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Abstract

Our main purpose in this study is to examine the blow up
formation of a generalized version of the Degasperis-Procesi
equation, which is a shallow water wave equation, with weak
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1 Introduction

In the current work, we examine the Cauchy problem of the following gener-
alized Degasperis-Procesi (DP) equation with the weak dissipation:

{
wt − wxxt + [h(w)]x − 3wxwxx − wwxxx + λ(w − wxx) = 0, t > 0, x ∈ R,
w (0, x) = w0 (x) , x ∈ R.

(1)
where h : R→ R is given Cb-function, b ≥ 2 and λ(w − wxx) is the dissipative
term, λ > 0 is a constant.

If we take h(w) = 2w2 and λ = 0, we obtain the classical DP equation [4]

wt − wxxt + 4wwx − 3wxwxx − wwxxx = 0. (2)

Eq. (2) is one of the important equations modeling shallow water waves.
DP equation has Hamiltonian structure and an infinite sequence of conserved
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quantities and is integrable [5]. The local well-posedness, global existence,
weak solutions and explosion of the solutions of a Cauchy problem for the
Eq. (2) have been studied in Sobolev and Besov spaces ([9], [16], [17]). For
Eq. (2), the existence and uniqueness of global weak solutions, wave breaking
phenomenon and global strong solutions were discussed in ([8], [13]). Wave
breaking is defined as follows: for some partial differential equations, while
the solution (w) of the equation remains finite, the derivative of the solution
with respect to the space variable (wx) tends to be infinite at the moment of
explosion (see [1], [2]). This type of blow-up, which takes the derivative of the
solution with respect to the space variable into account, is best known as wave
breaking.

Generally, energy dissipation mechanics are hard to avoid in a real world.
Therefore, it makes sense to investigate the model with energy dissipation
in the propagation of nonlinear waves. In recent years, it has become very
important to study nonlinear wave equations with dissipative terms.

In ([15], [10]) the mathematical behaviors of the following weakly dissi-
pative DP equation, such as local well-posedness, global existence, blow up,
persistence properties and propagation speed are studied:

wt − wxxt + 4wwx − 3wxwxx − wwxxx + λ(w − wxx) = 0. (3)

Wu and Yin studied the following problem involving the generalized DP
equation in [14]:{

wt − wxxt + [h(w)]x = γ(3wxwxx + wwxxx), t > 0, x ∈ R,
w (0, x) = w0 (x) , x ∈ R. (4)

They demonstrated local well-posedness of (4) and derived a precise blow-up
scenario and showed a few blow-up results.

As can be seen, if h(w) = 2w2 and λ 6= 0 in Eq. (1), Eq. (3) is obtained.
Also, if we take λ = 0 in Eq. (1), Eq. (4) is obtained. Therefore, we can say
that Eq. (1) is a more general equation.

Our main purpose in this study is to examine the mathematical properties
of problem (1), which has not been examined yet.

The basic framework of the article is as follows: In the second part, we
will give some preliminary information. In the third part, we will examine the
blow-up phenomena for problem (1).

2 Preliminaries

First of all, we introduce the notations we will use throughout the article.
The convolution is denoted by ∗. ‖.‖B indicates the norm of Banach space
B. Since the entire function space is on R, we drop R in our function space
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representations for convenience if there is no ambiguity. H` is the classical
Sobolev space by norm ‖.‖H` = ‖.‖`, ` ∈ R. The norm in Lebesgue space Lp

is shown ‖.‖Lp , 1 ≤ p ≤ ∞. Λ = (1− ∂2x)
1
2 .

Problem (1) can be rewritten as:{
wt + wwx = −∂x(1− ∂2x)−1(h(w)− 1

2
w2)− λw, t > 0, x ∈ R,

w (0, x) = w0 (x) , x ∈ R. (5)

It is note that (1− ∂2x)
−1
q = r ∗ q, ∀q ∈ L2, where r (x) = 1

2
e−|x|, x ∈ R.

Utilizing this identity, we rewrite problem (5) the following:{
wt + wwx = −∂xr ∗ (h(w)− 1

2
w2)− λw, t > 0, x ∈ R,

w (0, x) = w0 (x) , x ∈ R. (6)

Theorem 2.1 Suppose that h ∈ Cb, b ≥ 2. Given w0 ∈ H`, 3
2
< ` ≤ b, there

is a maximum T = T (h,w0, λ) > 0 which is independent on `, and a unique
solution w to (5) (or (1)) such that

w = (., w0) ∈ C([0, T );H`) ∩ C1([0, T );H`−1).

Also, the solution is constantly dependent on the initial data.

The theorem above is the local well-posedness theorem. We applied Kato
theory [11] to obtain this theorem. The proof is done similarly to ([6], [7],
[14]) with minor changes. For this reason we skip this proof.

Now, we will list the lemmas we will use to prove our main results.

Lemma 2.2 ([12]) Let ` > 0. Then we have∥∥[Λ`, u
]
v
∥∥
L2 ≤ k

(
‖∂xu‖L∞

∥∥Λ`−1v
∥∥
L2 +

∥∥Λ`u
∥∥
L2 ‖v‖L∞

)
.

Here k is constant depending only on `.

Lemma 2.3 ([12]) Let ` > 0. Then H` ∩ L∞ is an algebra. Moreover

‖vu‖` ≤ k (‖v‖L∞ ‖u‖` + ‖v‖` ‖u‖L∞) .

Here k is a constant depending only on `.

Lemma 2.4 ([3]) Suppose that Q ∈ Cb+2 with Q(0) = 0. Then for every
1
2
< ` ≤ b, we have

‖Q(w)‖` ≤ Q̃(‖w‖L∞) ‖w‖` , w ∈ H`

where Q̃ is a monotone increasing function depending only on Q and `.
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Lemma 2.5 ([1]) Let T > 0 and w ∈ C1 ([0, T ) ;H2) . Then for every t ∈
[0, T ) , there exist at least one pair points γ (t) , Γ (t) ∈ R, such that

z (t) = inf
x∈R

[wx (t, x)] = wx (t, γ (t)) ,

Z (t) = sup
x∈R

[wx (t, x)] = wx (t,Γ (t)) ,

and z (t), Z (t) are absolutely continuous in (0, T ). Additionally,

dz (t)

dt
= wtx (t, γ (t)) ,

dZ (t)

dt
= wtx (t,Γ (t)) , a.e.on (0, T ) .

3 Blow-up analysis

Blow up analysis for (1) is made in this section. For this purpose, our first goal
will be to create a blow up scenario. Then we will present a blow-up result.

Theorem 3.1 Assume that h ∈ Cb+2, b ≥ 2, and w0 ∈ H`, 3
2
< ` ≤ b. Then

the solution w of (5) (or (1)) with the initial datum w0 blows up in finite
T <∞ if and only if

limt↑T (‖w(t, x)‖L∞ + ‖wx(t, x)‖L∞) =∞.

Proof. Let w is the solution of (1) with the initial datum w0 ∈ H`, 3
2
< ` ≤ b,

which is guaranteed by Theorem 2.1. If limt↑T (‖w(t, x)‖L∞ + ‖wx(t, x)‖L∞) =
∞, by Sobolev imbedding theorem, we acquire that the solution w will blow
up in finite time.

Now, applying the operator Λ` to (5), multiplying by Λ`w, and integrating
by parts on R, we have

d

dt
(w,w)` = −2(wwx, w) + 2(a(w), w)`, (7)

where a(w) = −∂x(1− ∂2x)−1(h(w)− h(0)− w2

2
)− λw. Suppose there exists a

K > 0, such that limt↑T (‖w(t, x)‖L∞ + ‖wx(t, x)‖L∞) ≤ K. At that case, we
get

|(wwx, w)| = |(Λ`(wwx),Λ
`w)0|

= |([Λ`, w]wx,Λ
`w)0 + (wΛ`wx,Λ

`w)0|

≤ ‖[Λ`, w]wx‖L2‖Λ`w‖L2 +
1

2
‖wx‖L∞‖Λ`w‖2L2

≤ k(‖wx‖L∞‖Λ`−1wx‖L2 + ‖Λ`w‖L2‖wx‖L∞)‖w‖`

+
1

2
‖wx‖L∞‖w‖2`

≤ k‖wx‖L∞‖w‖2` ≤ kK‖w‖2` , (8)
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where we used Lemma 2.2.
Now, we estimate the (a(w), w)`.

(a(w), w)` = (−∂x(1− ∂2x)−1(h(w)− h(0)− w2

2
)− λw,w)`

≤ k‖w‖`(‖h(w)− h(0)‖`−1 +
1

2
‖w2‖`−1 + λ‖w‖`)

≤ k(Q̃(‖w‖L∞)‖w‖`−1 + ‖w‖L∞‖w‖`−1 + λ‖w‖`)‖w‖`
≤ k((Q̃(‖w‖L∞) + ‖w‖L∞ + λ)‖w‖2`
≤ k(Q̃(K) +K + λ)‖w‖2` , (9)

where we used Lemma 2.4 with Q(w) = h(w) − h(0) and Lemma 2.3. From
(7)-(9), we have

d

dt
‖w‖2` ≤ k(Q̃(K) +K + λ)‖w‖2` .

Applying Gronwall’s inequality to this inequality, we obtain the following in-
equality, which ends Theorem 3.1

‖w(t)‖2` ≤ ‖u0‖2` exp(k(Q̃(K) +K + λ))t.

Theorem 3.2 Suppose that h ∈ Cb+2, b ≥ 3. Given w0 ∈ H`, 3 ≤ ` ≤ b. If
there is a K > 0 such that ‖w‖L∞ ≤ K, ∀t ∈ [0, T ), then the solution w of (1)
blows up in finite time T <∞ if and only if

lim
t↑T

inf(inf
x∈R

wx(t, x)) = −∞.

Proof. If the slope of the solution w becomes unbounded from below in finite
time, then by Theorem 2.1 and Sobolev imbedding theorem, we get the solution
w will blow up in finite time.

Next, if the slope of solution is bounded from below in finite time, then we
understand that the solution will not blow up in finite time. Differentiating
(6) with respect to x, in view of the identity ∂2x(r ∗ q) = r ∗ q − q, we get

wtx + w2
x + wwxx = −∂2x[r ∗ (h(w)− 1

2
w2)]− λwx.

Then

wtx = −w2
x − wwxx + h(w)− w2

2
− r ∗ (h(w)− 1

2
w2)− λwx.

By Young’s inequality, we obtain

‖r ∗ h(w)‖L∞ ≤ ‖r‖L1‖h(w)‖L∞ ≤ ‖h(w)‖L∞ ≤ sup
|v|≤‖w‖L∞

|h(v)| (10)
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and
‖r ∗ w2‖L∞ ≤ ‖r‖L1‖w2‖L∞ ≤ ‖w‖2L∞ . (11)

Define Z(t) = wx(t,Γ(t)) = supx∈Rwx(t, x). Since wxx(t,Γ(t)) = 0, ∀t ∈
[0, T ), it follows that a.e. on [0, T )

Z ′(t) = −Z2(t)− λZ(t) + h(w(t,Γ(t)))− 1

2
w2(t,Γ(t))− r ∗ (h(w)− 1

2
w2).

By (10) and (11), we obtain

Z ′(t) ≤ −Z2(t)− λZ(t) +
1

2
‖w‖2L∞ + 2 sup

|v|≤‖w‖L∞
|h(v)|.

Set β2 = 1
2
‖w‖2L∞ + 2 sup|v|≤‖w‖L∞ |h(v)|. Then we get

Z ′(t) ≤ −Z2(t)−λZ(t)+β2 = −1

4
(2Z(t)+λ−

√
λ2 + 4β2)(2Z(t)+λ+

√
λ2 + 4β2)

If Z(t) > −1
2
λ + 1

2

√
λ2 + β2, we get that Z ′(t) < 0 which gives that Z(t) is

decreasing. Otherwise Z(t) ≤ −1
2
λ+ 1

2

√
λ2 + β2. Thus, we obtain

z(t) ≤ Z(t) ≤ max{Z(0),−1

2
λ+

1

2

√
λ2 + β2}, t ∈ [0, T ). (12)

By Theorem 3.1 and from (12), we obtain that if wx is bounded from below,
then the solution of problem (1) will not blow up in finite time.

Next, we present a blow-up result.

Theorem 3.3 Let w0 ∈ H`, ` > 3
2
. Suppose that w0 is odd and w′0(0) < −λ.

Given h ∈ Cb, b ≥ 3, h is even. If r ∗ (h(w)− h(0)− 1
2
w2)(t, x) ≥ 0, then the

solution w with initial data w0 to (1) blows up in finite time.

Proof. By Theorem 2.1 and a simple density argument, we only to prove
that the theorem holds for ` = 3. Let T be the maksimum time of the existence
of the solution w ∈ C([0, T );H`) ∩ C1([0, T );H`−1) with the initial data w0 of
(1). Note that (1) has the symmetry (w, x)→ (−w,−x). If w0(x) is odd, then
w(t, x) is odd for any t ∈ [0, T ). Since ` = 3, the functions w and wxx are
continuous in x. So, we possess

w(t, 0) = wxx(t, 0) = 0, ∀t ∈ [0, T ).

Differentiating (6) with respect to x, we get

wtx(t, x)+w2
x(t, x)+wwxx(t, x) = −∂2x[r∗(h(w)−h(0)− 1

2
w2)](t, x)−λwx(t, x).
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Let f(t) = wx(t, 0), t ∈ [0, T ). Using ∂2x(r ∗ q) = r ∗ q − q, we get

df(t)

dt
= −f 2(t)− λf(t)− r ∗ (h(w)− h(0)− 1

2
w2)(t, 0).

Since r ∗ (h(w)− h(0)− 1
2
w2)(t, 0) ≥ 0, we obtain

df(t)

dt
≤ −f 2(t)− λf(t) = −(f(t) + λ)f(t), t ∈ [0, T ).

From the hypothesis, we have f(0) < −λ. Therefore, f(t) < −λ, ∀t ∈ [0, T ).
Solving the above inequality, we obtain

1− f(0)

f(0) + λ
e−λt ≤ λ

f(t) + λ
≤ 0.

Since
f(0)

f(0) + λ
> 1,

we deduce that there exists T and

T ≤ 1

λ
ln

f(0)

f(0) + λ

such that limt↑T f(t) = −∞. This ends the proof of the theorem.

4 Open Problem

We examined the blow up formation of a generalized version of the Degasperis-
Procesi equation, which is a shallow water wave equation, with the weak dis-
sipation term. The open problem here is that are there global strong solutions
to (1)?
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