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Abstract

The edge-equitable antimagic coloring has undergone
comprehensive investigation across multiple graph structures,
revealing that its outcomes align optimally with its equitable
chromatic index. A graph, labeled using antimagic labeling,
and satisfying the conditions: (i) no two adjacent edges
incident on a vertex share the same edge weight, and (ii) for
any distinct values i and j, the absolute difference between
the cardinalities of the color classes associated with the edge
weights is limited to no more than 1, is said to possess an
edge-equitable antimagic coloring. This paper analyses the
above coloring in specific graph families, that includes the
triangular ladder graph (TLp), open triangular ladder graph
(OTLp), comb graph (P+

p ), and double comb graph (P++
p ).
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1 Introduction

This study examines a finite, connected, and undirected graph denoted by G.
The set of nodes and lines in G are usually called vertices V (G) of order p and
edges E(G) of order q. Hartsfield and Ringel [3], introduced antimagic graphs,
by which, antimagic labeling is an assignment of unique positive integers to
each edge of the graph, such that the sum of the labels of the vertices adjacent
to each other is always different. On extending this concept to antimagic
labeling of vertices, which is an assignment of unique positive integers to the
vertices of a graph, such that the sum of the labels of the edges incident to any
two vertices is always different. On the other hand, an equitable edge coloring
refers to a graph coloring problem where the goal is to assign k colors to the
edges of a graph such that each color appears on an equal number of edges.
In other words, for an undirected graph G = (V (G), E(G)), an equitable edge
coloring is a coloring of the edges with k colors such that for any two colors
i and j (where 1 ≤ i ≤ k and 1 ≤ j ≤ k) and i ̸= j, the difference in the
number of edges colored between i and j is atmost 1. The concept of equitable
edge coloring was initially defined by Hilton and de Werra [4]. It is worth
noting that finding an antimagic labeling and equitable chromatic index for a
given graph is considered to be an NP-hard problem, and various algorithms
have been proposed to address this issue. Significant progress in the realm of
antimagic labeling can be observed in diverse works including, [1, 8, 9, 10].

The concept of local antimagic vertex coloring, which merges antimagic
labeling and vertex coloring, was introduced by Arumugam et al.[1]. Building
upon this idea, Dafik et al.[2] proposed a new notion of Rainbow Antimagic
coloring, for which Septory et al.[12] provided a general lower bound. Mo-
tivated by these developments, we have put forth a novel coloring scheme
termed, Edge-Equitable Antimagic coloring, which combines the principles of
antimagic vertex labeling and equitable edge coloring. Noteworthy advance-
ments in the field of equitable chromatic index can be found in various works,
including [4, 5, 6, 7, 11, 13, 14, 15, 16, 17].

The initial works on fundamental graphs revealed that its outcomes align
optimally with its equitable chromatic index. Further results serve as a foun-
dation for understanding the applicability and effectiveness of our proposed
coloring technique across different graph types. The paper includes the explo-
ration of general lower bounds and provides essential proofs in the subsequent
sections.

2 Preliminaries

Definition 2.1. For a bijective function ς : V (G) → {1, 2, 3, . . . , |V (G)|}
the corresponding edge weights are defined by, Wi(xy) = ς(x)+ ς(y), such that,
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(i) If e, e′ ∈ E(G), incident on a common vertex x ∈ V (G), then Wi(e) ̸=
Wj(e

′) and

(ii)
∣∣∣|CWi

|−|CWj
|
∣∣∣ ≤ 1, where |CWi

| is the cardinality of the color class having

ith edge weight and i ̸= j.

Lemma 2.2. For any p ∈ N , the edge-equitable 2-coloring of a triangular
ladder graph is χ′

e(TLp) = 2p− 1.

Lemma 2.3. For any p ∈ N , the edge-equitable 2-coloring of an open tri-
angular ladder graph is χ′

e(OTLp) = 2p− 2.

3 Bounds on Edge-Equitable Antimagic Col-

oring

Proposition 3.1. For any connected graph G, χ′
eac(G) ≥ χ′

e(G), where
χ′
e(G) is the equitable chromatic index of G.

Theorem 3.2. For any connected graph G, χ′
eac(G) ≥ max{χ′

e(G),∆(G)}.

Proof: Let G be a connected graph and u, v, w ∈ V (G). Let ς : V (G) →
{1, 2, 3, . . . , |V (G)|} be a bijective function, such that ς(u) ̸= ς(v) ̸= ς(w).
For uv, vw ∈ E(G), incident on a common vertex v ∈ V (G), their corre-
sponding edge weights Wi(uv) ̸= Wj(vw). Hence, χ′

eac(G) ≥ ∆(G). Using
this result and Proposition 3.1, we obtain the general lower bound, χ′

eac(G) ≥
max{χ′

e(G),∆(G)}.

4 Main Results

Theorem 4.1. For any positive integer p ≥ 3, the edge-equitable antimagic
connection number of a triangular ladder graph is 2p− 1 ≤ χ′

eac(TLp) ≤ 2p.

Proof: A triangular ladder graph (TLp), is similar to that of a ladder
graph with diagonal edges connecting the parallel paths with 2p vertices and
4p− 3 edges. The vertex set and edge set is given by, V (TLp) = {xt, yt : 1 ≤
t ≤ p} and E(TLp) = {xtxt+1, ytyt+1, xtyt+1 : 1 ≤ t ≤ p − 1} ∪ {xtyt : 1 ≤
t ≤ p} respectively. The minimum and maximum degrees are: δ(TLp) = 2
and ∆(TLp) = 4 respectively. By Theorem 3.2 and Lemma 2.2, χ′

eac(TLp) ≥
max{4, 2p− 1} ≥ 2p− 1. To prove the upper bound, we consider four cases.

Case 1. For p ≡ 1(mod 4)
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Define an antimagic labeling ς : V (TLp) → {1, 2, 3, . . . , 2p} by,

ς(xt) =


4t− 3 for t = 1, 3, 5, . . . , p+1

2

4p− 4t+ 3 for t = p+5
2
, p+9

2
, p+13

2
, . . . , p

4t− 1 for t = 2, 4, 6, . . . , p−1
2

4p− 4t+ 1 for t = p+3
2
, p+7

2
, p+11

2
, . . . , p− 1

ς(yt) =


4t for t = 1, 3, 5, . . . , p−3

2

4p− 4t+ 2 for t = p+1
2
, p+5

2
, p+9

2
, . . . , p

4t− 2 for t = 2, 4, 6, . . . , p−1
2

4p− 4t+ 4 for t = p+3
2
, p+7

2
, p+11

2
, . . . , p− 1

The total number of edge weights are obtained using n-term formula:
n = l−a

d
+ 1. Define a positive integer N , such that, N = |Wi| = l−a

d
+ 1

corresponds to the cardinality of edge weights. Based on the above labelling,
the edge weights and N values are:

Edge Weights Range N = |Wi| = l−a
d

+ 1

W1(xtxt+1) = 8t 1 ≤ t ≤ p−1
2

|W1| = p−1
2

W2(xtxt+1) = 8(p− t) t = p+3
2
, p+5

2
, p+7

2
, . . . , p− 1 in |W1|

W3(xtxt+1) = 8t− 10 t = p+1
2

1

W4(ytyt+1) = 8t+ 2 1 ≤ t ≤ p−3
2

in |W5|
W5(ytyt+1) = 8p− 8t+ 2 t = p+1

2
, p+3

2
, p+5

2
, . . . , p− 1 |W5| = p−1

2

W6(ytyt+1) = 8t t = p−1
2

in |W1|
W7(xtyt) = 8t− 3 1 ≤ t ≤ p−1

2
|W7| = p−1

2

W8(xtyt) = 8p− 8t+ 5 t = p+3
2
, p+5

2
, p+7

2
, . . . , p same as |W7|

W9(xtyt) = 8t− 5 t = p+1
2

1

W10(xtyt+1) = 8t− 1 t = 1, 3, 5, . . . , p−3
2

|W10| = p−1
4

W11(xtyt+1) = 8p− 8t− 1 t = p+3
2
, p+7

2
, p+11

2
, . . . , p− 1 same as |W10|

W12(xtyt+1) = 8t+ 3 t = 2, 4, 6, . . . , p−5
2
; p ≥ 9 |W12| = p−5

4

W13(xtyt+1) = 8p− 8t+ 3 t = p+5
2
, p+9

2
, p+13

2
, . . . , p− 2; p ≥ 9 same as |W12|

W14(xtyt+1) = 4p− 3 t = p−1
2
, p+1

2
1

The edge weights W2,W6 and W4 are already included in W1 and W5 re-
spectively. Also the edge weights W8,W11 and W13 shares the same colors as
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W7,W10 and W12 respectively, so they are excluded as superfluous. We con-
sider only, Wi, for i = 1, 3, 5, 7, 9, 10, 12, 14 and all the color classes exhibits a
cardinality of atmost 2, i.e, |CWi

| ≤ 2. Hence,
∑

|Wi|
i=1,3,5,7,9,10,12,14

= 2p.

Case 2. For p ≡ 2(mod 4)

Define an antimagic labeling ς : V (TLp) → {1, 2, 3, . . . , 2p} by,

ς(xt) =



4t− 3 for t = 1, 3, 5, . . . , p
2

4p− 4t+ 1 for t = p+4
2
, p+8

2
, p+12

2
, . . . , p− 1

4t− 1 for t = 2, 4, 6, . . . , p−2
2

4p− 4t+ 3 for t = p+6
2
, p+10

2
, p+14

2
, . . . , p

2p for t = p+2
2

ς(yt) =



4t for t = 1, 3, 5, . . . , p−4
2

4p− 4t+ 4 for t = p+4
2
, p+8

2
, p+12

2
, . . . , p− 1

4t− 2 for t = 2, 4, 6, . . . , p−2
2

4p− 4t+ 2 for t = p+2
2
, p+6

2
, p+10

2
, . . . , p

2p− 1 for t = p
2

Based on the above labelling, the edge weights and N values are:

Edge Weights Range N = |Wi| = l−a
d

+ 1

W1(xtxt+1) = 8t 1 ≤ t ≤ p−2
2

|W1| = p−2
2

W2(xtxt+1) = 8(p− t) t = p+4
2
, p+6

2
, p+8

2
, . . . , p− 1 in |W1|

W3(xtxt+1) = 6p− 4t− 3 t = p
2
, p+2

2
2

W4(ytyt+1) = 8t+ 2 1 ≤ t ≤ p−4
2

in |W5|
W5(ytyt+1) = 8p− 8t+ 2 t = p+2

2
, p+4

2
, p+6

2
, . . . , p− 1 |W5| = p−2

2

W6(ytyt+1) = 2p+ 4t− 3 t = p−2
2
, p
2

in |W3|
W7(xtyt) = 8t− 3 1 ≤ t ≤ p−2

2
|W7| = p−2

2

W8(xtyt) = 8p− 8t+ 5 t = p+4
2
, p+6

2
, p+8

2
, . . . , p same as |W7|

W9(xtyt) = 3p+ 2t− 4 t = p
2
, p+2

2
2

W10(xtyt+1) = 8t− 1 t = 1, 3, 5, . . . , p−4
2

|W10| = p−2
4

W11(xtyt+1) = 8p− 8t− 1 t = p+4
2
, p+8

2
, p+12

2
, . . . , p− 1 same as |W10|

W12(xtyt+1) = 8t+ 3 t = 2, 4, 6, . . . , p−6
2
; p ≥ 10 |W12| = p−6

4

W13(xtyt+1) = 8p− 8t+ 3 t = p+6
2
, p+10

2
, p+14

2
, . . . , p− 2; p ≥ 10 same as |W12|

W14(xtyt+1) =
7p
2
+ t− 5 t = p−2

2
, p
2
, p+2

2
1
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The edge weights W2,W4 and W6 are already included in W1,W5 and W3 re-
spectively. Also the edge weights W8,W11 and W13 shares the same colors
as W7,W10 and W12 respectively, so they are excluded as superfluous. Fur-
ther, W14 = 7p

2
+ t − 5, for t = p−2

2
, p+2

2
are already included in W5 and

W9 respectively. We consider only, Wi, for i = 1, 3, 5, 7, 9, 10, 12, 14 and all
the color classes exhibits a cardinality of atmost 2, i.e, |CWi

| ≤ 2. Hence,∑
|Wi|

i=1,3,5,7,9,10,12,14

= 2p.

Case 3. For p ≡ 3(mod 4)

Let us define an antimagic labeling ς : V (TLp) → {1, 2, 3, . . . , 2p} by,

ς(xt) =


4t− 3 for t = 1, 3, 5, . . . , p−1

2

4p− 4t+ 3 for t = p+3
2
, p+7

2
, p+11

2
, . . . , p

4t− 1 for t = 2, 4, 6, . . . , p−3
2
; p ≥ 7

4p− 4t+ 1 for t = p+1
2
, p+5

2
, p+9

2
, . . . , p− 1

ς(yt) =


4t for t = 1, 3, 5, . . . , p−1

2

4p− 4t+ 2 for t = p+3
2
, p+7

2
, p+11

2
, . . . , p

4t− 2 for t = 2, 4, 6, . . . , p+1
2

4p− 4t+ 4 for t = p+5
2
, p+9

2
, p+13

2
, . . . , p− 1; p ≥ 7

Based on the above labelling, the edge weights and N values are:

Edge Weights Range N = |Wi| = l−a
d

+ 1

W1(xtxt+1) = 8t 1 ≤ t ≤ p−3
2
; p ≥ 7 in |W2|

W2(xtxt+1) = 8(p− t) t = p+1
2
, p+3

2
, p+5

2
, . . . , p− 1 |W2| = p−1

2

W3(xtxt+1) = 8t− 2 t = p−1
2

1

W4(ytyt+1) = 8t+ 2 1 ≤ t ≤ p−1
2

|W4| = p−1
2

W5(ytyt+1) = 8p− 8t+ 2 t = p+3
2
, p+5

2
, p+7

2
, . . . , p− 1; p ≥ 7 in |W4|

W6(ytyt+1) = 8(t− 1) t = p+1
2

in |W2|
W7(xtyt) = 8t− 3 1 ≤ t ≤ p−1

2
|W7| = p−1

2
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Edge Weights Range N = |Wi| = l−a
d

+ 1

W8(xtyt) = 8p− 8t+ 5 t = p+3
2
, p+5

2
, p+7

2
, . . . , p same as |W7|

W9(xtyt) = 8t− 5 t = p+1
2

1

W10(xtyt+1) = 8t− 1 t = 1, 3, 5, . . . , p−1
2

|W10| = p+1
4

W11(xtyt+1) = 8p− 8t− 1 t = p+1
2
, p+5

2
, p+9

2
, . . . , p− 1 same as |W10|

W12(xtyt+1) = 8t+ 3 t = 2, 4, 6, . . . , p−3
2
; p ≥ 7 |W12| = p−3

4

W13(xtyt+1) = 8p− 8t+ 3 t = p+3
2
, p+7

2
, p+11

2
, . . . , p− 1; p ≥ 7 same as |W12|

The edge weights W1,W6 and W5 are already included in W2 and W4 re-
spectively. Also the edge weights W8,W11 and W13 shares the same colors as
W7,W10 and W12 respectively, so they are excluded as superfluous. We con-
sider only, Wi, for i = 2, 3, 4, 7, 9, 10, 12 and all the color classes exhibits a
cardinality of atmost 2, i.e, |CWi

| ≤ 2. Hence,
∑

|Wi|
i=2,3,4,7,9,10,12

= 2p.

Case 4. For p ≡ 0(mod 4)

Let us define an antimagic labeling ς : V (TLp) → {1, 2, 3, . . . , 2p} by,

ς(xt) =


4t− 3 for t = 1, 3, 5, . . . , p−2

2

4p− 4t+ 1 for t = p+2
2
, p+6

2
, p+10

2
, . . . , p− 1

4t− 1 for t = 2, 4, 6, . . . , p
2

4p− 4t+ 3 for t = p+4
2
, p+8

2
, p+12

2
, . . . , p

ς(yt) =


4t for t = 1, 3, 5, . . . , p−2

2

4p− 4t+ 4 for t = p+2
2
, p+6

2
, p+10

2
, . . . , p− 1

4t− 2 for t = 2, 4, 6, . . . , p
2

4p− 4t+ 2 for t = p+4
2
, p+8

2
, p+12

2
, . . . , p

Based on the above labelling, the edge weights and N values are:

Edge Weights Range N = |Wi| = l−a
d

+ 1

W1(xtxt+1) = 8t 1 ≤ t ≤ p−2
2

|W1| = p−2
2

W2(xtxt+1) = 8(p− t) t = p+2
2
, p+4

2
, p+6

2
, . . . , p− 1 same as |W1|

W3(xtxt+1) = 8t− 4 t = p
2

1
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Edge Weights Range N = |Wi| = l−a
d

+ 1

W4(ytyt+1) = 8t+ 2 1 ≤ t ≤ p−2
2

|W4| = p−2
2

W5(ytyt+1) = 8p− 8t+ 2 t = p+2
2
, p+4

2
, p+6

2
, . . . , p− 1 same as |W4|

W6(ytyt+1) = 8t− 2 t = p
2

1

W7(xtyt) = 8t− 3 1 ≤ t ≤ p
2

|W7| = p
2

W8(xtyt) = 8p− 8t+ 5 t = p+2
2
, p+4

2
, p+6

2
, . . . , p same as |W7|

W9(xtyt+1) = 8t− 1 t = 1, 3, 5, . . . , p−2
2

|W9| = p
4

W10(xtyt+1) = 8p− 8t− 1 t = p+2
2
, p+6

2
, p+10

2
, . . . , p− 1 same as |W9|

W11(xtyt+1) = 8t+ 3 t = 2, 4, 6, . . . , p−4
2
; p ≥ 8 |W11| = p−4

4

W12(xtyt+1) = 8p− 8t+ 3 t = p+4
2
, p+8

2
, p+12

2
, . . . , p− 2; p ≥ 8 same as |W11|

W13(xtyt+1) = 8t− 1 t = p
2

1

The edge weights W2,W5,W8,W10 and W12 shares the same colors as W1,W4,
W7,W9 and W11 respectively, so they are excluded as superfluous. We con-
sider only, Wi, for i = 1, 3, 4, 6, 7, 9, 11, 13 and all the color classes exhibits a
cardinality of atmost 2, i.e, |CWi

| ≤ 2. Hence,
∑

|Wi|
i=1,3,4,6,7,9,11,13

= 2p.

χ′
eac(TL5) = 10

Figure 1: Edge-equitable antimagic coloring of triangular ladder graph

From Case 1, Case 2, Case 3 and Case 4, it is evident that the total number
of edge weights are 2p. Thus, χ′

eac(TLp) ≤ 2p. On combining both the upper
and lower bound, we get 2p− 1 ≤ χ′

eac(TLp) ≤ 2p.

Theorem 4.2. For any positive integer p ≥ 3, the edge-equitable antimagic
connection number of an open triangular ladder graph is 2p−2 ≤ χ′

eac(OTLp) ≤
2p− 1.
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Proof: The vertex set and edge set of an open triangular ladder is given
by, V (OTLp) = {xt, yt : 1 ≤ t ≤ p} and E(OTLp) = {xtxt+1, ytyt+1, xtyt+1 :
1 ≤ t ≤ p − 1} ∪ {xtyt : 2 ≤ t ≤ p − 1} respectively. The minimum and
maximum degrees are: δ(OTLp) = 1 and ∆(OTLp) = 4 respectively. An
open triangular ladder graph involves neglecting the first and last edges from
a triangular ladder graph, thus resulting in the exclusion of one edge weight 5
as in Theorem 4.1. So the total number of edge weights in an open triangular
ladder is 2p − 1. The labelling of vertices for p ≡ 0, 1, 2, 3 (mod 4) are same
as in Theorem 4.1. The distinction arises in the case of W7(xtyt), where edge
weight 5 is the only color absent from the edge weight sets of the triangular
ladder graph. As a result, Lemma 2.3 proves that the edge-equitable antimagic
coloring number of an open triangular ladder graph is bounded between 2p−2
and 2p− 1.

Case p ≡ 0(mod4) p ≡ 1(mod4) p ≡ 2(mod4) p ≡ 3(mod4)

W7(xtyt) = 8t− 3 8t− 3 8t− 3 8t− 3
(2 ≤ t ≤ p

2
) (2 ≤ t ≤ p−1

2
) (2 ≤ t ≤ p−2

2
) (2 ≤ t ≤ p−1

2
)

|W7| = l−a
d

+ 1 p−2
2

p−3
2

p−4
2

p−3
2

χ′
eac(OTL6) = 11

Figure 2: Edge-equitable antimagic coloring of open triangular ladder graph

Theorem 4.3. For any positive integer p ≥ 3, the edge-equitable antimagic
connection number of a comb graph is χ′

eac(P
+
p ) = 4.

Proof: A comb graph (P+
p ) is a particular case of a caterpillar graph

on 2p vertices obtained by joining the p vertices to form a path graph and
the other p vertices serves as leaves of a tree. The vertex set and edge set
is given by, V (P+

p ) = {xt, yt : 1 ≤ t ≤ p} and E(P+
p ) = {xtxt+1 : 1 ≤

t ≤ p − 1} ∪ {xtyt : 1 ≤ t ≤ p} respectively. By Theorem 3.2, for p ≥ 3,
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χ′
eac(P

+
p ) ≥ max{3, 4} ≥ 4, which forms the lower bound. To ascertain the

upper bound, define an antimagic labeling ς(P+
p ) : V (P+

p ) → {1, 2, 3, . . . , 2p}
by:

ς(xt) =

{
t+1
2

for t = odd

p− t
2
+ 1 for t = even

ς(yt) =


3p−t
2

+ 1 for t = odd; p = odd
3p+t+1

2
for t = even; p = odd

3p−t+1
2

for t = odd; p = even
3p+t
2

for t = even; p = even

Define a positive integer M , such that M = |CWi
| = l−a

d
+ 1, that corresponds

to the cardinality of each color class. Based on the above labelling, the edge
weights and M values are:

Edges Edge Weights M = |CWi
| = l−a

d
+ 1

p = odd p = even p = odd p = even

W1(xtxt+1) p+ 1 p+ 1 p−1
2

p
2

(t = odd) (t = odd)
W2(xtxt+1) p+ 2 p+ 2 p−1

2
p−2
2

(t = even) (t = even)

W3(xtyt)
3p+3
2

3p
2
+ 1 p+1

2
p
2

(t = odd) (t = odd)

W4(xtyt)
5p+3
2

5p
2
+ 1 p−1

2
p
2

(t = even) (t = even)

On verifying,
∣∣∣|CWi

| − |CWj
|
∣∣∣, for 1 ≤ i ≤ 4; 1 ≤ j ≤ 4 and i ̸= j results in 0

and 1, thus satisfying the equitable edge coloring condition. Further, the total
number of edge weights are: |Wi| = 1, for i = 1, 2, 3, 4. Hence,

∑4
i=1 |Wi| = 4,

i.e., χ′
eac(P

+
p ) ≤ 4. On combining the upper and lower bounds, χ′

eac(P
+
p ) = 4.
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χ′
eac(P

+
5 ) = 4

Figure 3: Edge-equitable antimagic coloring of comb graph

Theorem 4.4. For any positive integer p ≥ 3, the edge-equitable antimagic
connection number of a double comb graph is χ′

eac(P
++
p ) = 6

Proof: A double comb graph (P++
p ) is also a particular case of caterpillar

graph on 3p vertices obtained through unification of two pendant edges to each
vertex of a path graph. The vertex set and edge set is given by, V (P++

p ) =
{xt, yt, zt : 1 ≤ t ≤ p} and E(P++

p ) = {xtxt+1 : 1 ≤ t ≤ p−1}∪{xtyt, xtzt : 1 ≤
t ≤ p} respectively. By Theorem 3.2, for p ≥ 3, χ′

eac(P
++
p ) ≥ max{4, 6} ≥ 6

forms the lower bound. To ascertain the upper bound, define an antimagic
labeling ς(P++

p ) : V (P++
p ) → {1, 2, 3, . . . , 3p} by:

ς(xt) =

{
t+1
2

for t = odd ; ∀p
p− t

2
+ 1 for t = odd ; ∀p

ς(yt) =


3p−t
2

+ 1 for t = odd ; p = odd

2p+ t
2
+ 1 for t = even ; p = odd

3p−t+1
2

for t = odd ; p = even

2p+ t
2

for t = even ; p = even

ς(zt) =


2p− ( t−3

2
) for t = odd ; p = odd

5p+t+1
2

for t = even ; p = odd

2p− ( t−1
2
) for t = odd ; p = even

5p+t
2

for t = even ; p = even

Define a positive integer M , such that M = |CWi
| = l−a

d
+ 1, that corresponds

to the cardinality of each color class. Based on the above labelling, the edge
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weights and M values are:

Edges Edge Weights M = |CWi
| = l−a

d
+ 1

p = odd p = even p = odd p = even

W1(xtxt+1) p+ 1 p+ 1 p−1
2

p
2

(t = odd) (t = odd)

W2(xtxt+1) p+ 2 p+ 2 p−1
2

p−2
2

(t = even) (t = even)

W3(xtyt)
3p+3
2

3p
2
+ 1 p+1

2
p
2

(t = odd) (t = odd)

W4(xtyt) 3p+ 2 3p+ 1 p−1
2

p
2

(t = even) (t = even)

W5(xtzt) 2p+ 2 2p+ 1 p+1
2

p
2

(t = odd) (t = odd)

W6(xtzt)
7p+3
2

7p
2
+ 1 p−1

2
p
2

(t = even) (t = even)

On verifying,
∣∣∣|CWi

| − |CWj
|
∣∣∣, for 1 ≤ i ≤ 6; 1 ≤ j ≤ 6 and i ̸= j results

in 0 and 1, thus satisfying the equitable edge coloring condition. Further,
the total number of edge weights are: |Wi| = 1, for i = 1, 2, 3, 4, 5, 6. Hence,∑6

i=1 |Wi| = 6, i.e., χ′
eac(P

++
p ) ≤ 6. On combining the upper and lower bounds,

χ′
eac(P

++
p ) = 6.

χ′
eac(P

++
4 ) = 6

Figure 4: Edge-equitable antimagic coloring of double comb graph
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5 Conclusion

The proposed coloring scheme introduces an innovative and unprecedented
approach to the field of research, which remains wide open for exploration.
The paper presents a comprehensive analysis with a specific focus on ladder
and comb graph families, that includes the triangular and open triangular
ladder graphs, comb and double comb graphs. Though initial investigations
encompass general lower bounds further study can provide rigorous proofs of
optimality for other graph structures.

6 Open Problem

The paper has explored only one particular type of caterpillar tree, though
characterizing the existence of edge-equitable antimagic coloring across vari-
ous trees (such as, regular trees, caterpillars, lobster trees) and multipartite
graphs remains an open problem.
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