the proof of case ii) of this theorem.

Lemma 2.7. Assume that ϕ ∈ H2, ψ ∈ H1, ε = 0, E (0) = d, and (ψ, ϕ) +
(∇ψ,∇ϕ) ≥ 0. If I (ϕ) < 0, then I (u (t)) < 0 for ∀t ∈ [0,∞) .
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Proof. Let u(t) be any weak solution of problem (2), (3) having the critical
initial energy. If the statement fails, then there is a time 0 < t∗ < T such that
I(u (t∗)) = 0 and I (u (t)) < 0 for 0 < t < t∗ (i.e. t∗ is the first time with this
property). By continuity of µ ‖∇u (t)‖2 + ‖∆u (t)‖2 in time t and Lemma 2.5

(i) there exists a time t∗ ∈ (0, T ) such that µ ‖∇u (t∗)‖2+‖∆u (t∗)‖2 = 2(p+2)
p

d.

By the inequality (7), Lemma 2.5 (i) and definition of d in terms of Sobolev
constant, namely (9), we get

J (u (t∗)) =
1

2

(
µ ‖∇u (t∗)‖2 + ‖∆u (t∗)‖2

)
− β

p+ 2
‖∇u (t∗)‖p+2

p+2

≥ 1

2

(
µ ‖∇u (t∗)‖2 + ‖∆u (t∗)‖2

)
− β

p+ 2
Cp+2
∗
(
µ ‖∇u (t∗)‖2 + ‖∆u (t∗)‖2

)(p+2)/2

≥ d

Combining the above inequality with

J (u (t∗)) ≤ E (t∗) = E (0) = d

we get J (u (t∗)) = d. Hence

J (u (t∗))− d = E (t∗)− J (u (t∗)) = 0

yields ‖ut (t∗)‖2 + ‖∇ut (t∗)‖2 = 0, meanwhile ‖ut (t∗)‖ = ‖∇ut (t∗)‖ = 0. Let
us define

θ (t) = ‖u‖2 + ‖∇u‖2 .
Then

θ′ (t) = 2 (ut, u) + 2 (∇ut,∇u) ,

θ′ (t∗) = 0,

θ′ (0) = 2 (ψ, ϕ) + 2 (∇ψ,∇ϕ) ≥ 0, (20)

and
θ′′ (t) = 2 ‖ut‖2 + 2 (utt, u) + 2 ‖∇ut‖2 + 2 (∇utt,∇u) .

Multiplying (2) by u, we have

〈utt −∆utt, u〉X∗X = − (∆u,∆u)− µ (∇u,∇u) + β (|∇u|p∇u,∇u) ,

where 〈·, ·〉X∗X denotes duality between X∗ and X with X = H2. Using the
above equality, (6) and the assumption that I (u) < 0 in (0, t∗), we get the
following inequality

θ′′ (t) = 2 ‖ut‖2 + 2 ‖∇ut‖2 − 2I (u) > 0, t ∈ [0, t∗) .
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which yields θ′ (t) is strictly increasing in accordance with t ∈ [0, t∗]. Combin-
ing this fact with (20) yields

θ′ (t∗) = 2 (ut (t∗) , u (t∗)) + 2 (∇ut (t∗) ,∇u (t∗)) > 0.

It is not able to occur, because it is against the fact that θ′ (t∗) = 0. This
finishes the proof.

In the following, we give a theorem on the nonexistence (blow up) of so-
lutions of problem (2), (3), the proof of which can be established by aid of
Lemma 2.5 iii), Lemma 2.7 and a similar argument as in [21].

Theorem 2.8. Let ϕ ∈ H2, ψ ∈ H1, E (0) = d, I (u) < 0, ε = 0 and
(ψ, ϕ) + (∇ψ,∇ϕ) ≥ 0. Then the solution of the Cauchy problem (2), (3)
ceases to exist in finite time.

3 Global Weak Solutions for the Case of High

Initial Energy

This section is devoted to the existence of high initial energy solutions. For
E (0) < d, the existence of global solutions of (2), (3) was proven by the sign
invariance of the functional I (u) in [22], and for the case of E (0) = d global
existence was given in the previous section by aid of sign invariance of the same
functional. But for E (0) > d, I (u (t)) is not always positive, therefore, we
cannot prove the global existence with sign invariance of this functional. Some
additional conditions should be imposed on initial data and a new functional
should be constructed according to these conditions. Blow up of solutions for
problem (2), (3) with high initial energy is an open question because of the
lack of Poincaré inequality.

In the present section, we need to construct a more general functional

Iδ (u) = (1− δ)
(
µ ‖∇u‖2 + ‖∆u‖2

)
− β ‖∇u‖p+2

p+2 , δ > −p
2
.

Considering the above functional, the new potential well depth Dδ can be
defined as follows

Dδ = inf
u∈Nδ

J (u) , Nδ (Rn) =
{
u ∈ H2 : Iδ (u) = 0, ‖∇u‖ 6= 0

}
.

Lemma 3.1. Let δ > −p
2
. Then

Dδ =
p+ 2δ

2 (p+ 2)

(
|1− δ|
βCp+2
∗

)2/p

=
p+ 2δ

p
d |1− δ|2/p .
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Proof. For every u ∈ Nδ, we have

(1− δ)
(
µ ‖∇u‖2 + ‖∆u‖2

)
= β ‖∇u‖p+2

p+2 ≤ βCp+2
∗
(
µ ‖∇u‖2 + ‖∆u‖2

)(p+2)/2

from which it follows that

µ ‖∇u‖2 + ‖∆u‖2 ≥
(

1− δ
βCp+2
∗

)2/p

.

The above inequality is an equality iff u is a minimizer of the imbedding
H2 ↪→ Lp+2 and the equality is attained only for ground state solution of (2)
[11], so we have

inf
u∈Nδ

(
µ ‖∇u‖2 + ‖∆u‖2

)
=

(
1− δ
βCp+2
∗

)2/p

.

By definition of Dδ, we obtain

Dδ = inf
u∈Nδ

J (u) = inf
u∈Nδ

(
1

p+ 2
Iδ (u) +

p+ 2δ

2 (p+ 2)

(
µ ‖∇u‖2 + ‖∆u‖2

))
=

p+ 2δ

2 (p+ 2)
inf
u∈Nδ

(
µ ‖∇u‖2 + ‖∆u‖2

)
=

p+ 2δ

2 (p+ 2)

(
1− δ
βCp+2
∗

)2/p

which completes the proof.

Remark 3.1. We should note that

(i) For δ = 0, Iδ (u) corresponds to I (u) ,

(ii) From Lemma 3.1, we conclude that Dδ has a local maximum at δ = 0
and a local minimum at δ = 1,

(iii) For δ > −p
2
, Dδ is strictly increasing for

(
−p

2
, 0
)
∪ (1,∞) and strictly

increasing for (0, 1) ,

(iv) Dδ < 0 for δ < −p
2
.

In the following lemma, we state some properties of Iδ (u) , which can be
proved in a similar way as in [?].

Lemma 3.2. For −p
2
< δ < 1,

(i) If ‖u‖H1 < f (δ) , then Iδ (u) ≥ 0 (the equality is satisfied iff ‖u‖H1 = 0)

(ii) If Iδ (u) = 0, then ‖u‖H1 ≥ f (δ) or ‖u‖H1 = 0
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(iii) If Iδ (u) < 0, then ‖u‖H1 > f (δ) ,

where f (δ) =
(

1−δ
βCp+2

∗

)2/p
.

For δ > 1,

(iv) If ‖u‖H1 < g (δ) , then Iδ (u) ≤ 0 (the equality is satisfied iff ‖u‖H1 = 0)

(v) If Iδ (u) = 0, then ‖u‖H1 ≥ g (δ) or ‖u‖H1 = 0

(vi) If Iδ (u) > 0, then ‖u‖H1 > g (δ) ,

where g (δ) =
(

δ−1
βCp+2

∗

)2/p
.

Theorem 3.3. Assume that ϕ ∈ H2, ψ ∈ H1. Let δk be the maximal positive
root of E (0) = Dδ. If E (0) > 0, then Iδ (u (t)) ≤ 0 for every t ≥ 0 and δ ≥ δk.

Proof. (i) For δ = δk, let us proceed by contradiction and, presume that
there exists some t′ > 0 satisfying Iδk(u(t′)) > 0. From Lemma 3.2 iv),
we have ‖u‖H1 > 0 and for some δ, δ > δk, we have Iδ(u(t′)) = 0. Then
by energy identity, Dδk = E (0) ≥ J (u (t′)) ≥ inf

u∈Nδ
J (u) = Dδ. From

definition of Dδ, for δ > δk > 1 we have Dδ > Dδk . Then we come into a
contradiction that proves the theorem for δ = δk.

(ii) For δ ≥ δk, from Iδk(u(t)) ≥ Iδ(u(t)) we infer that the theorem is true
for every δ ≥ δk.

Now, we construct the second functional that will be needed for global
existence of high initial energy solutions. For the proof of the global existence
theorem, the sign invariance of this functional has an important role. Let us
define this functional

K (u (t)) =
(
µ ‖∇u‖2 + ‖∆u‖2

)
− β ‖∇u‖p+2

p+2 − ‖ut‖
2
H1

= I0 (u)− ‖ut‖2H1 . (21)

Theorem 3.4. Let ϕ ∈ H2, ψ ∈ H1, ε = 0 and E (0) > 0. Assume that the
following inequality is satisfied

(ψ, ϕ) + (∇ψ,∇ϕ) +
1

2
‖ϕ‖2 +

1

2
‖∇ϕ‖2 ≤ − (p+ 2) δ

p+ (p+ 4) δ
E (0) . (22)

Then K (u (t)) does not change its sign (i.e. if K (u (0)) > 0, then K (u (t)) >
0) under the flow of problem (2), (3) for every t ∈ [0,∞).
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Proof. The theorem will be proved by contradiction. Recall that for θ (t) , we
have

θ′ (t) = 2 (ut, u) + 2 (∇ut,∇u) ,

θ′′ (t) = 2 ‖ut‖2 + 2 (utt, u) + 2 ‖∇ut‖2 + 2 (∇utt,∇u) .

Multiplying (2) by u and using the definition of K (u (t)) , we get

θ′′ (t) = −2K (u (t)) .

For a contradiction, assume the existence of a time t′ > 0 such that K (u (t′)) =
0, and t′ be the first time this property is satisfied. Since θ′′ (t) < 0, we infer
that θ′ (t) is a strictly decreasing function in [0, t′). It follows from (22) that
θ′ (0) < 0 and thus θ′ (t) < 0 in [0, t′], which means that θ (t) is a strictly
decreasing function on [0, t′]. By (22), we have

θ (t) < ‖ϕ‖2 + ‖∇ϕ‖2 < −2 (ϕ, ψ)− 2 (∇ϕ,∇ψ)− 2 (p+ 2) δ

p+ (p+ 4) δ
E (0) ,

for all t ∈ [0, t′). Furthermore, the continuity of θ in t yields

θ (t′) ≤ −2 (ϕ, ψ)− 2 (∇ϕ,∇ψ)− 2 (p+ 2) δ

p+ (p+ 4) δ
E (0) .

Due to K (u (t′)) = 0 and the conservation of energy, we get

E (0) =
1

2

(
‖ut (t′)‖2 + ‖∇ut (t′)‖2

)
+

p

2 (p+ 2)

(
µ ‖∇u (t′)‖2 + ‖∆u (t′)‖2

)
+

1

p+ 2
I (u (t′))

=

(
1

2
+

1

p+ 2

)(
‖ut (t′)‖2 + ‖∇ut (t′)‖2

)
+

p

2 (p+ 2)

(
µ ‖∇u (t′)‖2 + ‖∆u (t′)‖2

)
. (23)

Then from Theorem 3.3 and K (u (t′)) = 0, we obtain

µ ‖∇u (t′)‖2 + ‖∆u (t′)‖2 ≥ 1

δk
I0 (u (t′)) ≥ 1

δ

(
‖ut (t′)‖2 + ‖∇ut (t′)‖2

)
.

Using the above inequality, Eq. (23) becomes

E (0) ≥
(

1

2
+

1

p+ 2
+

p

2 (p+ 2) δ

)(
‖ut (t′)‖2 + ‖∇ut (t′)‖2

)
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from which we conclude that

E (0) ≥ p+ (p+ 4) δ

2 (p+ 2) δ

[
‖(ut (t′) + u (t′))‖2 + ‖∇ut (t′) +∇u (t′)‖2

−2 (ut (t′) , u (t′))− 2 (∇ut (t′) ,∇u (t′))− ‖u (t′)‖2 − ‖∇u (t′)‖2
]
.

Here we used the following equalities

‖ut (t′)‖2 = ‖ut (t′) + u (t′)‖2 − ‖u (t′)‖2 − 2 (ut (t′) , u (t′)) ,

‖∇ut (t′)‖2 = ‖∇ut (t′) +∇u (t′)‖2 − ‖∇u (t′)‖2 − 2 (∇ut (t′) ,∇u (t′)) .

Since θ (t) and θ′ (t) are monotone, we get

E (0) >
p+ (p+ 4) δ

(p+ 2) δ

[
− (ψ, ϕ)− (∇ψ,∇ϕ)− 1

2
‖ϕ‖2 − 1

2
‖∇ϕ‖2

]
.

This contradicts (22). So the proof is complete.

Now, we can state and prove global existence of problem (2), (3).

Theorem 3.5. Let n ≤ 4, 0 < p <∞ for n = 1, 2; 0 < p ≤ 2
n−2 for n = 3, 4,

ε = 0 and ϕ ∈ H2, ψ ∈ H1. Assume that condition (22) holds, E (0) > 0,
K (u (0)) > 0. Then, for problem (2), (3) u is a global weak solution.

Proof. The proof will be made with the aid of the local existence result given
in preliminaries. Since K (u (t)) is invariant under the flow of (2), (3), we have
I (u (t)) > 0 for every t > 0. By (7), we have

E (0) =
1

2

(
‖ut‖2 + ‖∇ut‖2

)
+

p

2 (p+ 2)

(
µ ‖∇u‖2 + ‖∆u‖2

)
+

1

p+ 2
I (u)

≥ 1

2

(
‖ut‖2 +

1

2
‖∇ut‖2

)
+

p

2 (p+ 2)

(
µ ‖∇u‖2 + ‖∆u‖2

)
.

This yields the boundedness of ‖u‖H2 and ‖ut‖H1 for every 0 ≤ t < T0. Com-
bining the above estimate with the local existence theorem of Section 2 gives
the existence of the global solution.

4 Initial Data Satisfying Conditions of Theo-

rems 2.6 and 3.5

In this section, we give sets of initial data (ϕ, ψ) that satisfy conditions of
Theorems 2.6 and 3.5. Let us choose the initial displacement ϕ ∈ H2 and
initial velocity ψ ∈ H1 as

ϕ (x) = aω (γx) , ψ = abω (γx) , (24)
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where ω is a fixed function, γ > 0, a 6= 0, b > 0 are constants. Then by
straightforward calculations, we have

‖ϕ‖2 =
a2

γn
‖ω‖2 , ‖ψ‖2 =

a2b2

γn
‖ω‖2 , (ϕ, ψ) =

a2b

γn
‖ω‖2 , (25)

(∇ϕ,∇ψ) =
a2b

γn−2
‖∇ω‖2 , ‖∇ϕ‖2 =

a2

γn−2
‖∇ω‖2 , ‖∇ψ‖2 =

a2b2

γn−2
‖∇ω‖2 ,

(26)

‖∆ϕ‖2 =
a2

γn−4
‖∆ω‖2 , ‖∇ϕ‖p+2

p+2 =
ap+2

γn−2

∫
Rn
|∇ω|p+2 dx. (27)

For simplicity, we take p = 2.

4.1 Construction of initial data satisfying conditions of
Theorem 2.6

Using the initial data (24), we can write conditions of Theorem 3 as

E (0) =
1

2

[
a2b2

γn
‖ω‖2 +

(
a2b2

γn−2
+ µ

a2

γn−2

)
‖∇ω‖2 +

a2

γn−4
‖∆ω‖2

]
− βa4

4γn−2

∫
Rn
|∇ω|4 dx

= d, (28)

and

I (ϕ) = µ
a2

γn−2
‖∇ω‖2 +

a2

γn−4
‖∆ω‖2 − βa4

γn−2

∫
Rn
|∇ω|4 dx ≥ 0. (29)

From inequality (29), we have

βa4

γn−2

∫
Rn
|∇ω|4 dx ≤ µ

a2

γn−2
‖∇ω‖2 +

a2

γn−4
‖∆ω‖2 .

Using the above inequality in (28), we obtain

1

2

[
a2b2

γn
‖ω‖2 +

(
a2b2

γn−2
+ µ

a2

γn−2

)
‖∇ω‖2 +

a2

γn−4
‖∆ω‖2

]
− µa2

4γn−2
‖∇ω‖2 − a2

4γn−4
‖∆ω‖2 ≤ d,

and

2b2 ‖ω‖2 + γ2
(
2b2 + µ

)
‖∇ω‖2 + γ4 ‖∆ω‖2 ≤ 4γn

a2
d.

L.h.s. of the above inequality is positive. Considering d =
[

p
2(p+2)

]
(βCp+2

∗ )
−2/p

>

0, the constants a and b satisfying the above inequality can be obtained.
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4.2 Construction of initial data satisfying conditions of
Theorem 3.5

Using (24), condition (22) becomes(
a2b

γn
+

1

2

a2

γn

)
‖ω‖2 +

(
a2b

γn−2
+

1

2

a2

γn−2

)
‖∇ω‖2 +

4δ

2 + 6δ
E (0) ≤ 0, (30)

where

E (0) =
1

2

[
a2b2

γn
‖ω‖2 +

(
a2b2

γn−2
+ µ

a2

γn−2

)
‖∇ω‖2 +

a2

γn−4
‖∆ω‖2

]
− βa4

4γn−2

∫
Rn
|∇ω|4 dx.

Inserting E(0) in (30), we get(
a2b

γn
+

1

2

a2

γn
+

2δ

1 + 3δ

a2b2

γn

)
‖ω‖2 +

[
a2b

γn−2
+

(
1

2
+

2δµ

1 + 3δ

)
a2

γn−2
+

2δ

1 + 3δ

a2b2

γn−2

]
‖∇ω‖2

+
2δ

1 + 3δ

a2

γn−4
‖∆ω‖2 − βδa4

(2 + 6δ) γn−2

∫
Rn
|∇ω|4 dx ≤ 0. (31)

On the other hand, from the the assumption K (u (0)) > 0 one can write

−β a4

γn−2

∫
Rn
|∇ω|4 dx > a2b2

γn
‖ω‖2+ a2b2

γn−2
‖∇ω‖2−µ a2

γn−2
‖∇ω‖2− a2

γn−4
‖∆ω‖2 .

(32)
Using (32) in (31), we obtain(

b+
1

2
+

5δ

2 + 6δ
b2
)
‖ω‖2 + γ2

(
b+

1

2
+

5δ

2 + 6δ
b2
)
‖∇ω‖2

+
3δµ

2 + 6δ
‖∇ω‖2 +

3δγ4

2 + 6δ
‖∆ω‖2 ≤ 0. (33)

From (33), we conclude the following necessary conditions for the parameter b
and δ

b+
1

2
+

5δ

2 + 6δ
b2 < 0, (34)

3δ

2 + 6δ
< 0. (35)

To ensure the second inequality of the above inequalities, δ must be in the
interval

(
−1

2
, 0
)

and δ 6= −1
3
. For the first inequality of the above inequalities

to be satisfied, we must take b ∈ (−∞, b1) ∪ (b2,∞), where

b1,2 =
− (1 + 3δ)±

√
1 + δ − 6δ2

5δ
.

The conjectures of Theorem 3.5 are valid if 33 holds with 34, 35 and for some
a 6= 0.
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5 Open Problem

In this paper, we obtain existence of global weak solutions for an equation
modeling shallow water waves. The subject of existence is discussed for two
different initial energy states: Critical and high initial energy. A non-existence
theorem is also given for critical initial energy. Initial data verifying main
results are provided. But the problem of blow up of solutions for high initial
energy remained open. This problem may be handled since the results will
have great importance for the physical phenomena modeled by the equation.
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